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Abstract

Recovering the 3D deformations of a non-rigid surface frasimgle viewpoint has applica-
tions in many domains such as sports, entertainment, anatah@aging. Unfortunately,
without any knowledge of the possible deformations thatthject of interest can undergo,
it is severely under-constrained, and extremely diffesdt@pes can have very similar ap-
pearances when reprojected onto an image plane.

In this thesis, we first exhibit the ambiguities of the recangion problem when relying
on correspondences between a reference image for which eve tkie shape and an input
image. We then propose several approaches to overcomiag #mbiguities. The core
idea is that soma priori knowledge about how a surface can deform must be introduced
to solve them. We therefore present different ways to foateuthat knownledge that range
from very generic constraints to models specifically desiyfor a particular object or
material.

First, we propose generally applicable constraints foateal as motion models. Such
models simply link the deformations of the surface from anage to the next in a video
sequence. The obvious advantage is that they can be usqubnuimtly of the physical
properties of the object of interest. However, to be effegtthey require the presence of
texture over the whole surface, and, additionally, do net/@nt error accumulation from
frame to frame.

To overcome these weaknesses, we propose to introductistdtiearning techniques
that let us build a model from a large set of training examplest is, in our case, known
3D deformations. The resulting model then essentiallyquaré linear or non-linear inter-
polation between the training examples.

Following this approach, we first propose a linear globatesentation that models the
behavior of the whole surface. As is the case with all stasistearning techniques, the ap-
plicability of this representation is limited by the facatracquiring training data is far from
trivial. A large surface can undergo many subtle deforrmstiand thus a large amount
of training data must be available to build an accurate motl¢d therefore propose an
automatic way of generating such training examples in tise cd inextensible surfaces.
Furthermore, we show that the resulting linear global m®deh be incorporated into a
closed-form solution to the shape recovery problem. Thgsus not only track deforma-
tions from frame to frame, but also reconstruct surfaces firdividual images.

The major drawback of global representations is that theyoody model the behavior of
a specific surface, which forces us to re-train a new modehfery new shape, even though
itis made of a material observed before. To overcome thigijsand simultaneously reduce
the amount of required training data, we propose local dedtion models. Such models



describe the behavior of small portions of a surface, andearombined to form arbitrary
global shapes. For this purpose, we study both linear andinear statistical learning
methods, and show that, whereas the latter are better $aitééking deformations from
frame to frame, the former can also be used for reconstruétam a single image.

Keywords: Computer Vision, Monocular 3D Reconstruction, Deformablefaces, Sta-
tistical Learning, Convex Optimization



Résumé

La reconstruction 3D d’'une surface deformable en vision eoataire est un probleme
pouvant s'appliquer a de nombreux domaines tels que le, $pdivertissement et I'imagerie
médicale. Malheureusement, en I'absence totale de caamais des deformations qu’un
objet peut subir, ce probléme est fortement sous-contretirmtes formes extrémement dif-
férentes peuvent avoir des apparences trés similaireisprbjetées dans une image.

Dans cette thése, nous démontrons d'abord les ambigulitéseintes a la reconstruction
a partir de correspondences entre une image de référenckagoelle nous connaissons la
forme et une nouvelle image, puis nous proposons plusiagem$ de les surmonter. L'idée
centrale est qu’une certaine forme de connaissamm#ori de la maniére dont une surface
peut se deformer doit étre introduite afin de résoudre cegyiitds. Nous présentons donc
plusieurs formulations de cette connaissance variant dieles trées généraux a d’'autres
spécifiquement construits pour un objet ou un matériau @réci

Dans un premier temps, nous proposons des contraintesafEntarmulées comme des
modéles de mouvement. Ces modéles lient simplement lesniidtions d'une surface
d’'une image a la suivante dans une séquence vidéo. Un aeaévatent de ces méthodes
est qu'elles sont indépendentes de I'objet en particulipendant, pour étre efficaces,
elles nécessitent la présence de texture sur toute la suracde plus, présentent des
risques d’accumuler les erreurs d'une image a l'autre.

Afin de résoudre ces faiblesses, nous proposons d’étudienéthodes d’apprentissage
statistique nous permettant de construire un modéle & jgiautie collection d’exemples
d’apprentissage, c'est-a-dire, dans notre cas, de défiamsa3D connues. Le modéle
résultant consiste essentiellement en une interpolatigaite ou non entre les données
d’entrainement.

En suivant cette approche, nous proposons dans un premips tene représentation
globale linéaire qui modélise le comportement de la surag&re. Comme toutes les
méthodes d'apprentissage, cette representation esédimpir le fait qu'acquérir des don-
nées d'entrainement peut s'avérer trés compliqué. Unelgraarface pouvant subir des
déformations complexes, I'apprentissage du modeéle requiegrand nombre d’exemples.
Nous proposons donc une méthode automatique pour génétetsdexemples dans le
cas de surfaces inextensibles. De plus, nous montrons quaddéles globaux résul-
tants peuvent étre incorporés a une solution analytiqueahigme de reconstruction 3D.
Ceci nous permet donc non seulement de suivre les défomsatens une séquence vidéo,
mais aussi de retrouver la forme d’'une surface a partir djgsandividuelles, ce qui évite
I'accumulation d’erreurs.

L'inconvénient majeur des représentations globales éstlgsi ne peuvent modéliser le



comportement que d’'une surface spécifique. Ainsi, un naureadéle doit étre ré-entrainé
pour chaque nouvelle surface, méme si elle est faite d’'uénaatobservé précédemment.
Afin de surmonter ce probléme, et simultanément de rédugjadatité nécessaire de don-
nées d’entrainement, nous proposons des modeéles de déforiagaux qui décrivent le
comportement de petites portions d'une surface, et peldtemtassemblés de maniere a
former des surfaces globales de formes arbitraires. Poiaireg nous étudions des méth-
odes d’apprentissage statistique linéaires et non-lie€aet montrons que, alors que les
secondes sont mieux adaptées au suivi de déformationsgéima image, les premiéres
peuvent aussi étre utilisées pour la reconstruction arghnthe image individuelle.

Mots-Clés: Vision par Ordinateur, Reconstruction 3D Monoculaire f&ces Deformables,
Apprentissage Statistique, Optimisation Convexe
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froman 86 framesvideo. . . . . . . . . ... ...

4.20 Recovering more complex deformations of the plastg: behe first two
rows depict the reprojection of the mesh into the originahges and the
mesh seen from a different perspective as before. In thd tbiv, we
overlay the mean curvature of the recovered surface on tagasm The
high curvature areas, shown in red, correspond to the actaakes that
can be seen in the top row. In the fourth row, we overlay theliémes

of constantz on the images. We recommend viewing the last two rows in

color as they might be difficult to interpret on a greyscaiatpd copy. . . .
4.21 Recovering the deformations of a piece of cloth from &&es video. . .

4.22 Recovering the deformations of a piece of cloth withesgvfolds. The
third and fourth rows depict the same curvature and leng-ihformation
as in Fig. 4.20 and are best viewed in color.

4.23 Another example of a different deformation of that saroth in a 61
frames sequence. The third and fourth rows depict the samatawe and
level-line information as in Fig. 4.20 and are best viewedalor. . . . . .

5.1 Hexagonal triangulations. (a) Rectangular mesh useubtiel a piece of
paper. (b) Triangular mesh used to model a spinnaker. (Qh8tg a
rectangular patch for the body part and two triangular oneshie sleeves

letsus modelat-shirt. . . . . . . . . . . . ...

5.2 Specifying the 3D shape of the rectangular mesh and sidmtitriangle.
(a) We fix the shape of the bottom row from left to right by rotgteach
facet with respect to its left neighbor. For each followiog/rwe only need
to set the angle between the leftmost facet and the one beldwha angle
between the rightmost facet and its left neighbor. (b) Thglembetween
the facets of the bottom row are first set from left to rightr 8ach upper
row, only the angle of the first facet need be set. (c) Attagiwvo patches
together. Because the base of each triangular patch ihattdc the body,
only one single angle is required to fully specify their frstv. . . . . . . .

5.3 Determining the position of interior vertices by thesiisiection of 3 spheres.
The positions of solid lines triangles have already beenprded. We seek
to determine the position of poil®. This can be done by computing the
intersection of 3 spheres of known radii centered’ig C;, andC,, re-
spectively. This yields between two and zero solutions dejg on the
configuration of the othertriangles. . . . . . . ... .. ... ... ...
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5.4

5.5

5.6

5.7

5.8

5.9

Deformation modes of the meshes of Fig. 5.1. In all figugsthe average
mesh, is shown in red. The other two are obtained by takingglesmode
weight to be non zero. A positive value of that weight yields green
mesh and a negative one the mesh shown in blue. Bending agnkaxi

modes of (a) the flat rectangular mesh, (b) the triangulamser, and (c)

thet-shirt. . . . . . . . . .

Image data. (a) An image from an input sequence. (b) Odé ahages
used to build a textured 3D model of the spinnaker. For oueexpnts,
we added black scotch tape on the otherwise white parts cfaihéo help
our wide-baseline algorithm to find correspondences betweedel and
input images such as those depicted by the black lines. (0joQos de-
tected as texture boundaries. Even though the boundaryt son@ct ev-
erywhere, thanks to the model and robust estimation werstithver the

correctshape. . . . . . . ... .. e

Fitting test surfaces created by varying the deterrgimimgles. Using 50
deformation modes proved sulfficient to reconstruct theased to a good
precision. (a,c) The original shapes are shown as shadgat). Tlbe fitted

ones are displayed as wireframes. . . . ... ... ... ... ...

Convergence using synthetic data. (a) Projectionseo$yhthetic surfaces
used as input for the optimization process. (b) Examplenitidlizations.
(c) Median of the mean distances between the vertices ofatevered
mesh and the synthetic surface as a function of the numbesrcgspon-
dences that were used. The measures are given as a percehthge
longest side of the initial rectangle. We did not draw errarstbecause, as
soon as we used more than 50 matches, the first and third lguzfrthe
mean distances are indistinguishable from the median. . . . .. . ..

Deforming a sheet of paper. Top row: Deformed mesh piegjeon the
original sequence as a wireframe. Bottom row: Deformed nsbsiwvn
as a wireframe model seen from a different viewpoint. No& #ven the

back deformscorrectly. . . . . . .. .. ... . . oL

Another deforming sheet. Top row: Projected wirefrarBattom row:
Deformed mesh shaded and seen from a different viewpoint.. . . . . .

5.10 Deforming fabric. The results are displayed in the sama@ner as in

Fig 5.8. Since the fabric is highly textured, borders of tresmare some-

times mismatched with texture edges, which results in smilhlignments.

5.11 Tracking an inflating balloon with an extensible meshte\that the mesh

keeps on covering the same portion of the balloon. In therast we

re-textured the resulting mesh, and reprojected it intartteges. . . . . .

5.12 The inverse behavior as in Fig. 5.11 can be observed wteeballoon

deflates. . . . . . . . e e
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5.13 Tracking an inflating balloon with an inextensible me3tne portion of
the balloon covered by the mesh becomes smaller and flatiiee &slloon
expands. This also is a correct solution if we do not assusettie mesh
represents a particular portion of the object, but rathedetsothe behavior
of a fixed size part, which is valid when relying on image+ttage matches

5.14 Superposition of the initial mesh in red and the final onblue. Left:
When extension is not penalized, the mesh increases asltberbiaflates.
Right: When we enforce the edges to remain of constant letiggtsurface
remains of same area, but becomesflatter. . . . . ... ... ... .... 95

5.15 3D model of the spinnaker overlaid on the three imaged ts compute
its reference shape and texture. In each image, we speciiiedriespon-
dences with a CAD model of the spinnaker and used them, alotig w
automatically detected silhouettes, to deform it. We asstimat the spin-
naker did not deform in these images because they were takguick
successionbyachase-boat. . . .. ... ... ... .. .. .. ... 6. 9

5.16 Tracking a deforming sheet of paper and a t-shirt. lh lbases, we show
the deformed 3D mesh overlaid on the original images in thadw and
then seen from a different viewpoint in the bottom row. . . . .. . . 96

5.17 Tracking a spinnaker with either one or two camera®) (Bwo synchro—
nized images from independently moving cameras, with re@aV spin-
naker reprojection. (c) Tracking using only one camera.eNbat, once
reprojected on the images, the results are almost indigshgble. (d) 3D
results with two cameras. Both camera positions are alsevet. (e) Su-
perposed 3D shapes retrieved using either one (red) or twe)(bameras.
Note that both shapes are very similar, which indicatestieadeformation
model provides a good approximation when data is missing.. . . . . . 97

5.18 Tracking an extensible surface undergoing anisatrdgiormations. In the
top row, we show the original images and, in the bottom rowowerlay
the recovered 3D grid that stretches appropriately. . . . ... . ... 97

5.19 Evaluating the accuracy of our approach. (a,b,c): émdpm V|deos ac-
quired using three synchronized and calibrated camerasydrtb) belongs
to the video we used to monocularly reconstruct the 3D shapeyour
method and, then, re-projecting it into the image. (d) Wangulated the
3D coordinates of the 10 keypoints shown as crosses by mprasthb-
lishing correspondences in images (a) and (c). (e) We regehis oper-
ation every 10 frames and plot the average differences leetweez-, y-,
andz-coordinates of those manually computed and those denead dur
automated and monocular reconstruction. (f) We also coedpthie Eu-
clidean distances between the monocular reconstructizhthe manually
computed points, and plot their medians together with wahte25% and
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5.20 (a,b) Original and side views of a surface used to gémeraynthetic se-
quence. The 3D shape was reconstructed by an optical majunre sys-
tem. (c,d) Eigenvalues of the linear system written fronregpondences
randomly established for the synthetic shape of (a). (c) Sjfsem was
written in terms of 243 vertex coordinates. One third of tigepvalues
are close to zero. (d) The system was written in terms of 50 R0des.
There are still a number of near zero eigenvalues. (e) Farstative of the
curve (d) (in reversea-direction). We take the maximum value 8f to
be the one with maximum derivative, which corresponds tquh® in (d). 100

5.21 Lin-Log plot of the nhumber of equations and number ofnavikns as a
function of the number of Extended Linarization iteratidns the case
of a 10 x 10 square mesh. Note that after 4 iterations, the number of
equations exceeds the number of variables, making thersystetheory,
solvable. However, the size of the system is of the otdét, which makes
its solution intractable in practice. . . . . ... ... .......... 102

5.22 Shape recovery of a 20Q@00mm synthetic mesh imaged by a virtual cam-
era placed 20cm away from it. Each plot shows the mean véoterrtex
3D distance between the recovered surface and the grouiiidats a func-
tion of its mean curvature. The three different curves irhegraph corre-
spond to a varying number of correspondences per facettd gfjht, the
number of outliers grows. Top to bottom, the gaussian naisked to the
correspondences increases. For each experiments, wh@kmid¢rage over
40 trials. The last row shows in blue recovered shapes fogrtiend-truth
surface of Fig. 5.20(a,b), shown in red. The correspondiegmvertex-to-
vertex distances are 9mm, 19mm and 38mm. This highlight$atttehat
even for distances around 40mm, the recovered shape remaargngful. . 105

5.23 Comparison of our closed-form results against thelteesfi constrained
optimization. Optimization was performed on the vertexrdamates using
Matlab’sf m ncon function, and starting from the flat position. (a) Mean
vertex-to-vertex distance. (b) Reprojection error. Caised optimization
is both much slower and far less accurate than our approach. ... . . . 106

5.24 3D registration of a folded bed-sheet to an individnage given a ref-
erence configuration. Top row: Recovered mesh overlaid erottyinal
image. Middle row: Synthesized textured view using the veoed shape.
Bottom row: Real side view of the sheet from similar viewgsirDespite
lighting changes, the synthetic images closely match thleomes. . . . . . 107

5.25 Shape recovery of a bed-sheet. Top row: Recovered mveslaid on the
original image. Bottom row: Mesh seen from a different vieimp. . . . . 108

5.26 Shape recovery of a piece of cloth. From top to bottomstiMmmputed
in closed-form overlaid on the input image, side view of tmeish, refined
mesh after 5 Gauss-Newton iterations. . . . . . . ... ... ... .. 108
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5.27 Shape recovery of the central part of a t-shirt. Fromtédpottom: Mesh

computed in closed-form overlaid on the input image, sidawvwof that
mesh, refined mesh after 5 Gauss-Newton iterations.

