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Linear Local Models for Monocular
Reconstruction of Deformable Surfaces

Mathieu Salzmann and Pascal Fua, Senior Member, IEEE

Abstract—Recovering the 3D shape of a nonrigid surface from a single viewpoint is known to be both ambiguous and challenging.
Resolving the ambiguities typically requires prior knowledge about the most likely deformations that the surface may undergo. It often
takes the form of a global deformation model that can be learned from training data. While effective, this approach suffers from the fact
that a new model must be learned for each new surface, which means acquiring new training data, and may be impractical. In this
paper, we replace the global models by linear local models for surface patches, which can be assembled to represent arbitrary surface
shapes as long as they are made of the same material. Not only do they eliminate the need to retrain the model for different surface
shapes, they also let us formulate 3D shape reconstruction from correspondences as either an algebraic problem that can be solved in
closed form or a convex optimization problem whose solution can be found using standard numerical packages. We present
quantitative results on synthetic data, as well as qualitative results on real images.

Index Terms—Deformable surfaces, monocular shape recovery, deformation models.

1 INTRODUCTION

BEING able to recover the 3D shape of deformable surfaces
using a single camera would make it possible to field
reconstruction systems that run on widely available hard-
ware. However, because many different 3D shapes can have
virtually the same projection, such monocular shape
recovery is inherently ambiguous. The solutions that have
been proposed over the years mainly fall into two classes:
those that involve physics-inspired models [32], [8], [19],
[18], [22], [21], [35], [3] and those that learn global models
from training data [9], [4], [7], [6], [1], [33], [17], [2], [15],
[36], [39], [28]. The former solutions often entail designing
complex objective functions and require hard-to-obtain
knowledge about the precise material properties of the
target surfaces. The latter require vast amounts of training
data, which may not be available either, and only produce
models for specific object shapes. As a consequence, one has
to learn a specific deformation model for each individual
object, even when all objects are made of the same material.
To overcome these limitations, we note that

e locally, all parts of a physically homogeneous sur-
face obey the same deformation rules,

e the local deformations are more constrained than
those of the global surface and can be learned from
fewer examples.
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To take advantage of these facts, we represent the manifold
of local surface deformations and regularize the reconstruc-
tion of a global surface by encouraging its patches to
conform to the local models. As shown in Fig. 1, this allows
us to recover complex surface deformations for surfaces
made of different materials from single-input images when
correspondences can be established with a reference image in
which the surface shape is known.

In earlier work [29], we used nonlinear Gaussian Process
Latent Variable Models to represent the space of local
surface deformations. This has proven effective to recover

painstaking motion capture process.

In this work, we advocate the use of simpler linear models
instead of representing the local deformations in conjunction
with inextensibility constraints. We show that, depending on
whether the constraints are formulated as equalities or
inequalities on distances between vertices of the mesh that
represents the surface, reconstruction can be formulated
either as an algebraic problem that can be solved in closed
form or as a convex problem whose solution can be found
using standard numerical routines [5]. Either way, this
relieves us from the need of an initialization and allows
automatic reconstruction of sharply folding shapes, such as
those of Fig. 1, from single images. Furthermore, this entails
no loss of accuracy with respect to the nonlinear models,
especially when using inequality constraints, as we first
proposed in [25], rather than the equality constraints we
introduced in [27]. Finally, if necessary, the linear models
can be learned from synthetically generated data without
even having to acquire motion capture data, which makes
our approach practical even when such motion capture
cannot be performed.

Published by the IEEE Computer Society
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Fig. 1. Reconstruction of deformable surfaces undergoing complex deformations. (Top row) Reconstructed 3D mesh overlaid on the input image.

(Bottom row) Side view of the same mesh.

In short, we propose a generally applicable approach to
recover 3D shape from single images that is fully automated
and can handle very complex deformations, including
sharp folds and potentially featureless parts of the surface,
which we believe to be beyond the current state of the art.

2 REeLATED WORK

Three-dimensional reconstruction of nonrigid surfaces from
single images is a severely underconstrained problem since
many different shapes can produce very similar projections.
Several methods have therefore been proposed over the
years to favor the most likely shapes and disambiguate the
problem.

The earliest approaches were inspired by physics and
involved minimizing the sum of an internal energy
representing the physical behavior of the surface and an
external one derived from image data [32]. Many variations,
such as balloons [8], deformable superquadrics [19], and
thin plates under tension [18], have since been proposed.
Modal analysis has been applied to reduce the number of
degrees of freedom of the problem by modeling the
deformations as linear combinations of vibration modes
[22], [21]. Since these formulations oversimplify reality,
especially in the presence of large deformations, more
accurate nonlinear models were proposed [35], [3]. How-
ever, to correctly reflect reality, these models need to be
carefully hand-crafted, and give rise to highly nonlinear
energy terms. In short, even though incorporating physical
laws into the algorithms seems natural, the resulting
methods suffer from two major drawbacks. First, one must
specify material parameters that are typically unknown.
Second, making them accurate in the presence of large
deformations requires designing very complex objective
functions that are often difficult to optimize.

