
Laplacian Meshes for Monocular 3D Shape
Recovery
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Abstract. We show that by extending the Laplacian formalism, which
was first introduced in the Graphics community to regularize 3D meshes,
we can turn the monocular 3D shape reconstruction of a deformable
surface given correspondences with a reference image into a well-posed
problem. Furthermore, this does not require any training data and elim-
inates the need to pre-align the reference shape with the one to be re-
constructed, as was done in earlier methods.

1 Introduction

Shape recovery of deformable surfaces from single images is inherently ambigu-
ous, given that many different configurations can produce the same projections.
In particular, this is true of template-based methods, in which a reference image
of the surface in a known configuration is available and point correspondences
between this reference image and an input image in which the shape is to be
recovered are given.

It has been shown that solving this problem amounts to solving a degenerate
linear system, which requires either reducing the number of degrees of free-
dom or imposing additional constraints [1]. The first can be achieved by various
dimensionality reduction techniques [2, 3] while the second often involves assum-
ing the surface to be either developable [4–6] or inextensible [7–9, 3]. These two
approaches are sometime combined and augmented by introducing additional
sources of information such as shading or textural clues [10, 11]. The result-
ing algorithms usually require solving a fairly large optimization problem and,
even though it is often well behaved or even convex [9, 7, 12, 13, 3], it remains
computationally demanding. Closed-form solutions have been proposed [14, 11]
but they also involve solving very large equation systems and to make more
restrictive assumptions than the optimization-based ones, which can lower the
performance [3].

Here, we show that, by extending the Laplacian formalism first introduced
in the Graphics Community [15, 16], we can turn the degenerate linear system
mentioned above into a smaller non-degenerate one. More specifically, we ex-
press all vertex coordinates as linear combinations of those of a small number of
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control vertices and inject this expression into the large system to produce the
small one we are looking for. Well-posedness stems from an implicit and novel
regularization term, which penalizes deviations away from the reference shape,
which does not have to be planar.

In other words, instead of performing a minimization involving many degress
of freedom or solving a large system of equations, we end up simply solving
a very compact linear system. This yields an initial 3D shape estimate, which
is not necessarily accurate, but whose 2D projections are. In practice, this is
extremely useful to quickly and reliably eliminate erroneous correspondences. We
can then achieve better accuracy than the method of [3], which has been shown to
outperform other recent ones, by enforcing the same inextensibility constraints.
This is done by optimizing with respect to far fewer variables, thereby lowering
the computational complexity, and without requiring training data as [3] does.

Furthermore, unlike in other recent approaches that also rely on control
points [9, 17], our implicit regularization term is orientation invariant. As a result,
we do not have to pre-align the reference shape with the one to be recovered or
to precompute a rotation matrix. To explore this aspect, we replaced our Lapla-
cian approach to dimensionality reduction by a simpler one based on the same
linear deformation modes as those of [14, 11] and again enforced the inextensi-
bility constraints of [3]. We will show that without pre-alignment, it performs
much worse. With manual pre-alignment it can yield the same accuracy but an
automated version would necessitate an additional non-linear optimization step.
Furthermore, computing the deformation modes requires either training data or
a stiffness matrix, neither of which may be forthcoming.

In short, our contribution is a novel approach to reducing the dimensionality
of the surface reconstruction problem. It removes the need both for an estimate
of the rigid transformation with respect to the reference shape and for access
to training data or material properties, which may be unavailable or unknown.
Furthermore, this is achieved without sacrificing accuracy.

In the remainder of this paper, we first review existing approaches and remind
the reader of how the problem can be formulated as one of solving a linear
but degenerate system of equations, as was done in earlier approaches [1]. We
then introduce our extended Laplacian formalism, which lets us transform the
degenerate linear system into a smaller well-posed one. Finally, we present our
results and compare them against state-of-the-art methods.

2 Related Work

Reconstructing the 3D shape of a non-rigid surface from a single input image
is a severely under-constrained problem, even when a reference image of the
surface in a different but known configuration is available, which is the problem
we address here.