5.28 In such cases where a large part of the drawing on thH!ttI-SI‘hldden

6.1

6.2

6.3

6.4

6.5

or where the image becomes too blurry, not enough featurggpoould
be found. We therefore fixed a threshold, and only recovdredhape in
images where we found a least 30 SIFT correspondences. INtitesince
we are not tracking the surface, this does not prevent us Gomectly

recover the shape in the otherframes. . .. .. ... ... ..... . 110

Advantages of the local models over global ones. (a) Idifigxible sur-

faces may undergo too complex deformations for the globaeaispwhereas,

locally, these deformations remain relatively simple. gbhew global

model must be learned for this surface even though it is matesame
material as the surface in (a). Local models can be combmedurfaces
of arbitrary shapes. . . . .. .. .. . .. .. ... e
We used an optical motion capture system to acquire raiairtg data.
Left: We stuck reflective markers as a rectangular grid onstirgace of

interest. Right: We deformed the object in front of six iméd cameras. . .

Decomposing the surface into patches. In this casejdhalgurfacey is
composed of four overlapping patches._ 4. . . ... ... .. ......

Validating the linear deformation models. We comput rtean of the
average vertex-to-vertex distances between test datahenchddel pre-
dictions, and plot it versus the number of modes. Top: Therdar the
cardboard model (left) decreases faster than for the nayiar(right). This
corresponds to our intuition that fewer dimensions are s&arg to model
the deformations of a more rigid material. Bottom: We triedeconstruct
the napkin data using the cardboard model (left), as welhasopposite
(right). We can observe that, since the napkin is more flexitd deforma-
tions are a superset of those of the cardboard, and thus cdel mquite
accurately. This is not the case when trying to reconstrapkim data with
thecardboard model. . . . . .. .. ... oo

Validating the non-linear deformation models. The saemnstruction
error as in the linear case is computed and plotted as a fumatithe latent
dimension. Top: In the cardboard case (left), we chosetld@iemension 4,
since it corresponds to the point where the error stabilizesthe case
of the napkin (right), we chose to use dimension 7 becausersftgence
problems during training in dimensions 8 and 9. These woale mequired
a larger number of inducing variables, which would have riased the
computational burden. Bottom: As in the linear case, we dmeive that
the cardboard models are unable to reconstruct napkin watxeas the
inverseispossible. . . ... ... ... L
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We used Isomap to compute the low-dimensional embesldihgur card-
board (left) and napkin (right) data for different latertng@insions. We plot
the residual variances given by Isomap as a function of tmedsion. This
confirms our choice of dimension 4 for the cardboard and Hemapkin. . 124

Synthetic images generated from optical motion captata (a) Shaded
view of a cardboard surface (b) Similar shaded view for a papgkin.
(c,d) Images synthesized by texture-mapping using eitmehaexture or
a much more uniformone. . . . . ... ... oL 124

Comparison of the linear (dashed red) and non-linedid(stue) mod-

els for cardboard using sequences of synthetic images. Malipation of
extension was used to obtain these results. Top row: Forafable well-
textured images, we plot, on the left, the mean 3D vertexetbtex dis-

tance, and, on the right, the mean reprojection error ofaany sampled
surface points. Bottom row: Same plots for much less tegtumeages.

Note that the non-linear models yield a better 3D reconstmdhan the

linear ones. This is to be expected since they suffer less the absence

of stretchingpenalty. . . . . ... ... ... ... ... .. .. ..., 512

Same plots as in Fig. 6.8 for the napkin models. This tithe,linear
models perform as well as the non-linear ones. This can baierd by

the fact that the deformations of a flexible material reméoser to the flat
shape than that of a more rigid one. Thus, even when stretcthia linear
models yield reasonable 3D errors, but visually less atewstaapes, as can

be checked from the last row of the figure which depicts thedlin(left)

and non-linear (right) reconstructions of the same growuadt (middle)
corresponding to frame 60 of the less-textured sequence.. ..... . . . . 126

3D reconstruction errors for the linear and non-lineadels when us-

ing inextensibility constraints. Top: Mean vertex-totesr distance as a
function of time for the cardboard textured (left) and léssured (right)
sequences. Bottom: Same plots for the napkin sequences thidtin

both cases, the linear models strongly benefit from the amesibility con-
straints, whereas the non-linear ones are less affected. ..... . . . . . . 127

Reconstructing a rectangular piece of cardboard framgle video. In
each of the three examples, we show the recovered surfadaidvie red
on the original images, and the surface seen from a diffeientpoint. As
shown in the top rows, a complete absence of texture leads netrieve
a surface that is plausible, but not necessary accurats.olily one of a
whole family of equally likely solutions. However, this firlem is fixed by
adding very little image information, as shown in the otlveo examples.
We then recover deformations that match the realones. . .. ... . .128
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6.12 Reconstructing a rectangular piece of cardboard fremgle video with
linear local models. In the first row, we show the surface veoed with
inextensibility constraints overlaid in red on the oridimages. In the
middle, we show a side of the surface recovered without Englstretch-
ing. In the bottom row, we can see that inextensibility craiats improve
the 3D shape, and therefore should be used in conjunctidnthét linear
local models. Note that we do not show the reprojection ottrapressed
surface, since it yields similar images as in the first row..

6.13 Reconstructing a circular piece of cardboard with Ehaeslocal models
Note that assembling square patches only allows us to ajppatx the
object’s outline. This prevents us from using image edgas,dbes not
stop us from successfully recovering the deformationshénmiddle row,
we show the results of the non-linear models, and in the tyottaw, those
ofthelinearones. . . . . . . . . . ... ...

6.14 Despite a very large occlusion, we manage to reconstdeforming piece
of cardboard in each frame of a sequence. Note that even i& sonall
reconstrution errors occur, the global shape neverthetedshes the true
ONE. . v i e e e

6.15 Reconstructing a much more flexible paper napkin. A®eg to card-
board, results obtained with non-linear models (first arwbise rows) are
better than with linear ones (third and fourth rows). Thiafams our in-
tuition that complex deformations are non-linear. .

6.16 Reconstructing a different deformation of the sameklnapEven though
there is little texture, the 3D shape of the surface is ctigregecovered,
as shown in the bottom row where the surface is seen from arelift
perspective. . . . . . . .. e

6.17 Reconstructing a napkin of different topology with dmear (top) and
linear (bottom) models. As with cardboard, assembling sgjyatches
only allows us to approximate the outline of the hole, buitlstis us recover
correctdeformations. . . . . . ...

6.18 Modeling the napkin without explicitly accounting fiwe hole. The local
models are replicated to cover the whole rectangular seurfidote that the
surface does not always reproject correctly, as can be séeamtaole upper
boundary. The hole creates discontinuities in the surfabéch modifies
the global behavior. It should therefore be modeled exptici . . . . . . .

6.19 Using local models to track the same extensible suidacie the global
case. In the top row, we show the original images, the secowddis-
plays our results with a global model, and in the bottom row,slow the
surfaces obtained with local models. Note that the impre@nn texture
matching most probably comes from using template matchattger than
correspondences. Furthermore, the change of mesh resoluéis only
introduced for convenience of use with the local models.
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6.20 Mean vertex-to-vertex distance (left) and mean reptmn error (right)
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red curve corresponds to the closed-form solution, anddlieIslue one to
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6.23 Recovering the shape of a piece of paper. From top torhot¥lesh com-
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refined mesh after 5 Gauss-Newton iterations. . . . ... ... ... .137
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computed in closed-form overlaid on the input image, sidawvwof that
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6.26 Recovering the shape of a plastic bag. From top to bottéesh computed
in closed-form overlaid on the input image, side view of tmaish, refined
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7.1 Effect of adding (green) or subtracting (blue) a singifodmation mode to
the rest shape (red). From top to bottom, modes were obtawibdeal
cardboard data, real napkin data, synthetically genenateshes of two
different topologies, a stiffness matrix for cardboard] arstiffness matrix
for the napkin. The plots display the first five modes othentgkbal
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7.2 Comparison of the reconstruction error as a functionhef iumber of
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7.3 Residual variance obtained with Isomap on the cardbgeftyland napkin
(right) global training data. These plots suggest latemtedisions 16 for

the cardboard and 30 forthe napkin. . . . . ... ... ... ...... 144

7.4 Reconstruction errors on synthetic images generabed ¥alidation data.
We applied a nicely textured image (left) or a much more unifone
(right) to ground-truth meshes, and projected them withwkm@amera.
The top row corresponds to a piece of cardboard, and therbaite to
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thenapkincase. . . . . . . . . . . .
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7.8 Comparison of the different local models. We plot therage reconstruc-
tion error on cardboard (left) and napkin (right) test pakchFrom top to
bottom, the models used were obtained from cardboard dapkjmdata,
synthetic data, and with modal analysis.
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1 Introduction

Deformable surface 3D reconstruction from a single viewpiai an active area of research
in the Computer Vision community. Whereas it seems easylionaan being to see the 3D
shape of an object, it becomes a challenging and ambigualrepn for computer-based
techniques. This is especially true when the sensor datasg,iwhich is typically the case
when dealing with real images.

The goal of this thesis is therefore to study the ambiguitiderent to monocular 3D
deformable surface reconstruction and to propose waysastoming them. The common
thread in this work is that real surfaces do not deform rarg@nd cannot assume com-
pletely irrational shapes. As a consequence, one may inteodome knowledge of what
is feasible and what is not to constrain the recovery and ventize ambiguities. In the
various methods we present here, such knowledge rangesgiageric assumptions that
hold for most surfaces with potentially different physipabperties to much more precise
ones that closely correspond to a specific material.

In the remainder of this chapter, we first describe in moraitiethe problem we ad-
dress and some possible applications of the solutions weopeo We then summarize the
contributions of this thesis.

1.1 Problem Definition

In this work, we seek to recover the 3D shape of a non-rigifasergiven an image, or
a sequence of images of the surface deforming in front of glesicamera. Furthermore,
we assume that we have a reference image of the object oésntlar which we know
the 3D shape. In practice, we may, or may not assume that thereas fully calibrated
and remains fixed. Similarly, the reference image may, or nayhave been taken from
the same viewpoint or be the first image of the video sequemge that requiring a
reference image, even taken from a different angle, doesieah that we can use standard
stereovision techniques since the shape of the object itheaame in both images. As
will be explained in more details in Section 3.3, the refeeemage is used to extract the
necessary texture information from which we can retriev® a&l@ape, but not triangulation
with the input image.

Apart from being a fascinating problem, non-rigid 3D shageowery has applications
in many different domains:

e A first example is medical imaging. For the patient’s weliFige surgery tends to
become less and less invasive. This implies smaller andesntaits in the patient’s
skin, which do not give the surgeons a direct view of theirkvoFhey only leave
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Figure 1.1: Surface reconstruction can be applied to meuizaying. (a) Schematic repre-
sentation of non-invasive surgery (b) Augmenting a scertle tluie reconstruc-
tion of a virtual liver [130].

enough space for small cameras to be introduced into thenpatbody. In such con-
ditions, the resulting images are of poor quality, and makesurgeons’ work much
harder. As shown in Fig. 1.1, having a full 3D representatibthe organ’s surface
recovered from the images, or an augmented view of the organsd certainly help

them greatly.

e Many sports could benefit from a system that reconstructsrigich 3D shapes from
video. For example, as shown in Fig. 1.2 (a,b), sailors waainialyze the effect of
their maneuvers on the shape of their sails, or, sometimas more interestingly,
study the sails of their opponents. In this context, videzspnts a clear advantage
on other sensors that should be placed on the sail itsel, ¢hanging its behavior.
Similarly, one might want to analyze how skis deform duringee to improve their
design, as illustrated in Fig. 1.2 (c).

e The entertainment industry could benefit greatly from invpobtechniques for video-
based shape recovery. In animation movies, video gamegeocias effects, many
things are still done manually, image after image. A lot ofdicould be saved if the
deformations of the clothes of animated characters, sutioae of Fig. 1.3, could
simply be obtained by filming a real person performing soméanpreconstructing
his or her clothes in 3D, and re-applying the resulting defttions to the animated
character. Similarly, as Augmented Reality becomes irsingly popular, it will
become increasingly important to accurately model therenment and its defor-
mations in order to correctly augment the scene with viramécts. For example,
this could be used to draw virtual advertisment logos ontspwn’s clothes, or boat
sails, thus avoiding the need to physically print them andingapeasy to change
them as necessity dictates.