Methods that learn global models from training data
were introduced to overcome these limitations. As in modal
analysis, surface deformations can be expressed as linear
combinations of deformation modes. However, these modes
are obtained from training examples rather than from
stiffness matrices and can therefore capture more of the
true variability. For faces, Active Appearance Models [9]
pioneered this approach in 2D and were quickly followed by
3D Morphable Models [4]. In previous work [28], we used a

similar approach for general nonrigid surfaces and intro-
duced a practical way of generating synthetic training data.

Nonrigid structure-from-motion methods also rely on
learned linear models to constrain the relative motion of 3D
points. Early approaches [7], [1] used known basis vectors,
but the idea was expanded to simultaneously recover the
shape and the modes from image sequences [6], [33], [39],
[2], [15], [38]. However, since they rely on tracking points
over long sequences, these methods often fail in practice.
Only very recently has this problem been alleviated by
using hierarchical priors [34], which assumes that the image
measurements and 3D shapes come from a common
probability distribution whose parameters are unknown.
In any event, while learning deformation modes online is a
very attractive idea, the resulting methods are only effective
for relatively small deformations since using a large number
of deformation modes makes the solution more ambiguous.
Furthermore, whether learned offline or online, global
models have the drawback of being valid only for a
particular shape of the surface.

Recently we proposed replacing the global deformation
models by local ones that can be learned from smaller
amounts of training data [29]. We represented the deforma-
tions of local patches of a surface with Gaussian Process
Latent Variable Models (GPLVM) [13], and showed that a
global deformation prior could be obtained by combining
the local ones following a Product of Experts (PoE) [12]
paradigm. This let us build models valid for any shape
made of a particular material, and thus avoided the need to
learn a new model for every new object shape. However,
using a nonlinear representation of the local deformation
yields nononvex objective functions. Therefore, to be
effective, these models require good initialization and can
only be used for tracking purposes.

Several methods have recently been proposed to recover
the shape of inextensible surfaces without an explicit
deformation model. Some are specifically designed for
applicable surfaces, such as sheets of paper [11], [14], [23].
Others explicitly incorporate the fact that the distances
between surface points must remain constant as constraints
in the reconstruction process [27], [10], [24], [31]. This
approach is very attractive because many materials do not
perceptibly shrink or stretch as they deform. However, in
our experience, additional regularization is still required
when the surface is not textured enough. Furthermore, as
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Fig. 2. Establishing 3D-to-2D correspondences. Given the reference mesh and image, we compute correspondences between 3D mesh locations
given in barycentric coordinates and 2D feature points. From a new input image, we compute SIFT [16] matches with the reference image, which
links the 3D surface points to 2D locations on the input image. The 3D shape is then obtained by deforming the mesh to make the 3D points best

reproject on the input image.

will be discussed below, the constant distance assumption
may be violated in the presence of sharp folds, which
introduces inaccuracies.

3 APPROACH AND FORMULATION

In this paper, we present a method that combines the
strengths of intervertex distance constraints with those of
local deformation models. It incorporates the following
ingredients:

e Shape from correspondences: We show that re-
constructing 3D shape from 3D-to-2D correspon-
dences amounts to solving an ill-conditioned linear
problem.

e Linear local models: To regularize the reconstruc-
tion and handle untextured surface parts, we
introduce linear local models that can be learned
either from motion capture data or from easy-to-
generate synthetic training data.

e Intervertex distance constraints: Distance con-
straints are inherently nonlinear and therefore not
effectively enforced by the linear models. Therefore,
we introduce them as nonlinear constraints in our
optimization scheme. We will show that this results
in either an algebraic problem that can be solved in
closed form or a convex optimization problem,
depending on whether the constraints are formu-
lated as equalities or inequalities.

In the remainder of the paper, we discuss each one of
these three ingredients in more detail. We then evaluate the
resulting algorithms quantitatively.

To this end, we represent a surface as a triangulated mesh
made up of n, vertices, v; = [xi,yi,zi}T, 1<i<n,, con-
nected by n, edges. Let X = [v,..., v’ ]" be the vector of
coordinates obtained by concatenating the v;.

We assume that we are given a set of n. 3D-to-2D
correspondences between the surface and an image. As
depicted by Fig. 2, each correspondence relates a 3D point
on the mesh, expressed in terms of its barycentric
coordinates with respect to the facet to which it belongs,
and a 2D feature in the image.

Additionally, we assume the camera to be calibrated and
therefore the matrix of intrinsic parameters A to be known.
To simplify our notations without loss of generality, we
express the vertex coordinates in the camera referential.
Note that, since we allow all of the mesh vertices to move
simultaneously, rigid surface motion is possible.

4 SHAPE FROM CORRESPONDENCES

In this section, we formulate 3D surface reconstruction from
3D-to-2D correspondences as a linear problem. We then
show that the resulting linear system is ill-conditioned and
thus requires additional constraints.