When point correspondences can be established between the reference and in-
put images, shape-recovery can be formulated in terms of solving an ill-conditioned
linear-system [1] and requires the introduction of additional constraints to make
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it well-posed. The most popular ones involve preserving Euclidean or Geodesic
distances as the surface deforms and are enforced either by solving a convex op-
timization problem [9, 7, 8, 12, 13, 3] or by solving in closed form sets of quadratic
equations [14, 11]. The latter is typically done by linearization, which results in
very large systems and is no faster than minimizing a convex objective function,
as is done in [3] which is one of the best representatives of this class of techniques.

The complexity of the problem can be reduced using a dimensionality reduc-
tion technique such as Principal Component Analysis (PCA) to create morphable
models [2, 18], modal analysis [11, 12], or Free Form Deformations (FFDs) [9].
As shown in the result section, PCA and modal analysis can be coupled with
constraints such as those discussed above to achieve good accuracy. However,
this implies using training data or being able to build a stiffness matrix, which
is not always possible. The FFD approach [9] is particularly relevant since, like
ours, it relies on parameterizing the surface in terms of control points. However,
it requires placing the control points on a regular grid, whereas ours can be
arbitrarily chosen for maximal accuracy. This makes our approach closer to ear-
lier ones to fitting 3D surfaces to point clouds that rely on Dirichlet Free Form
Deformations and also allow arbitrary placement of the control points [19].

Furthermore, none of these dimensionality reduction methods allow orientation-
invariant regularization because deformations are minimized with respect to a
reference shape or a set of control points that must be properly oriented. Thus,
global rotations must be explicitly handled to achieve satisfactory results. To
overcome this limitation, we took our inspiration from the Laplacian formalism
presented in [15] and the rotation invariant formulation of [16], which like ours
involves introducing virtual vertices. In both these papers, the mesh Laplacian
is used to define a regularization term that tends to preserve the shape of a
non-planar surface. Furthermore, vertex coordinates can be parameterized as
a linear combination of those of control vertices to solve specific minimization
problems [16]. In Section 4, we will go one step further by providing a generic
linear expression of the vertex coordinates as a function of those of the control
vertices, independently of the objective function to be minimized.

3 Linear Problem Formulation

As shown in [1], given point correspondences between a reference image in which
the 3D shape is known and an input image, recovering the new shape in that
image amounts to solving the linear system

Mx = 0 ,where x =

 v1

...
vNv

 , (1)

where vi contains the 3D coordinates of the ith vertex of the Nv-vertex trian-
gulated mesh representing the surface, and M is a matrix that depends on the
coordinates of correspondences in the input image and on the camera internal pa-
rameters. A solution of this system defines a surface such that 3D feature points
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that project at specific locations in the reference image reproject at matching
locations in the input image. Solving this system in the least-squares sense there-
fore yields surfaces, up to a scale factor, for which the overall reprojection error
is small.

The difficulty comes from the fact that, for all practical purposes, M is rank
deficient, with at least one third of its singular values being extremely small with
respect to the other two thirds even when there are many correspondences. This
is why the inextensibility constraints discussed in Section 2 were introduced.

A seemingly natural way to address this issue is to introduce a linear subspace
model and to write surface deformations as linear combinations of relatively few
basis vectors. This can be expressed as

x = x0 +

Ns∑
i=1

wibi = x0 + Bw , (2)

where x is the coordinate vector or Eq. 1, B is the matrix whose columns are the
bi basis vectors typically taken to be the eigenvectors of a stiffness matrix, and
w is the associated vectors of weights wi. Injecting this expression into Eq. 1
and adding a regularization term yields a new system[

MB Mx0

λrL 0

] [
w
1

]
= 0 , (3)

which is to be solved in the least squares sense, where L is a diagonal matrix
whose elements are the inverse values of the eigenvalues associated to the basis
vectors, and λr is a regularization weight. This favors basis vectors that corre-
spond to the lowest-frequency deformations and therefore enforces smoothness.