Unfortunately, recovering the 3D shape of a surface fromgisiview is an ill-constrained
problem. The high number of parameters and the noisy imdgamation make it imprac-
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(b)

Figure 1.2: Many sports could benefit from 3D shape recov@rip) Sailors are interested
in knowing the shape of their own sails, or of the opponeradsgc) Recover-
ing the shape of skis during a race could help improving ttiesign.

tical to solve without prior knowledge of the possible defations that the surface can
undergo. All the above-mentioned applications therefexiire the use of deformation
models, such as those we study in this thesis.

1.2 Contributions

In this work, we focused on the reconstruction of deformaesurfaces from video se-
guences. As mentioned above, we assume that we are givenage iof the surface in
which its shape is known and that we can establish pointtotorrespondences be-
tween that reference image and image sequences in whichrfaees deforms. Our goal is
to propose algorithms that are as generic as possible tastoet the deforming 3D shape
from such data and from additional cues such as surface wsntehen available.

A necessary first step, which has been neglected in earligkswis to study the ambi-
guities of the shape reconstruction problem in this contértthis end, we represent the
surface as a triangulated 3D mesh and use projective gepmeetiniques to show that
recovering its shape and motion from point correspondeaogsunts to solving a linear
system whose unknowns are the 3D coordinates of the mestegerThe ambiguities stem
from the fact that this linear system is very ill-conditiohand that a whole subspace of
shapes can be considered as solutions. Additional knowladd constraints are therefore
required to pick the right one.

We propose different ways of imposing such constraintsyTaage from very generic
ones that make minimal assumptions on the surface physigpépies to much more spe-
cific ones that rely on learning these physical propertidse former are very generic but
only applicable when the image data provides informatioer dkre whole surface, which,
in practice, requires the surface to be very textured, asgniF4(a,b), since we rely on
point correspondences. By contrast, the latter can opeftaetively on surfaces that are
far less textured, as depicted in Fig. 1.4(c,d), but reqda&@ from which we infer the
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Figure 1.3: The entertainment industry could use 3D recoatsbn from video for differ-
ent applications. For example, animating the cloth of akttharacters could
be guided by video, thus limiting manual intervention. Ireagvere taken
from [26] and [15].

objects’ properties. The situations for which the variousdels we have proposed are
effective are summarized in Table 1.1.

Whether dealing with very textured deformable surfacesetatively untextured ones,
our contribution is to completely formalize the 3D shape arudion recovery problem and
to derive practical algorithms from this formalization. i¥ Fs important because most real-
world surfaces combine textured and uniform parts, andtipedcsolutions will have to
deal with this state of affairs. Conceivably, the algorithtinat will eventually be deployed
will reconstruct the most textured parts of surfaces, léhair physical properties from
these reconstructions, and use them to model the lessadxpairts.

In the remainder of this section, we briefly introduce théedént ways to impose the
necessary constraints to overcome the ambiguities inher@&b shape and motion recov-
ery from single videos. They will be discussed in more detailthe following chapters.

1.2.1 Motion Models

Given a surface of unknown physical properties, one of thetmeasonable models is
to relate the deformation in the current frame to that in thevipus ones. The resulting
dynamical model is, of course, very rarely exactly correetowever, for optimization
purposes, when one seeks to minimize some error defined agegtive function, such
a simple motion model can prove surprisingly effective. eliaves the need to enforce
surface smoothness, as is done in many current methodshasaltows the recovery of
complex and possibly discontinuous deformations, suchasetthat result in sharp folds
and creases, as shown in Fig. 1.4(b).

More formally, in this work, we study two different motion miels. The first one sim-
ply seeks to minimize the frame-to-frame motion in depthhaf inesh vertices to avoid
implausible configurations. The second one involves foatmg the reconstruction as
a Second Order Cone Programming (SOCP) problem solved stamglard convex op-
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Figure 1.4: Examples of the surfaces to which we applied cethods. (a) Textured sur-
face undergoing a simple deformation. (b) Methods relyingsmoothness
assumptions would typically fail reconstructing such ghereases. (c,d) With
much less textured surfaces, the shape of uniform parts beustfered from
that of the textured ones. This requires deformation mothels accurately
represent the properties of the surfaces.

timization techniques [21]. This ensures that the origoabf the mesh edges will not
change drastically between two consecutive frames of eovsequence.

1.2.2 Global Models

While very generic, the approach described above suffera fieveral limitations. First,
it provides no way to infer the shape of untextured parts efdtwrface. Second, penaliz-
ing image-to-image motion is only practical if one knows #irape in at least one frame
of the sequence, and does not prevent drift when one tracks fiame to frame. When
the surface’s physical properties can be modeled, thesknesses can be overcome by
replacing frame-to-frame constraints by regularizatioewithin individual frames. We
will show that this not only gives us the ability to reconstrthe shape of the whole sur-
face, including untextured portions of it as shown in Figl(d.d), but also allows us to
do this in closed-form in single images. In other words, gigeset of correspondences,
we can compute the shape without any prior estimate. Thiscigtieal ability if surface
reconstruction techniques are ever to be incorporatedwotliing systems that must be
able to initialize and reinitialize themselves automalyca

Since accurately modeling the physics of a surface undagglairge deformations is
extremely complex, an effective way to derive appropriaggutarization constraints is to
learn deformation priors from training examples. Giventao$eleformed 3D shapes, we
seek to approximate their statistical distribution. Thas ¢ypically be done in a space of
reduced dimension since the degrees of freedom of the meslsarlly coupled, which
makes the task easier.

The bottleneck in putting this approach into practice is alailability of databases
of representative shape deformations, which must be qaitee Isince representing de-
formable surfaces as triangulated meshes involves mameee@f freedom. In some
cases, the databases can be obtained by simulation, butvaysa To overcome this lim-
itation, we introduce a novel approach to automaticallytlsgsizing such databases for
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Well- Poorly- | Frame- | Closed- Shape| Sharp
Textured| Textured| to-frame| Form Indep. | Creases
Surfaces| Surfaces| Tracking | Solution '
Linear
Motion Models * i * ) * *
SOCP + - + - + +
Motion Models
Linear N + N N . .
Global Models
Non-Linear + + + ] + .
Local Models
Linear + + + + + i
Local Models

Table 1.1: Summary of what the different models presentdtiinthesis can and cannot
handle.

inextensible surfaces. The idea is that the shape of aneinsikie triangulated mesh can
be fully determined by a subset of the angles between itsdac®hapes are created by
randomly setting these angles, and are therefore direagjigtered to one another. We then
apply Principal Component Analysis (PCA) [81], a linear dimsionality reduction tech-
nique, to our database, and use the resulting deformatiatesn recover the shape of
surfaces from images.

For this purpose, we first propose a simple least-squar@riaption method that recov-
ers the shape in a video sequence by initializing the shagheiourrent frame with that of
the previous one. However, this again means tracking therbetions from image to im-
age, and thus suffers from error accumulation, as beforetefbre, to avoid this issue, we
propose a closed-form solution to 3D reconstruction frodmidual images. As discussed
at the beginning of this section, it starts from the fact,tigaten a set of correspondences
between a reference image in which the shape is known andhahimage in which it is
not, the set of possible shapes lies within a linear subspadean be expressed as a lin-
ear combination of vectors forming an orthonormal basidat subspace. Assuming that
the surface is inextensible then implies that the edgeseofrtbsh that represents it retain
their length, which translates into a set of quadratic dqoaton the coefficients of the
linear combination. This set of equations can be solvedgugichniques such as Extended
Linearization [40], thus providing us with the desired fesu

1.2.3 Local Models

The approach described above is very effective when theigtamodel a specific surface
for which a model can be created and stored. However, thisshmhnot be directly

applied to any other surface whose rest shape is differgat) & it is made of the same
material. This, nonetheless, can be solved by replacingltiel models described above
by local deformation models that describe the behavior ddlssurface patches, which
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Figure 1.5: Using global representations would involveresy two different models for
these surfaces, even though they are made of the same mawfth local
representations, we can use the same model for both casesingrly need to
combine them to form the correct global shapes.

can be combined into global models using a Product of Expgnpsoach [64]. Not only
does this yield a single model per material, as opposed tgpenebject shape, as shown
in Fig. 1.5, but it also reduces the necessary amount ofitigaisiata, since small portions
of a surface can only undergo much simpler deformations ttemhole surface itself.
Given training data obtained using an optical motion capsystem, we learn local
surface deformations models as Gaussian Process LateabMaModels [94]. This pro-
duces a low-dimensional latent representation of the Iskkape manifold together with a
mapping from this low-dimensional space to the high-dinmrs one. This mapping is
entirely defined by a covariance matrix, which can be takemlawar or non-linear func-
tion of the latent variables. To represent more accuratedymanifold of local deforma-
tions, we first learned non-linear models. While the globaleis obtained by combining
these non-linear local models proved very effective atkirer deformations from frame
to frame, they were not suited for surface reconstructiomfindividual images as before.
We therefore turned to the simpler linear models that reprel®cal deformations as lin-
ear combinations of deformations modes. Even though thétires global models were
slightly less accurate, we found the linear approach to hawekey advantages. First, the
local models are much easier to build and can be created pvibie iabsence of training
data using the technique introduced in Section 5.1.2. Skeamd more importantly, they
still allow for closed-form computation of the shape usihg same approach as before.

1.3 Thesis Outline

The remainder of this thesis is organized as follows: Chaptdescribes the related ap-
proaches found in the litterature. In Chapter 3, we forneatlze reconstruction problem
and exhibit its ambiguities. In Chapter 4, we describe howetoove the ambiguities by
introducing frame-to-frame constraints in the recongtoug first as linear constraints, and
then in a convex optimization framework. In Chapter 5, wespre our global deformation
models and our method to automatically create the requieéning data. We show how to
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use them both for frame-to-frame tracking and for recowsitva from individual images.
Chapter 6 introduces our local models together with theesponding shape recovery
framework. We then compare the various proposed methodkapt€r 7, and conclude in
Chapter 8 by summarizing our results and giving differeturie directions of research.
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2 Related Work

Modeling the behavior of non-rigid surfaces has been anaatiea of research for the past
twenty years. Many approaches have been proposed in thextohboth Computer Vision
and Computer Graphics. These two fields are closely relabede Computer Vision aims
at solving the inverse problem of Computer Graphics, the#ésvering an object’'s shape
as opposed to simulating an object’s deformations. It isefloee not surprising that similar
representations often appear in both domains.

The most popular geometry-oriented techniques can be lpatgssified into physics-
based methods, statistical learning based approachealtanthtive shape representations.
While different from our approaches, these methods aragtyaelated to our own work.
As we will explain in more details in the remainder of this pte, they suffer from weak-
nesses that we propose to overcome. However, their stieimghired our work, which
makes them worth discussing in this thesis.

In addition to shape constraints, 3D reconstruction canaerlvarious sources of image
information, such as using multiple views, or shading. Etreugh in our own work we
mostly rely on texture and edges obtained from a single wémpsuch information could
potentially be added to our algorithms to make them moregsiobithe goal of this work is
to study shape recovery from minimal inputs. However, ircfica, one should always rely
on all the available sources of information. We thereforeeng the most relevant works
on these topics as they ultimately would be included in a wgrkystem. Note that these
methods could also benefit from our models, since they reguinditions that are rarely
satisfied in real life.

2.1 Physics-Based Methods

The initial approach to modeling deformations of non-rigitjects was inspired by me-
chanical engineering. The key idea is to model the beha¥ian@bject by describing the
true physical laws that govern it. The pioneering work irsthéld [84] was introduced to
delineate 2D shapes in images, and was quickly extended a0 152]. In this for-
malism, a global energy, built as the difference betweemtamal energy and an external
one, is minimized. The internal energy decribes the phygicgerties of the object, and
is typically separated into a bending term and a stretchéng.t The external energy cor-
responds to the image information. Image features act asraitforces that deform the
surface of interest.
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2.1.1 The Finite Element Method

The formulation presented by Terzopoulos and his colleaglesely follows the standard
mechanical engineering procedures, where one seeks tp thieidleformations of struc-

tures such as beams, plates, shells, or full 3D bodies. T approach to tackle this
problem is to solve it via the Finite Element Method (FEM) [183]. The structure of

interest is then modeled as a discrete set of elements, sumdaans, triangles, or tetrahe-
dra, that are linked by their nodes. Following the laws of hasics, mass, stiffness, and
damping matrices are built for each element, and assembleabdel the whole structure.

One then seeks to solve the system of differential equations

Mii + Dua + Ku = f (2.1)

whereu is the unknown displacement of the nodd4, D, andK are the mass, damp-
ing, and stiffness matrices respectively, @i the external forces. This models a full
dynamical behavior, and can be simplified to the static cgseeglecting the displace-
ment derivatives. The matrices typically depend on mdtpaeameters, such as Young’s
modulus, Poisson’s ratio, shear modulus, and thicknedsedsttucture.

When considering small deformations, that is bearly visd#formations, of a materially
linear object, the matrices in the previous equation rernairstant and the system can be
solved directly. However, the deformations have to be maegelr to be observable in
images. The problem is then said to be geometrically nagalinAdditionally, the material
which the object is made of may exhibit a non-linear behaworch as hyper-elasticiy,
or plasticity. In the presence of either of these two typesai-linearities, geometric
or material, the stiffness matrix becomes a function of tispldcements, and the whole
problem becomes much more complex. Computing a solutidmeis very expensive and
often unstable due to phenomena such as buckling or cripiciits that yield different
solutions.

In the non-linear case, several resolution methods havediadied. First, the Total La-
grangian approach, where the solution is computed stdrtmg a reference configuration
that will remain unchanged throughout the computation.o8dcthe Updated Lagrangian
approach, where the solution is computed in several iaratior which the reference con-
figuration is replaced by the current solution. Finally, tteeotational approach, where
a large deformation is separated into rotations of the eksnand small deformations.
Nowadays, the Updated Lagrangian and Corotational appesagre the most commonly
used.

2.1.2 Physics-based Methods for Computer Graphics

Physics-based methods quickly became very popular in Can@uwaphics. An extremely
important area of interest is the modeling of clothes [69duse animated virtual char-
acters typically wear garments that deform as they move.hénabsence of good de-
formation models, artists must manually design their shapsach frame of a sequence.
Physics-based models therefore constrain the feasibterdafions of clothing, and make
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animation much easier. Several cloth models have been gedpoanging from early ver-
sions [167, 119] that only achieved visually plausible hssto much more accurate and
realistic models [26, 27].