4.1 Linear Formulation

Following [26], we first show that, given a set of 3D-to-2D
correspondences, the vector of vertex coordinates X can be
found as the solution of a linear system.

Let p be a 3D point belonging to facet f with
barycentric coordinates [by, bs, b3]. Hence, we can write it
as p=>.2 bivs;, where {Vfi}iz193 are the three vertices
of facet f. The fact that p projects to the 2D image location
(u,v) can now be expressed by the relation

u
A(blvjcﬁl + bZVf,Q -+ b3Vf73) =klv]|, (1)
1

where k is a scalar accounting for depth. Since, from the last
row of (1), k can be expressed in terms of the vertex
coordinates, we have

A\SA!
[blH b2H bgH] V2 = 0, (2)
Vf‘3
with
u
H= A3~ |:,U:|A37 (3)

where A, 3 contains the first two rows of A and Aj is the
third one. n. such correspondences between 3D surface
points and 2D image locations therefore provide 2n. linear
constraints such as those of (2). They can be jointly
expressed by the linear system

MX =0, (4)

where M is a 2n. x 3n, matrix obtained by concatenating
the [bH b,H b3H] matrices of (2).

Although solving the system of (4) yields a surface that
reprojects correctly on the image, there is no guarantee that
its 3D shape corresponds to reality. Indeed, not only is the
rank of M not full, due to the well-known global-scale
ambiguity, but, for all practical purposes, it is even lower.
More specifically, even where there are many correspon-
dences, one-third, i.e., n,, of the eigenvalues of M™M, are
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Fig. 3. (Top row) Original and side views of a surface used to generate a
synthetic sequence. The 3D shape was reconstructed by an optical
motion capture system. (Bottom row) Eigenvalues, corresponding to the
linear system of (4), written from correspondences randomly established
for the mesh of the top left figure. The system was written in terms of
243 vertex coordinates. One-third of the eigenvalues are close to zero.

very close to zero, as illustrated in Fig. 3. In [26], we showed
that this corresponds to one depth ambiguity per mesh
vertex. As a result, even small amounts of noise produce
large instabilities in the recovered shape.

This suggests that additional constraints have to be
added to guarantee a unique and stable solution. In the
following, we will show that using linear local deformation
models in conjunction with intervertex distance constraints
does the job and yields effective solutions.

5 LiNEAR LocAL MODELS

In this section, we introduce our surface deformation model
and show that it lets us introduce a regularization term that
greatly constrains the deformations the surface can under-
go. However, this does not remove all ambiguities, which
makes the length constraints of Section 6 necessary.

5.1 Learning Local Models

Representing the shape of a nonrigid surface as a linear
combination of basis vectors is a well-known technique.
Such a deformation basis can be obtained by modal analysis
[22], [21], from training data [9], [4], [28], or directly from
the images [39], [2], [15], [34], [38].

As shown in Fig. 4, we follow a similar idea, but, rather
than introducing a single model for the whole surface, we
subdivide the mesh into sets of overlapping patches and
model the deformation of each one as a linear combination
of modes. This lets us derive a deformation energy for each
patch, and we take the overall mesh deformation energy to
be the sum of those. In the Appendix, we use motion
capture data to provide empirical evidence that an energy
formulated in this manner can be understood as the
negative log of a shape prior.

Assuming that all parts of the surface follow similar
deformation rules, the modes are the same for all patches
and can be learned jointly, which minimizes the required
amount of training data. Since patches can be assembled
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Fig. 4. Instead of modeling the whole surface, we subdivide the mesh
into overlapping patches and model their deformations as linear
combinations of modes. This lets us represent surfaces of arbitrary
shape or topology by adequately assembling local patches.

into arbitrarily shaped global meshes, only one deformation
model needs to be learned, irrespective of mesh shape and
topology. Furthermore, local models also let us explicitly
account for the fact that parts of the surface are much less
textured than others and should therefore rely more
strongly on the deformation model. This would not be
possible with a global representation. Depending on
parameter settings, it would either penalize complex
deformations excessively or allow the poorly textured
regions to assume unlikely shapes.

Let X; be the z, y, and z coordinates of an n; x n; square
patch of the mesh. We model the variations of X; as a linear
combination of n,, modes, which we write in matrix form as

X; = X! + Ac;, (5)

where X! represents the coordinates of the patch in the
reference image, A is the matrix whose columns are the
modes, and c; is the corresponding vector of mode weights.
In practice, the columns of A contain the eigenvectors of the
training data covariance matrix, and were computed by
performing Principal Component Analysis (PCA) on a set of
deformed 5 x 5 meshes. As in [28], these meshes were
obtained by simulating inextensible deformations. More
specifically, we assigned random values uniformly sampled
in the range [—7/6,7/6] to a determining subset of the
angles between the facets of the mesh. Some of the resulting
modes are depicted in Fig. 5. Note that the same modes
were used for all of our experiments, independently of the
material or shape of the surface of interest.