In practice, the linear system of Eq. 3 is less poorly conditioned than the
one of Eq. 1. But, because there usually are several smooth shapes that all yield
virtually the same projection, its matrix still has a number of near zero singular
values. As a consequence, additional constraints still need to be imposed for the
problem to become well-posed. An additional difficulty is that, because rotations
are strongly non-linear, this linear formulation can only handle small ones. As
a result, the rest shape defined by x0 must be roughly aligned with the shape
to be recovered, which means that a global rotation must be computed before
shape recovery can be attempted.

In the remainder of this paper, we will show that we can reduce the dimen-
sionality in a different way, which allows us to minimize the reprojection error
by solving a small and well-conditioned linear system.

4 Laplacian Formulation

In the previous section, we introduced the linear system of Eq. 1, which is so
badly conditioned that we cannot minimize the reprojection error by simply
solving it. In this section, we show how to turn it into a much smaller and
well-conditioned system.
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(a) (b)

Fig. 1. Linear parameterization of mesh vertices using control points (a) Vertices and
control points in their rest state. (b) Control points and vertices in a deformed state.
Every vertex is a linear combination of the control points.

To this end, let us assume we are given a reference shape, which may be
planar or not and let xref be the coordinate vector of its vertices, as the ones
highlighted in Fig. 1. We first show that we can define a regularization matrix
A such that ‖Ax‖2 = 0, with x being the coordinate vector of Eq. 1, when

xref = x up to a rigid transformation. In other words, ‖Ax‖2 penalizes non-rigid
deformations away from the reference shape but not rigid ones. We then show
that, given a subset of Nc mesh vertices whose coordinates are

c =

 vi1
...

viNc

 , (4)

if we force the mesh both to go through these coordinates and to minimize
‖Ax‖2, we can define a matrix P that is independent of the control vertex
coordinates and such that

x = Pc . (5)

In other words, we can linearly parameterize the mesh as a function of the control
vertices’ coordinates, as illustrated in Fig. 1. Injecting this parameterization into
Eq. 1, yields

MPc = 0 , (6)

where MP is a matrix without any zero singular values for sufficiently small num-
bers of control points as demonstrated by Fig. 2(a). This system can therefore
be solved in the least-square sense up to a scale factor by finding the eigenvector
corresponding to its smallest singular value. In practice, because the correspon-
dences can be noisy, we further regularize by solving

min
c

‖MPc‖2 + wr‖APc‖2, s. t. ‖c‖ = 1 , (7)
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where wr is a scalar coefficient and which can still be done in closed form. We
will show in the results section that this yields accurate reconstructions, even
with relatively small numbers of control points.
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Fig. 2. Singular values (a) of MP and M drawn with red and blue markers respectively
for a planar model for a given set of correspondences. The smallest singular value of
MP is about four whereas it is practically zero for the first Nv singular values of M.
Normalized singular values (b) of regularization matrix A computed on a non-planar
model for various values of σ. Note that the curves are almost superposed for σ values
greater than one.

4.1 Regularization Matrix

We now turn to building the matrix A such that Axref = 0 and ‖Ax‖2 = ‖Ax′‖2
when x′ is a rigidly transformed version of x. We first propose a very simple
scheme for the case when the reference shape is planar and then a similar, but
more sophisticated one, when it is not.

Planar Rest Shape Given a planar mesh that represents a reference surface
in its rest shape, consider every pair of facets that share an edge, such as those
depicted by Fig. 3(a). They jointly have four vertices v1ref to v4ref. Since they
lie on a plane, whether or not the mesh is regular, one can always find a unique
set of weights w1, w2, w3 and w4 such that

0 = w1v1ref + w2v2ref + w3v3ref + w4v4ref ,

0 = w1 + w2 + w3 + w4 , (8)