Since the physics-based approach typically yields contipuily expensive algorithms,
there has been a number of attempts at improving the resolafisuch problems. More
specifically, a classical issue was that very small timesstegdl to be taken to avoid nu-
merical instabilities. Implicit time integration was tleéore introduced to overcome this
issue [8]. A comparison of other approaches can be founda8][XOther techniques have
been proposed to speed up the simulation process, suchwsetbéthe Boundary Element
Method [79], an alternative to FEM where the original diffietial equations are replaced
by integral equations over the boundary of the object.

Similarly as advances in mechanical engineering led to awvgm computer graphics
methods, subdivision surfaces [30, 45], already well-kmavthe graphics community,
were introduced to the mechanical engineering communitthéncontext of finite ele-
ments. They involve representing a surface with a coarsé,médsch can then be refined
following a subdivision scheme [102]. This reduced the claxipy of the finite element
models, thus yielding more efficient representations [33].

Finally, accurate non-linear FEM was also studied in Comp@raphics for surgery
simulation purposes [126], and for general deformable abjenodeling [65, 175, 9].
The corotational approach proved succesful in this contéxarge deformations [112,
61], as well as other representations such as discretes §B6l, or invertible finite ele-
ments [78]. Accurate non-linear representations being emplex, simplifications have
been proposed to yield physically plausible deformaticasel on elastically coupled rigid
cells [20].

2.1.3 The Computer Vision Approach

At the same time as they were introduced in Computer Gragbicsimulation and ani-
mation purposes, the physics-based models became higblygson Computer Vision for
non-rigid motion analysis [83]. As in Computer Graphicss ffurpose was to constrain
the deformations of an object to plausible ones only. Howete final goal is different
since, in Computer Vision, we seek to recover deformatioather than simulate them.
This bears similarities with the so-called inverse problarthe FEM, where one seeks to
recover the forces that generated a certain shape, radretdtapply a force to deform an
object.

Many variations of the physics-based models were propasestbnstruct shapes from
images. Among them, balloons [34, 35] were introduced teessbme issues of the origi-
nal Snakes [84]. The key idea was to modify the external fotbat deform the curve,
and add an inflation force that makes the curve, or surfacearek Deformable su-
perquadrics [150, 108] were proposed to reconstruct momgptax shapes by modeling
both global and local deformations. Finally, another applo[105, 106] proposed to fol-
low more closely the FEM formulation, and to model a deforleaurface as a thin-plate

35



2 Related Work

under tension. Surveys of the different formulations amlalle in the field of medical

imaging [107] and in a more general context [110]. Furtheenthe use of the Boundary
Element Method has also been advocated to track deformaigets in 2D [54] and in

3D [55].

Modeling a surface as a finite element mesh yields represamgathat are of high di-
mensionality, since the meshes can be formed of many veriideich, in conjunction with
the computationally expensive FEM resolution methods, endke problem impractical.
To overcome these weaknesses, modal analysis emergedHeomdchanical engineer-
ing community to reduce the number of degrees freedom bylicgughe existing ones
through vibration modes. These vibration modes are oldaiyesolving the generalized
eigenproblem

K¢ = w’Mog , (2.2)

whereK andM are the stiffness and mass matrices of Eq. 2.1, and the ¢hdikp andw
define a mode and its frequency. The displacement of the nusldsns then given as

i=1

wherew; corresponds to the amplitude of modeln the full case;n = 3xnumber of
nodes. Since the modes with lower frequencies have moremdion the global shape
of the surface, it is a valid approximation to discard thesowéh higher frequencies, thus
yielding a lower-dimensional problem.

Its ability to reduce the number of degrees of freedom guickhde modal analysis
popular in the Computer Vision and Computer Graphics comtesn Initially intro-
duced for image segmentation [122, 123], it was also sualtgsipplied to medical imag-
ing [114, 113, 115]. While computationally efficient, modadalysis as applied in com-
puter vision assumes a constant stiffness matrix, whicHiémpinearly elastic deforma-
tions. This however never is the case, since it is only trudévely visible deformations.
Such models are therefore only rough approximations ofrtheerion-linear behavior.

There has been some interest in better modeling the truegshyisdeformable objects
via the non-linear finite element method in Computer Visidowever, unlike in Computer
Graphics where one can tune the forces and material panantlete yield good deforma-
tions, recovering the shape of a surface from images regjairgtable objective function
to minimize. Some approaches have nonetheless been pdofurditing a mesh to 3D
range data [70, 80, 157], or for video-based shape recod&sy, [15]. However, these
methods follow an analysis-by-synthesis approach, anduailgnset simulation parame-
ters, until the ones that give the resulting shape that basthras the data are found. Only
recently [75] has a true non-linear FEM formulation beenpps®d to recover the defor-
mations of beam structures in the image plane, where imagerés act as forces, as was
originally proposed for the Snakes. However, to the bestiokaowledge no similarly ac-
curate model has yet been demonstrated in the case of ait@Daurface shape recovery
from noisy image measurements.
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2.1.4 Relations to our Work

The physics-based approach is very attractive, since & ainmodeling the true behavior
of an object. Nonetheless, it suffers from several wealasedsirst, computing the appro-
priate matrices relies on the knowledge of material pararsevhich are often unknown.
Second, building an accurate model is as much an art as aecimd even mechanical en-
gineering experts often have to manually tune their modsisally, optimizing such mod-
els yields computationally expensive algorithms whoseadbje functions exhibit many
local minima.

However, modal analysis is strongly related to some of tipeagrhes we studied in this
work. Representing the deformations of a surface as a lcmabination of modes yields
effective low-dimensional models. Since this still reggipotentially unknown physical
constants, we will build such models following a statidtiearning approach. Nonethe-
less, the general idea remains the same, and the resulbiragion modes look similar, as
shown in Chapter 7. Furthermore, FEM models attempt to desiine local relationships
between neighboring vertices of a mesh. Our local modeleviah similar purpose, but in
a statistical learning context.

2.2 Learned Global Models

Due to the complexity of accurately modeling the physicsighly deformable surfaces,

statistical learning approaches have become an attragtimative that takes advantage
of observed training data. Active Shape Models (ASM) [38 an early example of

such models. They avoid the application-specific taylooh¢he Snakes [84] to delinate

shapes from images. Rather than guessing unknown mateareingters, shape statistics
are learned from available examples and used to constridetormations of contours.

2.2.1 Statistical Learning Methods

Many surface parameterizations rely on a large number ofedsgof freedom. This, for
example, is the case when specifying the shape of a triategukurface in terms of its
vertex coordinates. However, these degrees of freedomfeme coupled and therefore
lie on a much lower-dimensional manifold. Rather than exbi adding constraints to
the problem at hand, the core idea behind statistical legnsi to express the problem in
terms of its low dimensional representation, thus impliciinforcing the constraints. The
different methods are divided into linear and non-lineagon

In the linear dimensionality reduction case, an examgpielinked to its latent, possibly
low-dimensional, representationthrough the linear relationship

y =yo+Sx+e, (2.4)

wherey, is the mean data value, aadccounts for noise, usually taken as gaussian dis-
tributed. The matriXS contains the new basis vectors, which can be obtained byaeve
different techniques.
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The best-known method is Principal Component Analysis (&84, where the columns
of S are taken as the eigenvectors of the data covariance miattixe context of non-rigid
surfaces, this naturally sorts the deformations from lohigh frequencies, as was the case
with modal analysis. A probabilistic interpretation of P@#s also introduced [153], in
which the distribution of the data in the new space is builtrfrthe eigenvalues of the data
covariance matrix. Other standard examples of linear daeeality reduction techniques
are Independent Component Analysis (ICA) [36] where théshhiaghosen as to minimize
the dependencies between its components, and Canonicalaion Analysis (CCA) [68]
whose basis vectors are taken as the least correlated ones.

In many cases, however, the low-dimensional manifold oriizkwvthe training examples
lie is not linear. Therefore, a linear model gives high philha to truly unlikely data,
or vice-versa. As a result, several non-linear dimensitnatduction techniques were
introduced. The initial method was kernel PCA [134], whe@ARvas applied in a higher
dimensional feature space, related to the input spaceghrawnon-linear mapping based
on kernel functions.

In a different context, several geometry-based techniquere proposed to retrieve
the shape of the low-dimensional manifold. Isomap [149] &ndally Linear Embed-
ding (LLE) [132] were introduced simultaneously, and batlyron k-nearest-neighbors
to learn the latent representation. The former finds a lawedisional space that enforces
the geodesic distances between pairs of points to remalranged, whereas the latter as-
sumes that a complex manifold is locally linear and triesrifold it to a lower dimension.
Other techniques such as Laplacian Eigenmaps [14] have be®n proposed to overcome
the weaknesses of Isomap or LLE. A common failure of thedenigaes is the absence
of an inverse mapping from the low-dimensional space to itje-tlimensional one. Such
a mapping must then be learned separately, in terms of RRds$ Functions (RBF) for
example, which makes such non-linear techniques pronedosdroth in the direct and the
inverse mappings.

An alternative, possibly non-linear, learning technigedghie Gaussian Process Latent
Variable Model (GPLVM) [94], which was originally introded as a generalization of
probabilistic PCA. It introduces a mapping from the low-dimgional latent representation
to the high-dimensional one written as,

y=> wii(x)+e, (2.5)

wherew; are the weights of the possibly non-linear functiefsof the low-dimensional
representation of the manifold Since this mapping is linear in termsof, these weights
can be marginalized out. For any functiérihat results in a non-negative definite kernel
matrix K, such thatK; ; = k(x;,x;), this marginalization yields a conditional density
which corresponds to a product bf Gaussians with covariand€, and can be written as

_ 1 . 1 1y T
p(Y|X,0)= (27T)ND\K]D6 p( 2tr (K YY )) , (2.6)
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whereY andX are the matrices containing tlhé D-dimensional training examples and
their latent representations respectively, &hdontains the kernel hyper-parameters.

Several variations of the original GPLVM have been proposgulst, they have been
adapted to account for dynamics, thus yielding the Gaud3ianess Dynamical Model
(GPDM) [169]. A weakness of the GPLVM is that the kernel fumetis defined between
each of the latent variables of the training examples, whelkes them computationally
expensive. To overcome this issue, sparse representétiasbeen proposed [96], where
the kernel is defined in terms of a much smaller number of imdugariables. Finally,
recently, a Hierarchical Gaussian Process Latent Varistudel (HGPLVM) was intro-
duced [97] to express conditional independencies in the dat

2.2.2 Learned Models for Non-Rigid Modeling

In Computer Vision, the linear learning techniques quicklcame very popular. The
original Active Shape Models [38] were quickly extended wth D Active Appearance
Models (AAM) [37, 104]to track 2D face deformations. In thisse, the model is separated
into shape and texture components, both modeled as lineaications of basis vectors.
Adaptations of this were also proposed to group appeararntstepe in a single vector and
to mix physics-based approaches with statistical learfid$]. The AAM were quickly
turned into Morphable Models [19] designed to recover the3iD shape of a face. They
were used both to model the shape of the head of a new persawirtral expression [131,
44] and to model various expressions of a same face [18]. Weeg combined to AAM
to further account for appearance of the face instead ofesbaly [176].

The linear models have also been learned for non-rigid strefrom-motion [25]. The
basic idea of this approach is to recover the 3D motion of tgdiracked throughout a
video sequence. To prevent the 3D points from moving comalyiéhdependently, their
relative deformations are modeled as a linear combinatfdoasis vectors. Such basis
shapes can either be known a priori [1], or learned onling I8, 154] and their number
automatically determined [10]. The standard approaclededn an orthographic camera
model, but was extended to perspective camera [101, 16Agr@torks showed how non-
rigid structure-from-motion could also be used for recogthe relative motion of several
rigid objects [177, 178]. A weakness of non-rigid structtn@m-motion techniques is their
sensitivity to missing data. Since they rely on tracked @ithey typically tend to fail in
real-life conditions, where points may disappear. Onlywvecently has this problem been
alleviated by using hierarchical priors [155]. The remaindrawback of such methods is
that they require a sufficiently long video sequence to idégormation modes. This limits
their applicability to relatively simple deformations.

In the context of articulated body tracking, statisticari@ng techniques have similarly
been studied. A first approach [16] used linear models in 2rémwking and recognizing
hand gestures. This was further used to track the whole himody in specific motions,
such as walking [140] or golf swings [159]. In these casesAM@s applied to motion
sequences rather than static poses. The human body moeéelsvase very rough ap-
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proximations of true human shapes, which was improved upme $y using the SCAPE

model [5, 7] that relies on PCA modes to describe body shapenan body poses and
motions were quickly found to be lying on highly non-lineaamifolds. Therefore, several
methods investigated the use of the GPLVM to model [57], aackt[161, 117] such mo-

tions. Further applications were proposed to introduceadynos in such non-linear models
through the GPDM [160], and, recently, through the HGPLVV [4

2.2.3 Relations to our Work

Learned models have proved very effective for many apjticat They alleviate the need
of unknown material parameters while yielding accurateaggntations of objects or ma-
terials statistics. However, some issues remain unsolviest, gathering enough examples
to build a meaningful database represents a very signifaraoiunt of work, especially in
the case of highly deformable surfaces having many degreeeemlom. Second, regis-
tering the examples typically involves a painstaking psscdn the case of faces [19] for
example, laser scans first had to be aligned and then remeésbeder to have the same
topology. Finally, all the proposed methods learn globatiels, which makes them valid
only for a particular object. In the case of non-rigid suesct would be more appropriate
to model the behavior of a specific material than that of aividdal surface, as is the
case with physics-based approaches. These are some dfube that we addressed in this
work.

2.3 Alternative Shape Constraints

Physics-based models and statistical learning methods lieen intensely researched for
deformable surface modeling purposes. However, manyrdiffeshape constraints and
parameterizations have also been studied. Again, sevethese approaches were first
introduced in the Computer Graphics field for simulationgmses, and were later adapted
to recover deformations from images.

2.3.1 Using Control Points

Modeling a deformable surface as a triangulated mesh tfpiglds many degrees of
freedom. However, as mentioned earlier, many of these degkfreedom are coupled,
which can be enforced by using physics-based constrairitg @presenting the deforma-
tions as a combination of basis shapes. An alternativeisoltd modeling this coupling
is to represent the motion of all mesh vertices as a functfarauch smaller number of
control points. The fine mesh is then obtained by interpuodathe deformation between
these control points.
One way to achieve this is through the use of Free-Form Deftioms. Originally

introduced for animation purposes [135], they were quicktiapted to recover shapes
from images [43]. Interpolation can be done through Béz@umes [39], polynomial
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curves [170], or B-splines [90, 48, 49]. A disadvantage ahdard free-form deformations
is their lack of ability to model local deformations. This svavercome by introducing
Dirichlet Free-Form Deformations for animation of a han@9l, but also for computer
vision purposes [72, 74]. A remaining drawback of free-fateformations techniques is
that there is no automated way to create appropriate setsfot points.