In [29], we introduced nonlinear local models. While they
offer a more accurate representation of the space of possible
deformations, which is known to be nonlinear, they suffer
from two drawbacks. First, they yield a highly nonconvex
shape likelihood function, which makes them practical only
for tracking purposes. Second, to accurately capture the space
of feasible deformations of a particular material, they need
training examples acquired from a real object, which involves
a painstaking process. Our linear local models have the
advantage that they can be learned from synthetic training
data that can easily be generated. Furthermore, as long as
sufficiently many modes are kept, they define a hyperellip-
soid that encompasses the true nonlinear deformation space.
Therefore, they can model arbitrarily complex shapes. In
practice, to remain as general as possible, we keep all of the
modes and enforce deformations to remain plausible by
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Fig. 5. Visual interpretation of the local deformation modes. We show the effect of adding (blue) or subtracting (green) some of the modes to the mean
shape (red). Note that despite the fact that all of the training examples were inextensible deformations of a mesh, PCA yields extension modes.

regularizing their coefficients according to their importance,
as described below.

5.2 Local Models for Shape Recovery

When using a linear model for shape recovery, the usual
approach is to replace the original unknowns by mode
weights. However, since we model the global surface with
overlapping local patches, doing so would not constrain the
shapes predicted by the weights associated to two such
patches to be consistent. Fortunately, since the deformation
modes are orthonormal, the coefficients ¢; of (5) can be
directly computed from X, as

¢ =A'(X; - XY). (6)

We therefore use the vector of surface coordinates X
introduced in Section 4.1. To enforce the individual surface
patches’ conformance to our linear local model, we use all
of the modes and introduce the penalty term

512 = [[5-2A7 (%, - X)) v

where ¥ is a diagonal matrix that contains the eigenvalues
associated to the eigenvectors in A. It measures how far the
c;, and therefore the X, are from the training data. We then
write the global regularization term as the solution to the
optimization problem

min'gnize [WL(X - X%, (®)

where L is an npnl2 X n, matrix which concatenates
n, copies of Y7Y/2AT spread over the global mesh X
according to the vertices of the n, patches X;, and X" is the
reference shape of the global mesh. W, is a diagonal matrix,
containing n, individual values wf, designed to account for
the fact that poorly textured patches should rely more
strongly on the model than well-textured ones. In other
words, w; should be inversely proportional to the number
of correspondences in patch i. We take it to be

. nt
i _ in 9
e exp( median(nf >0, 1<k < np))’ ©

m

where n}, is the number of inlier matches in patch j. Note
that, the formulation of the shape regularization of (8)
spares us the need to explicitly introduce additional latent
variables as was the case for the nonlinear local models [29].

To prevent us from obtaining the trivial solution X = X’
to the problem of (8), we solve it in conjunction with the
projection equations of (4). This lets us express the shape
reconstruction problem as the solution of

mingnizeHMXHz + [WLEX - X2 (10)

Since, within the Ls-norms, both terms are linear in X, this
is equivalent to solving, in the least-squares sense, the
linear system

S[X} o, (11)
1
where
M 0
5= {WZL —WlLXO} (12)

InFig. 6, we plot the eigenvalues S” S for the mesh of Fig. 3. As
we can see, much fewer eigenvalues are close to zero than
before. This suggests that our linear local models truly
improve the conditioning of our problem. However, some
eigenvalues remain small, which implies that some ambi-
guities are still unresolved. This, for example, is the case of the
global-scale ambiguity that can be modeled by the extension
modes depicted in Fig. 5. Therefore, additional constraints
need to be introduced to fully disambiguate the problem.

6 NONLINEAR CONSTRAINTS

In this section, we introduce the additional nonlinear
constraints that, in conjunction with the linear local models
of the previous section, make shape recovery from 3D-to-2D
correspondences well-posed. We first introduce inextensi-
bility constraints and show that they yield a closed-form
solution of the reconstruction problem. Then, because these
constraints may be violated in the presence of sharp folds,
we replace them by distance inequalities, which results in a
convex formulation.

6.1 Distance Equality Constraints

Several recent approaches [24], [10], [27] rely on the fact that
many deformable surfaces, such as clothes or paper, are

x 10

0.5

0 50 100 150 200

Fig. 6. Eigenvalues corresponding to the linear system of (11) for the
mesh of Fig. 3. Note that fewer eigenvalues are close to zero than when

relying on texture only. However, some remain small, which suggests
that the linear local models do not fully disambiguate the problem.
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nearly inextensible. In our case, this means enforcing
constraints expressed as
k) € &,

v = vill* = 8, V0, (13)

where € represents the set of n. edges of the mesh and [;, is
the length of the edge joining vertices j and k in the reference
configuration. A typical way to solve such quadratic
constraints in closed form is to linearize the system, which
involves introducing new unknowns for the quadratic
terms. In our case, this would yield 3n,(3n,+1)/2 un-
knowns, which, for meshes of reasonable size, would
quickly become intractable. Instead, we propose describing
the solutions of (11) with a reduced number of unknowns,
which lets us effectively enforce inextensibility constraints.