1 = w2
1 + w2

2 + w2
3 + w2

4 ,

up to a sign ambiguity, which can be resolved by simply requiring the first
weight to be positive. To form the A matrix, we first generate a matrix A′ for
1-dimensional vertex coordinates by considering every facet pair configuration i
of four vertices j1, j2, j3, j4 and set the elements of A′ taken to be a′ij = wj for
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Fig. 3. Building the A regularization matrix of Section 4.1. (a) Two facets that share
an edge. (b) Non-planar reference mesh. (c) Non-planar reference mesh with virtual
vertices and edges added. One of the pairs of tetrahedra used to construct the matrix
is shown in red.

j ∈ {j1, j2, j3, j4}. All remaining elements are set to zero and the matrix A is
A = A′ ⊗ I3.

It is easy to verify that Ax = 0 as long as x represents a planar mesh
and that Ax is invariant to rotations and translations, and in fact to all affine
deformations. The first equality of Eq. 8 is designed to enforce planarity while the
second guarantees invariance. The third equality is there to prevent the weights
from all being zero.

Non-Planar Rest Shape When the rest shape is non-planar, there will be
facets for which we cannot solve Eq. 8. As in [16], we extend the scheme described
above by introducing virtual vertices. As shown in Fig. 3(c), we create virtual
vertices at above and below the center of each facet as a distance controlled
by the scale parameter σ. Formally, for each facet vi, vj and vk, its center
vc = 1

3 (vi + vj + vk) and its normal n = (vj − vi) × (vk − vi), we take the
virtual vertices to be

v+
ijk = vc + σ

n√
‖n‖

and v−ijk = vc − σ
n√
‖n‖

, (9)

where the norm of n/
√
‖n‖ is approximately equal to the average edge-length

of the facet’s edges. These new vertices, along with the original ones, are used
to build the blue tetrahedra of Fig. 3(c).

Let xV be the coordinate vector of the virtual vertices only, and xA =[
xT ,xVT

]T
the coordinate vector of both real and virtual vertices. Let xA

ref

be similarly defined for the reference shape. Given two tetrahedra that share a
facet, such as the red ones in Fig. 3(c), and the five vertices v1

A
ref to v5

A
ref they
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share, we can now find weights w1 to w5 such that

0 = w1v1
A
ref + w2v2

A
ref + w3v3

A
ref + w4v4

A
ref + w5v5

A
ref ,

0 = w1 + w2 + w3 + w4 + w5 , (10)

1 = w2
1 + w2

2 + w2
3 + w2

4 + w2
5 .

The three equalities of Eq. 10 serve the same purpose as those of Eq. 8. We form
a matrix AA by considering all pairs of tetrahedra that share a facet, computing
the w1 to w5 weights that encode local linear dependencies between real and
virtual vertices, and using them to add successive rows to the matrix, as we did
to build the A matrix in the planar case. It is again easy to verify to AAxA

ref = 0
and that AAxA is invariant to affine deformations of xA. In our scheme, the
regularization term can be computed as

C =
∥∥AAxA

∥∥2 =
∥∥∥Âx + ÃxV

∥∥∥2 , (11)

if we write AA as
[
Â Ã

]
where Â has as three times as many columns as there

are real vertices and Ã as there are virtual ones. Given the real vertices x, the
virtual vertex coordinates that minimize the C term of Eq. 11 is

xV = −
(
ÃT Ã

)−1
ÃT Âx (12)

⇒ C =

∥∥∥∥Âx− Ã
(
ÃT Ã

)−1
ÃT Âx

∥∥∥∥2 = ‖Ax‖2 ,

where A = Â−Ã
(
ÃT Ã

)−1
ÃT Â. In other words, this matrix A is the regular-

ization matrix we are looking for and its elements depend only on the coordinates
of the reference vertices and on the distance σ chosen to build the virtual vertices.

To study the influence of the scale parameter σ of Eq. 9, which controls the
distance of the virtual vertices from the mesh, we computed the A matrix and
its singular values for a sail shaped mesh and many σ values. As can be seen
in Fig. 2(b), there is a wide range for which the distribution of singular values
remains practically identical. This suggests that σ has limited influence on the
numerical character of the regularization matrix. In all our experiments, we set
σ to 1 and were nevertheless able to obtain accurate reconstructions of many
different surfaces with very different physical properties.