An alternative to explicitly relying on control points tha&fine the shape of a surface is
the multi-resolution approach [66]. In this case, the defmtion of an initial coarse mesh is
computed, and, following a subdivision surface approach 43], the mesh and its defor-
mations are then refined. Several subdivision schemes lemre firoposed [102, 47, 87].
Such multi-resolution approaches were also used with dimaeartex connectivity [88],
and for mesh editing [184]. In the latter context, criticisrare made that the editable re-
gions were restricted by the initial coarse mesh. Laplasiafaces [144, 181] were thus
proposed to overcome this problem. To the best of our knaydethulti-resolution meth-
ods have not been applied in the context of image-based shapeery. A drawback of
these techniques is that the surface is interpolated, wbiutts to yield visually pleasing
results but may not correspond to what is observed in images.

2.3.2 Imposing Additional Constraints

Several constraints have been applied to the particul@ abdevelopable surfaces. The
properties of such surfaces, such as isometry and vani§angsian curvature have proved
effective to recover their shape from single views [58]. Blprecise constraints, such as
parallelism of lines, have been used to flaten curved doctsmermmages [100]. A quasi-
minimal parameterization of such surfaces was introdudé@d][ In this work, the shape
of a developable surface was modeled as a function of the @entspof its directix lines.
Finally, a recent work [125] proposed to set bounds on digaetween feature points to
reconstruct inextensible surfaces. However, this onlpmetructed sparse points and the
final surface shape was obtained with a thin-plate splinedgetnevhich relies on unknown
parameters.

In this thesis, we will also study the use of inextensiblibnstraints to help image-based
recovery. As we will show later, representing the shape afréase as a linear combina-
tion of modes does not enforce inextensibility. We will #fere prevent the mesh from
shrinking or stretching by explicitly introducing such sbraints into our algorithms. Addi-
tionally, we will introduce our own alternative constranand study how simple dynamics
can help 3D reconstruction from video sequences. This apprdiffers from the existing
techniques, and will result in two very generally applieabiotion models.

2.4 Alternative Image Constraints
In addition to studying various shape constraints to imettwe accuracy of 3D reconstruc-

tion, using as many sources of image information as poshkimealso been an important
research direction. Most standard approaches, including}, oely on texture, which will
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be presented in more details in the rest of this thesis. Hewether image cues some-
times are available. The most popular ones are triangualdton multiple views, shading
information, and silhouettes. They are usually combinedl aplied in conjunction with
shape priors to make the reconstruction more robust.

In this work, we focused our research on the monocular cadedied on texture and
silhouettes only. Working in such poor conditions will ylehuch more generally appli-
cable models, which could be used in conjunction with addal sources of information.
Ultimately, to build a working system, one should alwayy m@h as much information as
possible. However, by developing models that are effedtiygoor conditions, we ensure
that they would still be effective in less challenging ones.

2.4.1 Multiple Views

Multiple view geometry has been of huge interest in Computsion to solve problems
such as object pose estimation, relative camera pose éstimnand 3D shape reconstruc-
tion [60]. When such information is available, it therefeeems natural to rely on several
views to reconstruct the shape of non-rigid surfaces, dineffectively constrains depth
and mirrors what happens in human vision. Note, howevet,detrmation models are
still useful to fill the untextured or occluded parts of theface.

Stereo reconstruction relies on establishing correspmatebetween points across the
different views. These methods have been applied to rezmbstbitrary scenes with no
prior knowledge of their content [51, 29, 163]. Shape recp¥es also been performed
by fitting a known model to noisy stereo data [73]. A survey aflinview reconstruction
techniques can be found in [137].

Recently, there has been an increasing interest in relyirsgareo to recover the complex
shapes of clothes [146]. This constitues a very hard agitasince the folds and wrin-
kles of clothing produce many self-occlusions, and makekirmatching techniques fail.
Various matching techniques have been proposed, suchascgmatching [145], as well
as different shape representations such as Laplaciarcearfd2]. Such clothes motion
capture has been succesfuly applied with specific markémsedron the garments [171],
and very recently in the absence of such markers [23].

2.4.2 Shape from Shading

Another source of shape information is shading, especfaliyelatively untextured ob-
jects, such as faces that display few reliable feature pofBhape-from-shading [67] was
originally formulated in the context of Lambertian surfac# unknown albedo, with a sin-
gle distant point light source. The goal of this approach wwazcover 3D shape from a
single image taken with a fully calibrated camera. Manyatéwhs [180] have been pro-
posed since, but shape-from-shading algorithms stilesdfom a number of limitations.
Most of them depend on very restrictive assumptions thait tineir applicability. Fur-
thermore shape-from-shading is known to suffer from the Bakef Ambiguity [13]. The
same appearance can be obtained by applying a specific d¢lassmsformations to the
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shape and to the albedo of the surface. This is also true iprisence of several distant
light sources or with an unknown viewpoint [179].

Various generalizations of the original Lambertian modetavproposed [120, 129] to
remove some of the most severe limitations. The use of &fteations, initially ignored,
was introduced [118, 50]. They were shown to help solvingtlier Bas-Relief Ambigu-
ity [31]. Additionally, the effects of shadows [89] and sp&arities [121] on the accuracy
of the reconstruction were studied. Nowadays, the Landrerissumptions tend to be
replaced by more accurate models [3].

Shading information has been used in conjunction with ofiterrces of information,
such as stereo [17, 98]. This was successfully applied fwogeaphic modeling purposes
in conjunction with a 3D mesh representation of the terraifese [52]. Similarly, lighting
information was combined with deformable models to reqoicstfaces [133], and to re-
cover the shape of non-rigid surfaces in 2D [173] as well &0rj172]. In this last work,
shading was shown to help reducing the ambiguities arisimm felying on texture only.
Recently, shadows were used to improve human body poseeamcassuming sufficiently
strong lighting such that they could act as a second imagattakm a different camera [6].

Photometric stereo [174] also relies on lighting inforraatibut differs from shape-from-
shading by using several images taken under differentitightonditions. It is far more
reliable and yields outstanding reconstructions whenlavia, but requires an elaborate
setup. As for shading, the influence of specularities werdist in photometric stereo [46].
Examples-based approaches were applied to recover the ahdpnaterial type of objects
from images [63]. Recently, it was successfuly applied @riotion capture of clothes
undergoing complex deformations through the use of colbgits [62].

2.4.3 Shape from Silhouettes

Silhouettes and contours of an object also provide exdeflgns as to its shape. In the
case of deformable surfaces, these silhouettes can eghud surface boundaries that
physically exist or occluding contours that depend on thevpbint. The standard ap-

proach is to detect these silhouettes in images and minithealistance between them
and the projected object contours. Extraction of the castean be done by simple edge
detection [28], or by more sophisticated methods such asvé&ontours [84] or space

carving [91].

In the context of non-rigid surfaces, occluding contourgemgsed to reconstruct 3D
objects from images [162, 32, 165, 22, 148]. They were useektsnal image forces
to deform physics-based models [150]. They were also cosabivith texure for multiple
view reconstruction [41]. In our own work [76, 77], we usedmplicit surface formulation
to detect occluding contours and use them to deform varibjects such as an upper body,
or a piece of paper in conjunction with inextensibility amdanthness constraints. Finally,
silhouettes have also proved very effective for human boatyking [142, 2].
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2.5 Summary

Many approaches have already been proposed to recoverape shdeformable surfaces
from video. However, each of these approaches has its wesdsie For physics-based
models, material parameters must be known in advance, andse non-linear FEM mod-
els have proved too complex to be of practical use in our fiékisting learned models
rely on training data, but without proposing convenient svaf generating them, and al-
ways are global models only applicable for a specific objeictally, methods interpolating
between control points provide no guarantee of modelingrilne object’s behavior, and
constraints for developable surfaces are not generalllycaybe.

Nonetheless, the existing approaches also have strengtimsvihich we can inspire
our work. Modeling local relations between neighboringtiees, as in the physics-based
approach, allows for re-usability of the models. Reprasgrdeformations as linear com-
binations of modes, as in modal analysis, yields effective-dimensional models, which,
when learned from data, do not even need material paramefenglly, inextensibility
constraints are very generally applicable, and, while nfficsent on their own, effectively
help disambiguating the reconstruction problem.

In this thesis, we therefore propose to take advantage ofttieagths of the existing
methods, while overcoming their weaknesses. For this [sa;pee will study several solu-
tions to the reconstruction problem that range from veryegermotion models to learned
deformation models that more accurately correspond tocfspmaterial. Furthermore, to
remain generic, we will only rely on texture and edges. Thilbprevent us from having to
make strong assumptions, as required by shape-from-ghaafito rely on multiple views
which may not always be available. Nonetheless, when sdommation is at hand, noth-
ing will prevent it to be introduced in our algorithms, thuglging an even more robust
system.
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3 The Monocular 3D Reconstruction
Problem

In this work, our overriding goal is to overcome the ambiigsitinherent to monocular 3D
deformable surface reconstruction and to incorporatdisoki into robust algorithms. The
first key step is therefore to formalize these ambiguitiesthls end, we consider the case
where the image information only comes from correspondeheéveen a reference image
for which we know the shape and the input image. This lets it \down the basic equa-
tions of shape recovery and exhibit its underlying ambigsit Since, in practice, relying
on correspondences only may not be sufficient, we presemnhative image measurements
that have been used in the experiments of this thesis. Nelest) these new measurements
only avoid having additional ambiguities, and still leakie tnitial ones unsolved.

3.1 3D-to-2D Correspondences

The primary source of image information used in this workeigure. More specifically,
most of our methods rely on correspondences between ameéeimage and an input im-
age as depicted in Fig. 3.1. Several reasons motivateditbisec First, establishing corre-
spondences between two images does not involve strong piens) apart from requiring
the surface to be textured. This is in contrast with otheregghes such as shape-from-
shading. Second, given a reference image, it can be donedraoronocular input and
thus suits our purpose to remain as generic as possiblellyioarrespondences can be
obtained from individual images, as opposed to a video sexpjevhich lets us go beyond
developping tracking algorithms.

Detecting feature points in images has been of interest fwhite in the Computer
Vision community. In this work, we rely either on the SIFT kejynts detector [103] or
on Harris’s corners detector [59]. Once feature points lmen detected in two images,
they need to be matched to produce correspondences. WhenSisiT, this can be done
by a simple dot-product between specific vector repredentabf the feature points. For
Harris's corners, methods based on randomized-trees havedefficient [99]. From a
large set of views obtained by applying random affine tramsédions to a reference image,
a tree that models the relationships between neighboripgdkets is built. Each leaf-node
of the tree then corresponds to a specific keypoint, and nmgtctan done by dropping the
feature points of a new image down the tree.

In both cases, we match the current image of interest withafegence image, in which
the 3D shape and the camera calibration are known, as depicteig. 3.2. Under such
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Figure 3.1: Correspondences between a reference imageamole image. The point-to-
point correspondences are shown as red lines going fromr¢henfiage to the
second one.

assumptions, we can compute the 3D locations of the featunéspon the reference image,
by intersecting the ray between the camera center and themafe measurement with the
facets of the triangulated mesh. This lets us represent 081 ip terms of its barycentric

coordinates with respect to the vertices of the facet inteexl by the ray. This yields 3D-
to-2D correspondences for the current image, where the 3iquus of the feature points

are defined with respect to the unknown 3D positions of thehnwvestices. To recover

the 3D shape, the idea is then to find the position of the medltes that minimizes the

distance between the detected 2D features and the 3D pog#sdns projected into the
image.

3.2 Single-Image Ambiguities

In this section, we show that recovering the 3D shape of arigidi-surface from 3D-to-2D
correspondences amounts to solving an ill-conditione€alirsystem. We then show that
the degeneracies, or near-degeneracies, of this systeespond to depth ambiguities that
can be explained in terms of a piecewise affine projectioneho8ince we use a single
camera and assume its internal parameters to be known, wesexall world coordinates
in the camera referential for simplicity and without losggeherality.

3.2.1 Ambiguities under Perspective Projection

We now show how computing the 3D mesh vertex coordinates@ieto-2D correspon-
dences can be formulated as the solution of a linear systehdignuss its degeneracies.
We start with a mesh containing a single triangle and extemdesult to a complete one.
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Figure 3.2: Obtaining image correspondences. A featunet pdetected in the reference
image, shown in the middle. Knowing the reference 3D shapheomesh, on
the left, and the camera projection matrix, we can retribeddcet to which the
feature point belongs, and define it in terms of its baryéertordinates. The
feature point can then be matched against points detectdw imput image,
shown on the right. This yields 3D-to-2D correspondenceseims of the
unknown 3D mesh vertices in the input image.

3.2.1.1 Projection of a 3D Surface Point

Let q; be a 3D point on the surface of interest. We write its persgeptrojection as

Uj
ki | v :A[R\t][‘f], (3.1)
1

whereA is the internal parameters matrix, akda scalar accounting for depth. Since we
assume that the camera and world referential are aligned;aimera rotation matriR is
the 3x 3 identity matrix,Is3, and the translation vectaris zero.

If q; lies on the facet of a triangulated mesh, it can be expressadnseighted sum of
the facet vertices. Eq. 3.1 becomes

Uj
k; Vi = A(CLZ‘V1 + b;vo + CZ'V3) , (32)
1

wherev; ;<;<3 are the vectors of 3D vertices coordinates &ndb;, c;) the barycentric
coordinates ofy;.