Following the idea introduced in [20], we write the
solution of the linear system of (11) as a weighted sum of
the eigenvectors s;, 1 <1 < ng of S”S which are associated
with the n, smallest eigenvalues. Therefore, we write

4]

since any such linear combination of s; is in the kernel of
S”S and produces a mesh that simultaneously projects
correctly on the image and conforms to the linear local
models. Our problem now becomes one of finding appro-
priate values for the 5; which are the new unknowns.

We are now in a position to exploit the inextensibility of
the surface by choosing the (3; so that edge lengths are
preserved. Such f3; can be expressed as the solution of a set
of quadratic equations of the form

(14)

ng

Zﬁ?s - Zﬁ1
J

where s/ is the 3 x 1 subvector of s; corresponding to the
coordinates of vertex v;. In addition to these quadratic
constraints, we need to express the fact that the last
elements of the products 3;s; must sum up to 1. This yields
the linear equation

]k’ (15)

Z 61 3ny+l 1, (1 6)
which we solve together with the quadratic edge constraints.

Since ng < 3n,, linearization becomes a viable option to
solve our quadratic equations. To this end, we consider the
quadratic terms as additional variables, and define the new

nb ng + ?;_) /2)-dimensional vector of unknowns as b=
1", by"]" such that

bl = [ﬁlv cee 7ﬁns]T7 and

bq = [51517 .o 7/[}1/[}7157[32/[527 v aﬂ?ﬁma s aﬂm/[}n‘,]T'

Finding a shape that satisfies the constraints described
above can now be expressed as solving the optimization
problem

minibrnichqu — dH2—|—ws (53"“Hb1 - 1)27 (17)
where D is an n. X ng(ns +1)/2 matrix built from the
known s;, d is the n. x 1 vector of edge lengths in the

(@) (b)

Fig. 7. Schematic representation of why inextensibility constraints are ill-
suited for sharp folds. (a) Two points of the discrete representation of a
continuous surface in its rest configuration. (b) When deformed, while
the geodesic distance between the two points is preserved, the
euclidean distance decreases. This suggests that distance inequality
constraints should be used rather than equalities.

reference configuration, and s*"*! is the row vector
containing the last element of each s;. w, is a weight that
sets the influence of the constraint of (16) and was always
set to 1e6. Note that, with our new unknowns, this problem
is equivalent to solving a linear system in the least-squares
sense, which can be done in closed form.

However, solving the problem of (17) directly would
yield a meaningless solution since nothing links the linear
terms with the quadratic ones. To overcome this problem,
we multiply the linear equation of (16) by the individual 3;,
which yields n, new equations of the form

Zﬂf

Adding these equations to (17) provides the missing link
between linear and quadratic terms. Note that this does not
truly guarantee consistency between the linear and quad-
ratic terms, but, in practice, it proves sufficient to yield
meaningful reconstructions. We therefore solve the optimi-
zation problem

37L +1 _ ﬂ (18)

minimize||Dbg — d|[*+uw, ((s"*'by — 1)"+|| Digb|[’), (19)
where Dyq is an ng x ng(ns +3)/2 matrix. Note that this
problem can still be solved in closed form. Given its solution,
we can compute the shape of the deforming surface from (14)
with the linear terms of vector b. Selecting the correct number
ns of eigenvectors is made possible by testing for all values
smaller than a predefined threshold and by picking the one
that gives the smallest mean edge length variation. In
practice, the maximum value for n, was set to 20.

6.2 Distance Inequality Constraints

As we will show in the results section, the inextensibility
constraints yield good reconstruction of smoothly deform-
ing surfaces. However, as illustrated in Fig. 7, such
constraints are violated when folds appear between mesh
vertices because the euclidean distance between points on
the surface may decrease. It is therefore truer to reality to
replace the inextensibility constraints by constraints that
allow vertices to come closer to each other, but not to move
further apart than their geodesic distance [25]. For all pairs
of neighboring vertices v; and v, we therefore replace the

constraints of (13) with inequality constraints written as
Vi = vill < - (20)

Note that, contrary to inextensibility constraints, these
distance inequalities are convex [5]. As a consequence,
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Fig. 8. With a perspective camera model, lines-of-sight are not parallel.
Therefore, maximizing the area of a mesh can be achieved by pushing it
away from the camera. (a) In the absence of noise, this can be done by
maximizing the depth of the point along the line-of-sight. (b) With noise,
we replace the depth d; by the projection of the point on the line-of-sight.

there is no need to linearize them, and we could directly
solve the problem

minimize | MX|| + |[W,L(X — X°)||
x (21)
subject to||vi — ;|| < lik, V(j, k) € €.

This could be done using available convex optimization
packages [30] by introducing a slack variable to minimize
the norm [5].