4.2 Linear Parameterization

As before, let Nv be the total number of vertices and Nc < Nv the number of
control points we want to use to parameterize the mesh. Given the coordinate
vector c of these control vertices, the coordinates of the minimum energy mesh
that goes through the control vertices and minimizes the regularization energy
can be found by minimizing

‖Ax‖2 subject to Pcx = c , (13)
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where A is the regularization matrix introduced above and Pc is a 3Nc × 3Nv

matrix containing ones in columns corresponding to the indices of control vertices
and zeros elsewhere. We prove in the supplementary material that, then, there
exists a matrix P whose components can be computed from A and Pc such that

∀c , x = Pc , (14)

if x is solution of the minimization problem of Eq. 13.

4.3 Reconstruction

Given that we can write the coordinate vector x as Pc and given potentially
noisy correspondences between the reference and input images, recall that we
can find c as the solution of the linear least-squares problem of Eq. 7.

As shown in the result section, this yields a mesh whose reprojection is very
accurate but whose 3D shape may not be because our regularization does not
penalize affine deformations away from the rest shape. In practice, we use this
initial mesh to eliminate erroneous correspondences. We then refine it by solving

min
c

‖MPc‖2 + wr‖APc‖2, s. t. C (Pc) ≤ 0 , (15)

where C (Pc) are inextensibility constraints that prevent distances between
neighboring vertices to grow beyond a bound, such as their Euclidean distance
in their rest shape when it is planar. These are exactly the same constraints as
those used in [3], against which we compare ourselves below. The inequality con-
straints are reformulated as equality constraints with additional slack variables
whose norm is penalized to prevent the solution from shrinking to the origin.

4.4 Complexity and Robustness

To handle outliers in the correspondences, we iteratively perform the uncon-
strained optimization of Eq. (7) starting with a relatively high regularization
weight wr and reducing it by half at each iteration. Given a current shape esti-
mate, we project it on the input image and disregard the correspondences with
higher reprojection error than a pre-set radius and reduce it by half for the next
iteration. Repeating this procedure a fixed number of times results in an initial
shape estimate and provides inlier correspondences for the more computation-
ally demanding constrained optimization that follows. This decoupled outlier
rejection mechanism brings us a computational advantage against the state-of-
the-art reconstruction method [3] which relies on a similar iterative method but
solves the nonlinear optimization at each iteration. Furthermore, while dealing
with the same number of constraints, our method typically uses ten times fewer

degrees-of-freedom (i.e. Nc < (
1

10
×Nv)), and thus solves the constrained least

square problem of Eq 15 much faster.
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5 Results

We compare our approach to surface reconstruction from a single input image
given correspondences with a reference image against the recent method of [3],
which has been shown to outperform closed-form solutions based on a global
deformation model and inextensibility constraints [14] and solutions that rely
on a nonlinear local deformation models [20]. In all these experiments, we set
the initial regularization weight wr of Eq. 7 to 2e4, the scale parameter σ of
Eq. 9 to 1 and the initial radius for outlier rejection to 150 pixels.

To complete this comparison, we also implemented and tested an approach
to reducing dimensionality using a linear subspace model as discussed in Sec-
tion 3 and solving in the least squares sense the system of Eq. 3 under the same
inextensibility constraints as those of Eq. 15. We took our basis vectors to be
the eigenvectors of a stiffness matrix [21–23] and chose their number so that the
number of degrees of freedom using either the subspace approach or ours would
be the same. For both approaches, we report the results with and without per-
forming a rigid alignment of the reference model with the image prior to starting
the minimization.