3.2.1.2 Reconstructing a Single Facet

Let us assume that we are given a list’éf such 3D-to-2D correspondences for points
lying inside one single facet. The coordinates of its verie; 1<;<3 can be computed
by solving the following equation where thig are treated as auxiliary variables to be
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recovered as well

Vi
V2
V3

M; k| 0, (3.3)

with

~ w -
alA b1A C1A — U1 0

Me

U;
a; A b A A 0 e = [ V4 } 0

Uy
aNCfA bNZA CNZA 0 —['L)Néc]
1 |

For N/ > 4, if the columns ofM¢ had become linearly independent, the system would
then have had a unique solution. However, this is not whapéiag

To prove thatM¢ is rank-deficient, we show that its last column can always baem
as a linear combination of the others as follows. From Equ&2an write

Up s
UN.f :aNgA>\1+bN!A/\2+CNgA>\3 (3.4)
1

where)\; = —vj/ka forl <j<3. Forall <i< ch, we have

i b; i
a; AN + biAdg + ci ANy = —k“ Avl—k—AVQ_kC Avs
! I !
_ ki Z’
ek

This implies that the last column of the mattif of Eq. 3.3 is indeed a linear combination
of the previous ones with coefficien(sT,)\T,)\T,—kl/k:ch,..., ~kys_/kys). Inthe
general case, none of these coefficients is zero. FurthernbecauseA has full rank
and the barycentric coordinates are independent in genbeafirst 9 columns oM; are
linearly independent. Thus, given the particular struetfrthe right half ofMg, trying to
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write any column as a linear combination of the others butdkeone would yield wrong
values on the last three rows, which could only be correcyaasing the last column. This
implies that, in generalVI¢ has full rank minus 1.

3.2.1.3 Reconstructing the Whole Mesh

If we now consider a mesh made &f, > 3 vertices with a total ofV,. correspondences
well-spread over the whole mesh, Eq. 3.3 becomes

Vi
Vv
Mu | | =0, (3.5)
k1
L N,
with
- w -
alA blA C1A 0 — V1 0
1
Uj
M. —| O bA A A O 0 —| v 0
m 1
up
alA 0 CzA 0 elA 0 — vy 0
1

Coefficients similar to those of Eq. 3.4 can be derived to asepuy._, vy, ,1]” as a
linear combination of the non-zero columns of the last romc& these coefficients only
depend orky,, on the mesh vertices and on the projection matrix, it caityelaes checked
that, as in the single triangle case, the last column of th&ixnean be expressed as a
linear combination of the others, which then are linearlyeipendent. Thus matrix,,
of EQ. 3.5 has still full rank minus 1. This reflects the watiekvn scale ambiguity in
monocular vision.

Representing the problem as in Eq. 3.5 was convenient tasiidbe rank of the matrix.
However, in practice, we want to recover the vertex cootdmaut are not interested in
having thek; as unknowns. We therefore eliminate them by rewriting E5,a3.

Vi

M| .. | =0, (3.6)
VNU
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with
[ a1 Ty 61Ty Ty 0

0 bjTj CjTj djTj 0 : and Ti _ A2><3 - [ ’U,Z'Ag :| :
’UZ'A3

a; T1 0 ClTl 0 elTl

whereA 3 represents the last row of matix and A, 3 its first two rows. By construction,
M has the same rank as matiM,,, therefore the following results are valid for both
representations of the problem.

3.2.1.4 Effective Rank

In the previous paragraph, we showed tNg{, has at most full rank minus one. However,
this does not tell the whole story: In general, it is ill-cdfmhed and many of its singular
values are small enough so that, in practice, it should laéeideas a matrix of even lower
rank. To illustrate this point, we projected randomly saedpboints on the facets of the
synthetic 88-vertices mesh of Fig. 3.3 (a) using a known cammdel. We then computed
the singular values avI, which we plot in Fig. 3.3 (b).

In Fig. 3.4, we show the effect of adding two of the correspogdingular vectors—
one associated to the zero singular value and the other t@th @ne—to the mesh in its
reference position.

Even though only one of these values is exactly zero, we carthsd they drop down
drastically after the fir2V,, = 176. This shows that, even though the matrix may have full
rank minus 1, the solution of the linear system would be vengsgive to noise. Therefore,
in a real situation, we would actually be closer to haviig ambiguities, which can be
understood in terms of the piecewise affine model we intrechetow.

3.2.2 Ambiguities under Piecewise Affine Projection

A piecewise affine camera model is one that involves an affarestorm for each facet of
the mesh. This approximation is warranted if the facets er@lenough to neglect depth
variations across them.

3.2.2.1 Projection of a 3D Surface Point

As in the perspective case, lgf be a 3D point whose coordinates are again expressed in
the camera referential. We write its projection to a 2D implgme as

(%

k{ui]:P’qi,P’:A’[ngg\O] (3.7)
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Figure 3.3: Effective rank of matri¥1. (a) 88-vertices mesh seen from the same viewpoint
as the one used for reconstruction. (b) Singular valugsidbr the mesh of
(a). Note how the values drop down after #€, = 176" one, as predicted by
the affine model of Section 3.2.2. The small graph on the ightmagnified
version of the part of the graph containing the small singutédues. The last
one is zero up to the precision of the matlab routine usedngpote it and the
others are not very much larger.

wherek is a depth factor associated to the affine camerahid a2 x 2 matrix repre-
senting the internal parameters. As in Section 3.2.1, waysue ambiguities for a mesh
containing first a single triangle and then many.

3.2.2.2 Reconstructing a Single Facet

We can again write a linear system for a single triangle ¢oimg N/ 3D-to-2D corre-
spondences, with 3D points given by their barycentric civartes

awP’ P P | - [ “ ]
U1
Vi
W
a; P’ b;P’ c;P’ — |: UZ :| zz =0. (3.8)
3
k
uNg
i (IchP/ chfP/ CchP/ — [ UNJ |

Since we only have one facet, we also only have one projeatiatnix, therefore a single
k corresponding to the average depth of the facet is necessahall[u;, fuz-]T can be put
in the same column.

SinceP’ is of size2 x 3, it has at most rank 2. Moreover, we can show that the last
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Figure 3.4: Visualizing vectors associated to small siaguélues. (a) Reference mesh and
mesh to which one the vectors has been added seen from tirabvigwpoint,
in which they are almost indistinguishable. (b) The same tmashes seen
from a different viewpoint. (c) The reference mesh modifigdablding the
vector associated to the zero singular value. Note thatethdting deformation
corresponds to a global scaling.

N7

column of the global matrix also is a linear combination @& tvo first columns oP’

U; 1
[ v: } = P,E(aivl +biva + ¢;v3)

1
= [ A’ ‘ 0 ] E(aivl + bjvy + CiV3)

_ Qi | V11 bi /| V21 Cioor| V3
_ kA{VLZ]WA[VZQ]WA{V&J. (3.9)
The coefficients of Eq. 3.9 are independent of the correspurelconsidered and are there-
fore valid for any rowi of the matrix. This finally means that, wheW‘ > 3, the rank of
the matrix of Eq. 3.8 is always 6.

3.2.2.3 Reconstructing the Whole Mesh

As discussed above, when there are several triangles, tisngiecewise affine model
amounts to introducing a projection matrix per facet. Hogvegince in reality we only
have one camera, its internal parameters, rotation matniet,center are bound to be the
same for each triangle. This only lets us with a variable liégattor k; for each facet
among theV; facets of the mesh. We can then write the system

Vi

M, "éj’v — 0, (3.10)

kn, |
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with
P’ bP P 0 —{ ut ] 0
V1
, 0 bP P 4P 0 .. 0 - { i ] 0
M., = Jj J J v;
alP’ 0 ClPl 0 61P/ 0 — |: Zl :| 0
1

The left half of M/, which is of size2N, x 3N,, N, being the total number of corre-
spondences, has at most ratik, becauséP’ has rank 2. Similarly, its right half, which is
of size2N. x Ny, has at most rank/; — 1, because we can again show that its last column
is a linear combination of the previous ones in a similar nearas was done for the per-
spective case, with the coefficients of Eq. 3.9. This meaasfth a full meshM., has at
most rank2 N, + N; — 1. This leaves us witlV, 4- 1 ambiguities. This again seems natural
due first to the same scale ambiguity as in the perspectivee aad second to the fact that
now each vertex is free to move along the line of sight. Thi:ber corresponds to the
number observed in the perspective case of Section 3.2X4cépt that, in the affine case,
a global scale is different from all vertices sliding alohg fine of sight, which produces
an extra zero singular value.

3.3 Image Information in Practice

In the previous section, we formalized the ambiguities ohowular shape recovery using
3D-to-2D correspondences. We showed that, even thoughr pedepective projection we
only have a single true ambiguity, we are close to having #mesdepth ambiguities as
with a piecewise affine camera model, that is one ambiguitynesh vertex. Furthermore,
these ambiguities appear when we have dense corresposdemcdhe whole mesh. How-
ever, this rarely is the case in practice. Here, we presadtipal ways of exploiting the

information available from the image. Throughout this wavie will use two complemen-

tary sources of image information: Texture and silhouett®se constrains the interior
of the surface while the others give us information aboubdtsndaries and its occluding
contours. In particular, using border information helpastcining the boundary vertices
of the mesh, which belong to fewer facets than those in thellmidnd are therefore less
constrained by texture.

3.3.1 Texture

There are two different ways of exploiting texture informat Using correspondences
detected as interest points, as explained at the beginhthgs@hapter, or through template
matching that uses the intensity of the whole image. We figstdbe the latter, and then
show how it can also serve to obtain dense correspondeneeshewhole surface.
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3 The Monocular 3D Reconstruction Problem

3.3.1.1 Template Matching

To exploit texture information as comprehensively as fmesione may also rely on im-
age intensity rather than interest points. This can be darmmaigh template matching by
treating each mesh facet as an independent template, sgrtplbarycentric coordinates,
and observing the underlying image pixels intensities. Vdlees of the samples in the
current image therefore depend on the 3D positions of thdnwedices. Shape recovery
is then done by maximizing the normalized cross-correfatietween the templates in the
reference image and in the current image, which can be wiite

Ny
ETM(Y) = Z’Y(P(yroﬁja:[rof)ap(yaj? I)) ) (311)
j=1

whereN is the number of facets, arfé(y, j,I) is the projection of thg!"facet of surface
y in imagel. ~ denotes the normalized cross-correlation function, wisaxpressed as

ZiESamples(F(wh yi) - F) (T(ulﬁ Ui) - T)
(ZiESamples(F(xiy yl) - F)2 ziESamples(T(ui7 Ui) - T)2)1/2 ’

wherel andF are the reference template and the projected input facetfimh we sample
the barycentric coordinates, affitand F' indicate their mean intensity values.

It may seem that template matching would better constraipeshecovery than corre-
spondences, and therefore would give fewer ambiguitiesveier, it only is equivalent to
having extremely dense correspondences, that is one fhipkesl covered by the surface.
This is very close to the case we studied in the previousseactihere we densely sampled
the barycentric coordinates of a synthetic mesh. This mspihat depths would still be
ill-constrained, which leaves us with the same number ofiguities

The advantage of template matching is that it can be used withrpoorly textured
surfaces. However, it typically suffers from local mininsirice different locations in the
image can look alike. Therefore it can only be applied fockilag, where the initial guess
is close to the true solution. This is not the case when usomgespondences, since a
distance function is much easier to optimize.

V(T F) = (3.12)

3.3.1.2 Obtaining Dense Correspondences

To reconstruct surfaces from individual images, templagcining is not practical and
correspondences should therefore be favored. Nonethekesgentioned above, the surface
deformations are often such that only few matches betweseretference configuration and
the current image can be established using the techniqesemied at the beginning of
this chapter. Since these might not be sufficient to fullyower the 3D shape, we take
advantage of the fact that non-rigid 2D registration is mbetter constrained than full
3D shape recovery to obtain dense correspondences. Gigeritideformations of the
surface in the image plane, we sample the barycentric auateeli of the facets of the 3D
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3.3 Image Information in Practice

reference mesh. Starting from the same barycentric coatehln but this time in the 2D
results, we look for the square image patch most similar ¢éoctirresponding one in the
reference image by computing their normalized cross-tairoe. Assuming a correct 2D
registration, we obtain matches over the whole surfacé ctirabe slightly misplaced, but
not completely wrong. We now explain how such a 2D regisiratian be obtained.

3.3.1.3 2D Registration

2D registration has also been of interest in the Computeibiisommunity. Different
types of shape constraints have been proposed for thisgeirpoch as deformations based
on Radial Basis Functions [11], or reasoning on self-odchss[53]. Simple smoothness
constraints based on the neighborhood of mesh verticesdiswdoeen used for non-rigid
surface detection [127, 182]. In the presence of a videoesampy the most effective way
of obtaining an accurate 2D registration is by tracking thdase in 2D using template
matching in a similar manner as for the 3D case. Nonethelessyill show that this can
be done in closed-form when no video sequence is available.

Most ideas that were introduced in the initial linear foratidn of 3D reconstruction are
still valid for the 2D case. The surface is still represerdsd triangulated mesh, though
now each of its vertices only has 2 coordinates. We assum&thare given an initial set
of sparse correspondences that relate points on the mestagie ilocations, which can be
obtained as described in Section 3.1. Similarly as in the & ca point on the mesh can
be defined by its barycentric coordinates with respect tdabet it belongs to.

Within this framework, it can easily be checked that we camiragyrite the registration
problem as the solution of a linear system of the form

Mpu=0, (3.13)

whereM,, is the2N, x 2N, matrix equivalent taVI in Eq. 3.6, andu is the vector of
concatenated 2D mesh coordinates, ;).

Although in Section 3.2 we claimed that only depths were guonnis, and therefore 2D
registration could be done by directly solving this systeiis is only true with feature
points covering the whole surface. In many real applicatianly few matches can be
obtained, and therefore the system becomes ill-condtiori® overcome this issue, we
propose to introduce a similar regularization as in [1274séming that the mesh topology
is regular, as is the case of hexagonal meshes, we can mettaibending of a triplet of
neighboring vertice$v;_1, v;, v;+1) that form a line in the rest configuration by minimiz-
ing the deformation energy

Ei= (20 —xi1 — 2i01)* 4+ 2y — yic1 — yiz1)? . (3.14)

Since we solve a linear system in the least-squares seese, élquations can be integrated
into our framework by separating their andy-contributions. We can therefore write our
problem as
MP
[ 0B ] u=20, (3.15)
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3 The Monocular 3D Reconstruction Problem

Texture
boundary

Figure 3.5: Using silhouettes information. Texture edgeswn in red, are detected in the
current image. The contour of the current deformed meshaggied onto
the image, here depicted in blue. We then look in the diraatibthe normal
of this projected contour for a detected image edge. Finadyminimize the
distance between the image and projected contours. Ndtedge detection
yields wrong edges. Our algorithms must therefore be rdousich erroneous
information.

whereB is the2 N, x 2N, matrix encoding the regularization equations for Meriplets
of the mesh, and whose coefficients have valiesr —1. w; is the weight that sets the
relative influence of the correspondence equations andefpgarization equations. In
practice, solving this system proved sufficient to obtaimady2D registration that allowed
us to compute the dense 3D-to-2D correspondences reqoir@dfreconstruction.