However, while our inequalities prevent the mesh from
expanding, they still allow it to shrink to a single point. This
could be remedied by maximizing the mesh area under our
constraints. However, this would yield a nonconvex
problem. Instead, we exploit the fact that, in the perspective
camera model, the lines-of-sight are not parallel, as depicted
by Fig. 8a. Thus, the largest distance between two points is
reached when the surface is furthest away from the
camera. Therefore, a nontrivial reconstruction can be
obtained by maximizing the depth d; of each point along
its line-of-sight q,. While, with noise-free correspondences,
3D surface points are completely defined by their position
along the lines-of-sight, they should be allowed to move
away from them in the presence of noise, as depicted in
Fig. 8b. Therefore, rather than maximizing d;, we consider
the projections of p; on its line-of-sight q;, which can be
computed as

p;q, = X'B]q;, (22)

where B; is a 3 x 3n, matrix containing the barycentric
coordinates of point ¢ placed to correctly match the vertices
of the facet to which the point belongs.

P e e e e v

AV AN AN AN
AVAN

ANANENEN
SO

Fig. 9. Synthetic data acquired with a motion capture system.
(a), (b) Mesh and corresponding textured image of a smoothly deforming
piece of cardboard. (c), (d) Similar images for a piece of cloth with
sharper folds.

We can then add the maximization of the terms of (22) to
the optimization problem of (21), which yields the new
convex problem

i
minimize | MX|| 4 [[W,L(X — X%)| — wq Z X"B/s;

X i=1 (23)
subject to [|vy — vj|| < Lix, V(j, k) €&,

where w, is a weight that controls the relative influence of
depth maximization and image error minimization. In
practice, we set wy to 2/3 because computing depths
involves 3n;, values against 2n;, projection equations. Since
we simply added linear terms to the previous objective
function, this optimization problem remains convex.

7 EXPERIMENTAL RESULTS

We now present results obtained on synthetic and real data
by using our linear local models, with either the inexten-
sibility constraints of Section 6.1 or the distance inequalities
of Section 6.2. Note that the meshes we used to produce
these results all have different dimensions. Nevertheless,
thanks to our local models, we only had to compute the
deformation modes once for 5 x 5 patches and then to
combine them appropriately for the different meshes.

7.1 Synthetic Data

We applied our two approaches to synthetic data to
quantitatively evaluate their performance. Furthermore,
we compare them against our closed-form solution relying
on a global deformation model and inextensibility con-
straints [27] and against nonlinear local deformation models
[29]. Note that the latter method relies on template
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Fig. 10. Reconstruction error for the cardboard sequence. Mean vertex-
to-vertex distance to ground-truth meshes from synthetic correspon-
dences (a) and SIFT correspondences (b). We compare our results with
those of the methods in [27] (cyan) and [29] (green). Results obtained
with equality constraints are shown in red and with inequalities in blue.

matching instead of correspondences and tracks the
deformation from frame to frame due to the nonconvexity
of its objective function.

To make our experiments as realistic as possible, we
obtained 3D meshes, such as those of Figs. 9a and 9c, by
deforming a sheet of cardboard and a more flexible piece of
cloth in front of an optical motion capture system. We then
created correspondences in two different ways. We first
created completely synthetic correspondences by randomly
sampling the barycentric coordinates of the mesh facets,
projecting them with a known camera, and adding zero-
mean Gaussian noise with variance 2 to the image locations.
To simulate real data even more accurately, we textured the
meshes and generated images, such as the ones of Figs. 9b
and 9d, with uniform intensity noise in the range [—10, 10].
We then obtained correspondences by matching SIFT [16]
features between a reference image and the input images.
To cope with the outliers resulting from this procedure, we
implemented an iterated reweighting procedure that
decreases a radius inside which correspondences are
considered as inliers. In practice, we initialized this radius
to 50 pixels and divided it by 2 at each iteration. We then
weighted each valid line of the matrix M of (4) by a weight

€;
- — 24
wi exp( median(e; , 1 <j < nm))’ (24)
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Fig. 11. Similar plots as in Fig. 10 for the deformations of a piece of
cloth.

where ¢; is the reprojection error of correspondence ¢ and
Ny, is the number of inliers. The same procedure was used
with the synthetic outliers described below and with real
images discussed in Section 7.2.

In Figs. 10 and 11, we compare the results of the four
different techniques on the sheet of cardboard and the piece
of cloth, respectively. We plot the mean vertex-to-vertex
distance between the reconstructed mesh and the ground-
truth one. In Figs. 10a and 11a, we show the results obtained
with synthetic matches, and in Figs. 10b and 11b, the errors
obtained with SIFT matches. In Figs. 12 and 13, we visually
compare the results of all approaches for the frames in
which the deformation is largest, i.e., frames 100 and 60,
respectively. From these curves, we can observe that using
inequality constraints gives better results, especially for the
piece of cloth. This was to be expected since sharp folds are
better modeled by inequalities. Furthermore, we can
observe that local and global models used in conjunction
with equality constraints perform similarly. While this
might seem disappointing, local models still have the
advantage of being more general than the global ones in
the sense that they let us model arbitrary shapes. Finally,
while nonlinear local models perform well, they involve
tracking the surface throughout the sequence, which can
result in drift, as can be observed at the end of the
cardboard sequence. Additionally, they are much more
computationally expensive than the closed-form or convex
optimization methods.
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Fig. 12. Visual comparison of the recovered meshes for the deformation of Fig. 9a. (a) Ground truth. Mesh recovered with (b) nonlinear local models,
(c) global model with equality constraints, (d) local models with equality constraints, and (e) local models with inequality constraints. Because the

deformation is fairly smooth, all recovered shapes are fairly similar.