In all of these experiments we used SIFT to compute correspondences be-
tween a reference image in which the the 3D shape is known and individual
other images. We assume the internal camera parameters are known and reason
in camera coordinate frame. In the remainder of the section, we first evaluate
the accuracy of our reconstruction method against the competing methods on
images for which we have ground truth. We then present results on images of
surfaces made of different materials.

5.1 Quantitative Results

To provide quantitative results both in the planar and non-planar cases, we
acquired images of a deforming piece of paper using a Kinecttm camera and of
a deforming sail using a pair of cameras.

Paper Sequence. Our qualitative results are depicted by Fig. 4. The rest shape is
flat and modeled by a 11×9 rectangular mesh and parameterized by 20 regularly
spaced control points such as those of Fig. 1. For reconstruction purposes, we
ignored the depth maps and used only the color images, along with SIFT corre-
spondences with the reference image. For evaluation purposes, we measured the
distance of the recovered vertices to the depth map.

We report the 3D reconstruction errors for different methods in Fig. 6(a). Our
approach yields the highest average accuracy, and it is followed closely by the
subspace method provided that the model is properly pre-aligned by computing
global rotation and translation.

Sail Images. We applied our reconstruction algorithm on sail images such as the
one of Fig. 5. Since images taken by a second camera are available we used a
simple triangulation method to generate 3D points corresponding to the circular
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Fig. 4. Paper sequence with ground-truth: Top row: Reprojection of the con-
strained reconstructions on the input images Middle row: Unconstrained solutions
seen from a different view-point Bottom row: Constrained solutions seen from the
same view-point. We supply the corresponding video sequence as supplementary ma-
terials.

markers on the sail which serve as ground-truth measurements. We compare
the reconstructions against the scaled ground-truth points such that the mean
distance between the predicted marker positions and their ground-truth positions
is minimized. In this case, as shown in Fig. 6(b) , our method achieves the highest
accuracy against the competing methods.

Our C++ implementation relies on the Ferns keypoint classifier [24] to match
feature points and average computation times per frame are given in Fig. 6(c)
as a function of the numbers of control points. As stated above, the accuracy
results of Figs. 6(a,b) were obtained using 20 control points.

5.2 Qualitative Results

Here we present our results on real-images of surfaces made of three different
materials, paper, cloth, and plastic.

The paper model is a triangulated mesh of size 11×8 which is parameterized
by 20 regularly placed control points. Similarly, we model a t-shirt using a 7×10
mesh parametrized by 12 control points. Our reconstruction results for the paper
and t-shirt sequences are depicted by Figs. 7 and 8, respectively.

Our final example involves a plastic ball that we cut in half, leaving the
half shell shown in Fig. 9. We used our Kinect camera to produce the concave
reference shape of Fig. 9. Our method can then be used to recover its shape from
input images whether it is concave or convex. This demonstrates our method’s
ability to recover truly large non planar deformations.

6 Conclusion

We have presented a novel approach to parameterizing the vertex coordinates of
a mesh as a linear combination of a subset of them. In addition to reducing the
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(a) (b) (c)

Fig. 5. Sail reconstructions (a) Reprojection of the unconstrained reconstruction
on the input image. (b)-(c) Triangulations seen from a different view-point with the
ground-truth points shown in green for unconstrained and constrained methods, re-
spectively. Note that the two reconstructions are visually the same.
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Fig. 6. Reconstruction errors for different methods on (a) paper sequence
(b) sail images. We omit the results of the subspace method without aligning in (b)
as it is a very high compared to the others in the plot. We are reporting all the
distances in millimeters. Computation times (c) for C++ implementation with
unconstrained outlier rejection (green), constrained optimization (red) and total time
including keypoint matching and extraction (blue).

dimensionality of the monocular 3D shape recovery problem, it yields a rotation-
invariant regularization term that lets us achieve good results without training
data and or having to explicitly handle global rotations.

In our current implementation, the subset of vertices was chosen arbitrarily
and we applied constraints on every single edge of the mesh. In future work, we
will explore ways to optimally chose this subset and the constraints we enforce
to further decrease computational complexity without sacrificing accuracy.
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