One could think that such a regularization could also be dse®D reconstruction.
However, whereas it is true that deformationsrinand y- directions should be equally
smooth, this is not the case for thalirection where we expect to see larger deformations.
One could then try to overcome this issue by less penaliziadpending in this direction.
However, this would yield constraints that are sensitivinéoglobal rotation of the surface.

3.3.2 Silhouettes

In several cases, we use silhouette information in conjometith texture. This is crucial
near the boundary of the mesh. The vertices in the centereafnssh are relatively well
constrained by texture, since the texture of their six neigimg facets provides informa-
tion about their position. By contrast, the boundary vesiare only influenced by at most
three facets, and can therefore often move more freely.o&lttes can also help in the
presence of occluding contours, when a part of the textumdtis/isible anymore. Such
contours provide information about the surface normalste@mg an occluding contour
can be done by sophisticated implicit surface represemn{i76]. In this work, we use a
much simpler approach based on OpenGL rendering of thesfatising a z-buffer tech-
nique, we can find which facets are hidden by other ones, amldbtect the occuding
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contours.

Boundaries of the mesh and occluding contours are then ssddpicted by Fig. 3.5.
We detect edges in the current image by applying a simple YCadge detector [28], or a
more sophisticated technique [138]. We then project theiBidgettes of our mesh in the
image, and sample them. For each such sample, we look inréntidn of its 2D normal
for detected image edge points. The shape is finally recdugreninimizing the distance
between the sample and its, possibly multiple, candidateorhis assumes that the true
edge will be the strongest one in the image, and therefoleulilthe surface away from
wrong candidates.

Whereas texture and silhouettes are complementary, tte leiquire having a good
initial guess, since we detect edges around the currentigosiTrying to match edges
detected in the whole image would lead to local minima, anthésefore not practical.
For this reason, we only used silhouette information forkirag purposes. However, they
could be included in our other approaches to refine the solsifiound from texture only.

3.4 Conclusion

In this chapter, we have shown that recovering the 3D postaf the vertices of a trian-
gulated mesh from a single viewpoint using dense correspaas amounts to solving an
ill-constrained linear system. More specifically, we haveven that the ambiguities of the
problem correspond to estimating the depths of the meskcesrtFurthermore, we have
presented practical ways of exploiting image informatidtowever, even for an ideally
textured surface, correspondences and silhouettes wékrielly constrain the reconstruc-
tion. This leaves us with an ill-posed problem, that requgeme knowledga priori of the
plausible deformations of the surface of interest. In thmiog chapters, we will propose
several ways of introducing such missing knowledge.
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4 Motion Models

In this chapter, we introduce a first type of constraints tpriowe the conditioning of shape
recovery from a single viewpoint. We propose two differemtion models that will link
the deformations of a surface from one frame to the next. Tadia simple linear motion
model that directly addresses the ambiguities observdteipitevious chapter, whereas the
second gives a more plausible approximation to the realrdigs behavior of an object,
and lets us formulate shape recovery as a convex optimizptmblem.

Whereas deformation models that penalize unlikely shape®mly valid, in the best
case, for a particular material, motion models are much rgererally applicable. They
follow the idea that the motion of the mesh vertices from aaenk to the next cannot be
random, but depends on the previous shape. Such motion egeidte be described by a
particular dynamical model, that approximates the trueals®in more or less accurately.
These models predict the location of vertices in the curiiemhe based on the results in
the previous ones. The actual shape is then taken to be théhankeest matches such a
prediction, while also minimizing the reprojection error.

4.1 Linear Motion Model

A very simple approach is to introduce a minimal set of caists specifically designed
to overcome the ambiguities discussed in the previous ehaftince the linear systems
of Section 3.2 are rank-deficient, we need to introduce madit constraints to obtain
acceptable solutions. We show here that frame-to-framémogan be expressed as a set
of additional linear constraints that make our linear systevell-conditioned, first in the
affine case and then in the projective one. We therefore mmerfbe reconstruction over
several frames simultaneously and simply limit the rangeofion from one frame to the
next.

4.1.1 Constraining the Affine Reconstruction

Given a temporal sequence &F images and the corresponding matriMﬁf , 1<t <
Ny of Eq. 3.10, we can create a block diagonal matrix whose klac& thd\/I;nt and use
it to write a big linear system that the vertex coordinatealiframes must satisfy simul-
taneously. However, without temporal consistency comggathe ambiguities remain: As
discussed in Section 3.2.2, when the camera coordinatedigined with the world coor-
dinates, reconstruction is only possible up to an unknowtian@long thez-axis for each
vertex at each time step. To mitigate this problem, it isafare natural to link the value
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Figure 4.1: Singular values for a 5 frames sequence undeeaiffojection. Left: Without
temporal consistency constraints between frames, tharlisstem has many
zero singular values, which implies severe reconstruaimbiguities. Right:
Constraining the coordinates as discussed in Section 4.1.1 leaves the non zer
singular values unchanged but increases the value of tleesptinus removing
the ambiguities.

of vertices across time. The simplest way to do this is toewrit

vitl — vt =0 (4.1)

for all vertices and all times. These constraints and thogmsed by the 3D-to-2D corre-
spondences can then be imposed simultaneously by solvihgegpect t®’

MO =b’ | 4.2)
where
T T N T NT N N, 17
o = [ V" Lo R Ry VT W R ]
b/ _ [0 z{irst Z]{;:St 0 T’
"~ 1 -
M., 0
o M, o
o M, o0
M, = | . o wmM |
C 0
-C C 0
0 -C C 0
0 0 -C C

zlf st is thez-coordinate of vertexin the first frame, in which we assume that the shape is
known, andC is anN,, x 3NV,, matrix containing a single 1 in each row, which corresponds
to thez-coordinate of one vertex.
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4.1 Linear Motion Model

Figure 4.2: Under a perspective camera model, the démtha vertexv at timet¢ + 1
can be obtained by projecting vectarvi*! on the line-of-sight. This is done
through a dot-product between this vector and the nornthlilzesction of the
line-of-sight, which is a non-linear function of the verteasition.

The number of constraints we add in this manner is equal totingber NV, x N of
ambiguities that we derived in Section 3.2.2. Thereforefféicts the rank ofML, and
reduces the number of ambiguities to zero as shown in FigMoteover, these constraints
do not overlap with the ones imposed by the correspondemzksan then be considered
as minimal.

4.1.2 Constraining the Perspective Reconstruction

In Section 3.2.2, we showed that ambiguities under persgeptojection are similar to

those under piecewise affine projection. It is thereforemahto constrain the reconstruc-
tion in a similar way, that is by limiting the motion along tliee-of-sight. However, since

it is not parallel to the:-axis anymore, the constraints become more difficult toesgr

Let us consider one vertexof the mesh at timesandt + 1. We can try minimizing,

CVt

d: t t+1. t
v

viv e, withel =

(4.3)

the length of the projection on the line-of-sight of the weat! vi+!, wherec represents the
optical center of the camera, as depicted by Fig. 4.2. Tlieuwlify comes from the fact that
this constraint is non-linear and can therefore not be dchiced into our linear formulation.
We overcome this problem by replacing the exact formuladibéd by an upper bound that
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can be expressed linearly as follows:
d2 — (Vtvt+l i et)Z ,
(ex(ze™ —a0) +ef(yet —yo) +el(z —20)*

e
+ (el (yet —ye)® + (el(e — 20))?

C

< (eg(ae —ap))?
+(eh(re™ — @) + (el (ye™ —v)?
+(eh(ze! — @) + (el (a! — 20))
+ (e (e =) + (elle™ —20)?
< (3sin(07) (a — ap))?

+ (3sin (0 (yE — yl))?
+ (3= = 2h))? (4.4)

wherez,, y. andz, are the coordinates of a vertex in the camera referencensyately’**
andd;** are the maximum angles between the camera center and thte pmjecting on
the left/right, and upper/lower border of the image, retipely.

As in Section 4.1.1, these constraints and those imposetidbd@D-to-2D correspon-
dences can be imposed simultaneously. We rewrite Eq. 4.2 as

Ms©® =b , (4.5)
where
T
0 = |:V%T VJIVUT V{VIT V%{}T] )
b = [0 v{imtT V{\;:StT O]Ty

and Mg is built by replacing inM the matriceijmt of Eq. 3.10 by the matrixM of

Eqg. 3.6 and th&C matrices by3 N, x 3N, matrices, containing a single value in each row
that will constrain ther-, y-, or z-coordinate of one vertex. This value is set to one of the
three coefficients of Eq. 4.4, depending on which coordittaeaow corresponds to.

Fig. 4.3 shows how the singular values of the system aretatfelny introducing our
depth constraints. As in the affine case, we can see that thkesrsingular values have
increased and are now clearly different from zero. Sincewds our only goal in adding
constraints, this justifies our approach to liberalizatyrminimizing the upper bound of
of Eq. 4.4 instead of itself. Note that because we added more equations than ricth/st
necessary, the other singular values also increased, lyuweny slightly.

In practice the correspondences are never perfect anddaceioise and outliers. We
therefore solve Eq. 4.5 in the least-squares sense an®takée

©* = argmin (M0 — b)"W (M0 - b) , (4.6)
S}

whereW is a diagonal matrix of ones for the lines corresponding &ggation constraints
and a user-defined weight for those that correspond to thin demstraints. The weight
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Figure 4.3: Singular values for a 5 frames sequence undsp@eive projection. Left:
Without temporal consistency constraints between fratheslinear system is
ill-constrained. Right: Bounding the frame-to-frame d#g@ments along the
line of sight using the linear expression of Eq. 4.4 transfothe ill-conditioned
linear system into a well-conditioned one. The smaller giagvalues have
increased and are now clearly non-zero. Since our motiorefrinttoduces
more equations than strictly necessary, the other valieslao affected, but
only very slightly.

is designed to give comparable influence to both classesnsticonts and directly affects
how much the small singular values increase.

4.2 Experimental Results

In the previous sections, we developed theoretical basisefmnstructing the shape of
a deformable surface from 3D-to-2D correspondences in @ovigequence. We showed
that constraining the variations in depth from frame to feaim sufficient, in theory, to

formulate the reconstruction problem in terms of solvingedlwwonditioned linear system.

In this section, we show that this indeed produces validnsitactions in practice.

We present results obtained using both synthetic data admeges. In both cases,
the deformations of the meshes were retrieved by solvindinkar system of Eq. 4.5 for
whole sequences with known deformations in the first anddastes. This was done using
Matlab’s implementation of sparse matrices and resolutibinear systems with known
covariance matrix in the least square sense. In our expetanine covariance matrix sim-
ply is the weight matrix of Eg. 4.6, which weighs differenthe correspondences equations
and the constraints. Additionally, we assumed that theesbéthe surface in the last frame
of the sequence is also known, thus adding an extra set ofraoris similar to those link-
ing the first and second frames. This nonetheless is es$eatsthetic and is not a true
requirement of our approach.
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Figure 4.4: Reconstructing an 88-vertices mesh using ged@respondences that were
corrupted using zero-mean Gaussian noise with varianceMilizh is much
larger than what can be expected of automated matchingitpe® Top: The
original mesh and reconstructed one projected in the stiathiw used to
create the correspondences. As expected, the projectiatth mery closely.
Bottom: The two meshes seen from a different viewpoint.
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Figure 4.5: Distance between the original mesh and its stoaction for each one of the 9
deformed versions of the mesh of Fig. 4.4. We plot five cureegesponding to
vertex-to-surface distances obtained with variance ofiee@aussian noise on
the correspondences. The distances are expressed aspageseof the length

of the mesh largest side. Note that knowing the final shap&svmaving a
monotonically increasing error.

4.2.1 Synthetic Data

We deformed the 88-vertex mesh of Fig. 3.3(a) to produceférdiiit shapes and 9 corre-
sponding sets of 3D-to-2D correspondences using a pergpecbjection matrix. We then
added Gaussian noise with mean zero and variance rangimgadine to five to the image
locations of these correspondences. Fig. 4.4 depicts tdomstruction results overlaid on
the original mesh with noise variance five. The differenceshard to see, even though this
represents far lower precision than what can be expectedaf fpature point matching
algorithms.

To quantify the differences between the meshes, we plotittantes between the two
meshes in Fig. 4.5 for each one of 9 different shapes, giveaeasing noise variance. The
distances are expressed as percentages of the mesh ladge$Vish a noise variance one,
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Figure 4.6: Reconstructing a deforming sheet of a paper &@%0-frames sequence. Top:
The reconstructed mesh is reprojected into the originalggesaand closely
matches the outline of the paper. Bottom: The same meshsweiitfe side. In
spite of local inaccuracies in depth, the overall shaperiecq which indicates
that the ambiguities have been successfully resolved.
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Figure 4.7: Reconstruction results for a plastic sheetclwis much more flexible than the
sheet of paper of Fig. 4.6. In spite of this, the overall shiapEgain correctly
recovered up to small errors due to erroneous correspoesenc

they are of the order of 0.25% for vertex-to-surface distamehich works out to 0.025cm
for a 10cmx 7cm mesh. This is very small given that we incorporate vetlela priori
knowledge into our reconstruction algorithm.

4.2.2 Real Data

We now present results on two real monocular video sequerstpsred with an ordinary
digital camera. The longest one is 250 frames long, whiclwshbat, even though our
approach involves solving a very large system, it is spamsegh to use a standard Matlab
routine. In both cases, we automatically establish 3DBce@rrespondences between the
first frame, where the 3D pose is assumed to be known, andhbesdby first tracking the
surface in 2D and then computing a dense matching as exglair@ection 3.3.1.2. This
results in noisy correspondences with a number of mismatahplaces where there is not
enough texture to guarantee reliable matches.

Fig. 4.6 depicts our reconstruction results for a relayivatlastic piece of paper in a 250-
frames sequence and Fig. 4.7 those for a much more flexibé shglastic in a 147-frames
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sequence. In both cases, the global shape is correct, wbidhras that the ambiguities
have been correctly handled. However, because we imposmootisness constraint of
any kind, there are also local errors that are caused by thmatches present in our input
data. If the goal were to derive a perfect shape from a set isf/ramrrespondences, we
could mitigate the effect of erroneous matches by intrauyi@ robust estimator into the
least-squares minimization of Eq. 4.6.

Since our technique does not introduce any prior on the palyproperties of the target
surface, we were able to reconstruct both the paper andgleithout changing anything
to our system.