Fig. 13. Visual comparison of the recovered meshes for the deformation of Fig. 9c. (a) Ground truth. Mesh recovered with (b) nonlinear local models,
(c) global model with equality constraints, (d) local models with equality constraints, (e) local models with inequality constraints. Because the folds

are sharp, using equality constraints tends to oversmooth, whereas inequalities or nonlinear models yield better results.

To test the robustness of our approaches to the lack of
texture, we used the synthetic correspondences, and
removed randomly selected subsets of them. In Fig. 14, we
plot the average reconstruction error over the sequences as a
function of the percentage of removed correspondences. As
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shown by the plots, accuracy does not decrease significantly
until most correspondences are gone. Finally, we tested the
robustness of our approach to outliers by assigning random
image locations to a given percentage of the synthetic
correspondences. In Fig. 15, we plot the mean reconstruction
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Fig. 14. To evaluate the influence of the lack of texture on our methods,
we removed randomly selected subsets of correspondences. We plot
the mean reconstruction error over the whole sequence as a function of
the percentage of removed matches for (a) the cardboard data and (b)
the cloth sequence. The stars indicate the standard deviation of the

error.

Fig. 15. We evaluated the robustness of our approaches to outliers by
setting random values to the image locations of some correspondences.
We plot the mean reconstruction error over the whole sequence as a
function of the outlier rate for (a) the cardboard data and (b) the cloth
sequence. The stars indicate the standard deviation of the error.
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Fig. 16. Reconstruction errors from SIFT correspondences on the poorly
textured surfaces of Figs. 17a and 17d for (left) a piece of cardboard and
for (right) a piece of cloth. Note that these errors are significantly larger
than those of Figs. 10 and 11.

error over the sequences as a function of the outlier rate. As
we can see, both methods are robust to up to 50 percent
outliers. However, the distance equality constraints are
more stable for higher outlier rates.

In Figs. 16 and 17, we show the limitations of our
approach when there is little texture concentrated in a
single area of the surface, which almost amounts to a worst-
case scenario. To this end, we textured the same cardboard
and cloth surfaces as before to create images, such as the
ones of Figs. 17a and 17d, and computed SIFT correspon-
dences from them. Fig. 16 depicts the reconstruction errors
for the different frames of the sequences. Note that, the
values are significantly higher than those of Figs. 10 and 11.
In Figs. 17b, 17¢c, 17e, and 17f, we plot the recovered 3D
shapes for the same frames as in Figs. 12 and 13 to
quantitatively evaluate these results. Note that the recon-
structed surfaces are much flatter than before. This was to
be expected since we only have shape information for the

textured part, and suggests that additional image cues, such
as edges or shading, should be used.

7.2 Real Images

We tested our approach on real images, taken with a 3-CCD
DV camera. In each one of the following figures, we show
the mesh recovered overlaid on the input image and the
same mesh seen from a different viewpoint. Note that, even
though our results were obtained from video sequences,
nothing links the shape recovered in the consecutive
frames. We first used the equality constraints to recover
the deformations of smoothly deforming objects, such as the
sheets of paper of Fig. 18. In Fig. 19, we show that, if the
mesh is fine enough, the equality constraints can still
reconstruct folds. However, if the folds on the surface do
not correspond to mesh edges, as in the case in Fig. 20, these
constraints are not appropriate anymore. As can be
observed in the bottom row of the figure, the folds cannot
be modeled correctly and the recovered shapes are too
smooth. This is not the case anymore with distance
inequalities, as shown in the second row. Fig. 21 depicts
results obtained with our distance inequality constraints on
two other flexible surfaces. Finally, we applied our method
to recover the shape of the nonrectangular surface depicted
in Fig. 22. In this case, the correspondences were obtained
by tracking markers on the sail. In Fig. 22g, we show how
we covered the entire sail with local models. Note that the
additional vertices required by our local models have no
negative influence on the recovered shapes since they do
not contain any correspondences.

8 CONCLUSION

In this paper, we have presented linear local deformation
models for 3D shape reconstruction from monocular
images. We have shown that these models have the
advantage of being more general than global models and
of being easier to deploy than nonlinear local models.
Furthermore, we have shown that, when used in conjunc-
tion with distance constraints, they yield accurate solutions
to the shape recovery problem. In particular, we have
introduced distance equality constraints and have proposed
a closed-form solution to the reconstruction problem. Due
to the limitation of these constraints to recover sharp folds,
we have shown how to replace them with distance
inequalities which yield a convex optimization problem.
In the future, we intend to study the use of our models, and
potentially of our constraints, to remove the requirement of a

(a) (b) (©

(d) (e) (f)

Fig. 17. (a), (d) Recovering the shape of poorly textured surfaces. (b), (e) 3D reconstruction using equality constraints. (c), (f) 3D reconstruction
using inequality constraints. Since we only exploit shape information in the center of the image, the recovered surfaces are far too smooth.
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Fig. 18. Recovering the shape of a piece of paper. (a), (c) Mesh recovered using equality constraints overlaid on the input image. (b), (d) Side view of

that mesh.

Fig. 19. Reconstructing a sharp fold in a piece of cloth. (a) Mesh recovered using equality constraints overlaid on the input image. (b) Side view of

that mesh.

referenceimage. In [36], we started investigating this problem
under the assumption that the surface remains locally planar.
While this assumption is valid for smoothly deforming
surfaces, such as the one of Fig. 18, it is not for sharp folds such
as the one that appears in Fig. 19. Handling those will require
generalizing that approach.

Furthermore, we also intend to study the use of sources
of information other than correspondences. In particular,
the use of shading and silhouettes would give additional
cues that could palliate the lack of texture. Ultimately, we
hope such cues could be formulated in a similar convex
optimization framework as our current approach.

APPENDIX
PROBABILISTIC INTERPRETATION

In Section 5, we took the deformation energy of a mesh to be
the sum of deformation energies over individual and
overlapping patches. In probabilistic terms, this means that
we compute the likelihood of a specific 3D shape as the
product of the likelihood of its component patches. Since
the patches share vertices, they are not independent of each
other, and it is therefore not completely obvious why this
would result in the effective regularizer that our results
show it to be. In this Appendix, we provide empirical
evidence as to why this is indeed the case.
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Fig. 20. Reconstruction of a deforming cloth. (a) Mesh recovered using inequality constraints overlaid on the image. (b) Side view of that mesh.

(c) Side view of the mesh recovered using equality constraints. As in the synthetic case, using equality constraints results in oversmoothing, whereas
using inequalities does not.
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Fig. 21. Recovery of several complex deformations of other cloth materials. (a), (c) Mesh recovered using inequality constraints overlaid on the
original image. (b), (d) Same mesh seen from a different viewpoint.

To this end, we used motion capture data similar to what piece of cardboard, the latter being, of course, much stiffer

we used in Section 7.1. These data were acquired by sticking
3 mm wide hemispherical reflective markers on a rectan-
gular surface and deforming them arbitrarily in front of six
infrared Vicon cameras that reconstruct the 3D positions of
individual markers. We did this, both, for a 9 x 7 grid of
markers on a piece of cloth and a 9 x 9 grid of markers on a

than the former. Let X' = [x1,y1,21, - -, ZpxQs YPx» 2Px0]
be the vector of the corresponding concatenated coordinates
acquired at time ¢, with P =7 and @ =9 for the cloth and
P=9 and Q =9 for the cardboard. In this manner, we
acquired several thousand X' vectors for each. The left
column of Fig. 23 depicts the corresponding normalized
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(d) (e) ® (9

Fig. 22. Reconstruction of a triangular sail. (a), (b) Shapes recovered with equality constraints overlaid on two original images. (c) Side view of the
surface in (b). (d), (e) Shapes recovered with distance inequalities overlaid on two original images. (f) Side view of the surface in (e). (g) Assembling
local models to cover the entire surface required, introducing additional vertices and facets. Note that they do not affect the reconstructions since

they contain no correspondences.

covariance matrices and the right column their inverses,
known as the precision matrices.
In this figure, dark red represents positive values, dark

blue negative values, and light blue values close to zero.
Therefore, if one treats these small values as truly being
zero, the P precision matrices only have a few nonzero
diagonals for materials as different as cloth and cardboard.
This is significant because, assuming that the X* vectors are
normally distributed, the likelihood of an arbitrary X vector

can be estimated as
400
300
200
100
0
-100
-200
50 100 150

15000

5000

(b)

Fig. 23. (a) Normalized covariance and precision matrices for the cloth
data. (b) The same matrices for the cardboard data. Note that the
precision matrices are clearly banded if one treats the light blue areas as
being zeros.

P(X) x exp(—X"PX). (25)

Because closer examination of the P matrix reveals that its
nonzero diagonals correspond to interactions between
neighboring mesh vertices, this means that the likelihood
of (25) can be rewritten as

P(X) H exp(—X] PiX;), (26)

where the X; are the coordinates of the vertices of square
patches such as those introduced in Section 5.1. Therefore,
log(P(X)) is close to being a sum of terms computed over
individual patches, which constitutes empirical evidence
that our energy formulation is true to reality.
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