4.3 Convex Optimization

Even though the constraints introduced in the previousaeeixactly address the ambi-
guities of our problem, they almost never accurately mokelttue dynamical behavior
of a non-rigid surface. Indeed, these constraints enfdreertotion along the line of sight
to be zero, which is only true when the surface does not defoknother drawback of
the previous approach is that the linear formulation of tbeespondence problem does
not exactly minimize the reprojection error. It is equivdléo applying a Direct Linear
Transformation (DLT) [60], since the reprojection of a 30mamn the image plane would
involve a division by the depth factdf, thus yielding non-linear terms, as can be checked
in Eq. 3.1. Instead of the distance in the image plane betweeprojected 3D point and
its corresponding measurement, our linear formulatiorciiless an error at some depth,
which varies from one correspondence to another and madéwsittiluence the global error
differently. The true reprojection error is a non-lineandtion of the 3D point coordinates,
and thus cannot fit our linear formulation.

It was recently shown that several computer vision problsath as triangulation, cam-
era resectioning and homography estimation can be foreuilas convex optimization
problems [82, 85]. Such formulations involve solving animiation problem for which
the objective function and the constraints are convex. dripgogramming (LP), Second
Order Cone Programming (SOCP) and Semi-Definite Programg8DP) are examples
of classes of convex optimization problems. Some QuadpPatigramming (QP) problems
and Quadratically Constrained Quadratic Programming (Jigoblems can also be writ-
ten as convex optimization problems. Finally, quasi-carwgtimization is a relaxation of
convex optimization where the function is not strictly cerybut has a single minimum
over a convex domain. More details on convex optimizatiamntwafound in [21].

In the various computer vision applications described & 5], the correspondence
problem is formulated as a Second Order Cone Programmisfitg problem. Thisis a
particular type of convex optimization problems where naoction is minimized. Instead,
one looks for a vectoK that satisfies thex constraints

[A;X + byl < (¢iTX 4+ d;) , fori=1,...m. (4.7)

Such problems can be solved very effectively using avalphtckages such as SeDuMi [147].
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4.4 SOCP for Deformable Surfaces

Figure 4.8: A cone of radius is defined for each correspondence. It is centered in the
camera, and its axis goes through the image measurementoi3 pn the
surface must reproject inside their corresponding condeimiage plane.

In the particular context of reprojection error, it has bedrown that minimizing the
L..—norm could be done by iteratively solving such an SOCP feasibpitoblem. In
other words, given a set of correspondences, one can finehhigogs that minimizes the
largest reprojection error. The drawback of this formualatis its sensitivity to outliers,
since a single mismatch would yield a high maximum reprajecerror, thus allowing
large variations of the solution. Fortunately, a solutiomsvproposed in [141]. However,
such a quasi-convex formulation has only been demonstfatetgid objects. Here, we
extend this approach to deformable 3D surfaces.

4.4 SOCP for Deformable Surfaces

In this section, we show that recovering the 3D shape of anhefble surface from a single
video sequence can be formulated as an SOCP problem, atddday Eq. 4.7. Asin our
earlier linear formulation, we obtain dense 3D-to-2D cgpandences using the technique
described in Section 3.3.1.2, and assume that the camgeatoro matrixP is known and
remains constant. This does not mean that the camera camawet but that we can only
recover a relative motion of the surface with respect to it.

4.4.1 Correspondences as SOCP Constraints

As in the linear case, we can consider a 3D pgintlefined by its barycentric coordinates
(a;, bi, ¢;), and its corresponding image measuren{&nmi]T. The projection oth; =
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“;”’ ./.
(a) (b)
Figure 4.9: Using a mesh imposes constraints on the recmtisin. (a) Without a mesh,
nothing would prevent the 3D points to perfectly match thairresponding
image locations. However, this would yield a completely miegless shape.

(b) The barycentric coordinates link several 3D points tioge and thus impose
a natural coherence between them.

laf I]T given the camera projection matiXis

] Pih;

Uj _ Psh;

vi | Psoh; ’
4 Psh;

whereP;, refers to thek! row of the projection matrix. We define the reprojection erro
in the image plane as

|(P1 — u;P3)h;, (P2 — v;P3)h;||
Psh; '

(4.8)

P:h;  Poh
Psh, " Psh,

Note that this, as opposed to the linear formulation, is the teprojection error, which is
a non-linear function of the mesh vertices.

Ideally, we would want the reprojection error to be zero fibreg , 1 < i < N, for
which we have found a corresponding image p¢intv;). In practice, due to noise, this is
never possible. Therefore, as in [82], we introduce an emidit variabley and write our
problem as

min~y subject toy > 0 and

vy
|(P1 — u;P3)h;, (Py — v;P3)h;|| < ~vPsh, (4.9)
fori=1,..., N, .

wherey is the concatenation of the three coordinates of all the medites. Intuitively,
~ represents the radius on the image plane of the cone ceritetieel camera and whose
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(@) (b)

Figure 4.10: The SOCP formulation of the correspondencél@nas is very sensitive to
outliers, since it minimizes thé..-norm. (a) With a single outlier, the mini-
mum cone radius remains very large, and thus allows the correct matches to
reproject far from their corresponding image location$.dhce the outlier is
removed;y can take a much smaller value, which yields a much bettereshap

axis goes through the image measurement, as depicted id.BigA singlew is used for
all the correspondences, thus enforcing all the reprajedirors to be less than

For a fixed value ofy, because thg;, and therefore also tHe; are linear combinations
of the vertex coordinates, Eq. 4.9 defines an SOCP feagilpiftblem as described by
Eqg. 4.7. We can then find the minimalusing a bisection algorithm at each step of which
we solve the corresponding SOCP feasibility problem. Thetdg reprojection errors that
are all smaller than the minimumfound, and therefore minimizes thdir,-norm.

Note that the fact that the 3D points are on the surface of &mplays a critical role, as
illustrated by Fig. 4.9. Without this constraint, they abnhove independently from each
other. Since nothing would then prevent them to match tHeipgbjection within a zero-
radius cone, this would result in a perfect but meaninglekgien. However, forcing them
to remain on the surface of the deformable mesh avoids tbatgm, since the barycentric
coordinates that define the 3D points impose a hatural cobergetween them.

A common criticism of SOCP formulations of the corresporadeproblem is that they
are very sensitive to outliers. Indeed, the minimatill take the value of the worst corre-
spondence, therefore allowing the reprojection errorsoofect matches to be worse than
they should, as shown in Fig. 4.10. However, Sim et al. [14bppsed a method to re-
move the outliers and get the correct pose of a rigid objdoguen SOCP approach. They
showed that, at the end of the bisection algorithm, the setaithes whose reprojection
error equals the minimaj contains outliers. Therefore, removing these points and re
optimizing in the same manner as before yields a better daseur implementation, we
apply the same idea and iterate the bisection algorithm thidlcorrespondences having a
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Figure 4.11: Reconstructing a piece of paper using only tdreespondences constraints
of Section 4.4.1 but not the deformation constraints ofiBrct.4.2. (a) The
reprojection of the mesh is correct. (b) However, the 3D stagpseen from a
side view is completely wrong because the depth ambiguitiesiot properly
resolved.

reprojection error less than the previous minimauntil we reach a maximal reprojection
error of 2 pixels. In practice, this only implies running thisection algorithm at most 5
times.

4.4.2 Additional Constraints

In general, solving the minimization problem of Eq. 4.9 with additional constraints
yields a surface whose points project at the right place hatse overall shape may nev-
ertheless be wrong, as shown in Fig. 4.11. As shown in Ch&ptdre global scale of
the surface can vary without affecting the reprojectiomem@nd, more damagingly, given
noisy data, the depth of the vertices is hard to preciseiynage because many different
shapes can yield very similar projections.

At the begining of this chapter, we introduced a linear motioodel that precisely re-
duced these ambiguities. However, the particular formetinstraints never truly models
the real dynamic behavior of a surface, since it assumegshaatepths of the vertices re-
main unchanged. Another approach to address this probldra isse of penalty functions.
They are usually designed either to prevent the mesh frodimigplsharply or to stop it from
expanding or shrinking. The former results in a loss of galitgras surfaces that crease
cannot be modeled properly, while the latter typically ines a non-convex term to force
the edges of the mesh to retain their original length.

Here, we introduce a weaker and more generic motion modefiteanto our SOCP
framework: As shown in Fig. 4.12, we avoid the orientatiortted edges to change irra-
tionally between two consecutive frames. In the meantimeconstraints also ensure that
an edge will not stretch or compress too much, thus partsallying the global scale ambi-
guity. Independently of the surface’s curvature, this isegally applicable when tracking
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Figure 4.12: We predict that the orientation of the edge betw; andv; at timet + 1

will be the same as at time We then constrain the distance between vertex

vt and its predictiorv;*! to be less than some specified value.

itin a 25 frames-per-second video sequence. Furtherntaranibe expressed as a convex
constraint as follows.

Let us assume that we know the shape of the mesh atttand let us consider an edge
linking verticesv} andv?, in this configuration. Assuming that the orientation of théfge

will be similar at timet + 1, if the positionvf.Jrl of vertex: at that time were known, we
could predict that of vertex to be close to

vt — vt
vitt =it 4.10
Yiomve T MV =il (440

whereL; ; is the original length of the edge. In practice we do not knc}Wl but we can
nevertheless require that

Wi = < ALy (4.11)

wherei'f;Jrl is defined in Eqg. 4.10. This constraint fits perfectly withimr SOCP frame-
work and we can add one for each edge to those of Eq. 4.9. Natehbse additional
constraints allow the mesh to expand or shrink, but only iwitin amount controlled by
the user-defined valuk. Given a mesh that satisfies the SOCP constraints, we hadrelle t
remaining scale ambiguity by rescaling it so that its areaaias the same as in the initial
position. As will be shown in Section 4.5, this results in ateyn that is now sufficiently
constrained to yield good reconstructions.

4.5 Experimental Results

In the previous section, we showed how convex optimizatim lwe applied to the prob-

lem of recovering the 3D shape of a surface from a single vemence. We presented
constraints that do not prevent the surface from folding@iiaby making assumptions on

the frame-to-frame deformations of the object. Our mettedigs on 3D-to-2D correspon-

dences and only requires the pose in the first frame of theeseguo be known.
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Figure 4.13: Reconstructing an 88-vertices mesh with sfodais using perfect correspon-
dences that were corrupted using zero-mean Gaussian rithisgwance two.
The shape of the reconstructed mesh (blue) correspondsciagly to the
original one (red). The meshes are seen from a differenppetise than the
one used to retrieve the shapes in order to highlight therdiffces.

We first validate our approach using synthetic data. We tlenardinary videos to
demonstrate that it produces good results for very diffiekerds of materials. In all our
experiments, both for synthetic and real data, the valug iof Eq. 4.11 was set to 0.1,
independently of the properties of the surface and of iterteditions.

4.5.1 Synthetic Data

As a first experiment, we synthetically deformed the 88iwest mesh shown in Fig. 4.13
by applying forces to randomly chosen vertices and stropeglyalizing stretching of its
edges. This produced a sequence of 50 different shapes,Wuoh we could obtain
correspondences by projecting 3D points defined by theilaaaty chosen barycentric
coordinates using a perspective projection matrix. We #ueled gaussian noise with mean
zero and variance one and two to their image locations. FI§ ghows the reconstruction
results for variance two from a different perspective. Thieibnces are very small even
though the surface folds very sharply in some frames. Thy&irerrors are in the depth
direction, as could be expected since motion in that dimacis hard to measure using
point correspondences. The deformation constraints did®ed.4.2 resolve most of the
resulting ambiguities but still leave some uncertainty.

To compare the performance of SOCP against another povegtinhization technique,
we reimplemented our tracking algorithm using CFSQP [93iiclv provides C functions
to solve constrained minimization problems using Seqak@uadratic Programming. We
reformulated our problem as the minimization of the sum afasgd reprojection errors
under the deformation constraints of Section 4.4.2. Therd@pof Fig. 4.14 shows the
median vertex-to-ground-truth-surface distances foseeariances 1 and 2 for each one
of the frames in the synthetic sequence. The distances dateafrder of 0.1cm for a
mesh of size 10cm7cm. Both the SOCP and CFSQP implementations produced lsough
comparable errors. However, even though SOCP was coded tlabMahereas CFSQP
was coded in C, SOCP was about 50 times faster than CFSQRKItdy 15 minutes
against 12 hours to process the whole sequence on the sai®&i3.BC. The second row
of Fig. 4.14 shows the median reprojection errors over theespondences. CFSQP yields
slightly higher accuracy, but the errors still remain undee pixel for SOCP. This can
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Figure 4.14: We compare the results of our SOCP formulatsmhid red) against those

obtained using CFSQP, a constrained non-linear leastagjuminimization
(dashed blue) for the 50 frames of the synthetic sequencegofFL3, for
noise variancer = 1 and 2. In the top row, we show the distance between
the original mesh and its reconstruction. Both methods gimglar results
but SOCP is about 50 times faster. In the second row, we gezenégdian re-
projection errors. For both methods, they are less than ie& pven though
CFSQP performs slightly better. Recall, however, that SQGEs not pre-
cisely minimize the reprojection errors, but enforces #y@ojections to lie in

a cone of a given radius.

be explained by the fact that SOCP does not minimize the jegion errors, but finds a
solution such that these errors are smaller than a givervalu

Since CFSQP can handle non-convex constraints, we repltheedeformation con-
straints of Section 4.4.2 by constraints that prevent thehnegiges from changing their
length. In theory, this should be more appropriate wherkingcinextensible surfaces. In
practice, as shown in Fig. 4.15, even though CFSQP perfoetisrin some frames, it
is less stable than SOCP. This is particularly visible talsahe end of the sequence. In
some frames, CFSQP failed to converge even after 2000idmesatwhich explains why it

is even slower than before and highlights the complexityhefgiroblem when non-convex
constraints are used.

In Fig. 4.16, we show the influence of the number of correspoods on the quality of

73



4 Motion Models

—+—S0CP (~15 min) —+—S0CP (~15 min)
—& - CFSQP (~24h.) —& - CFSQP (~24h.)
st st

T
A
Iy
i @
T 02 $t N T 02
- f 1 1 n
8 e ( 1% \ 8
g [ g
£ uis b g ois
b1 1 1 b1 P R
5 ook 5 Py NN
S ! k] / Wik
g o H g o @ LY e
4 1
d PR
0.05 0.05 !
sl
U S R o R U S }%6
5 10 15 20 25 3 35 40 45 S0 5 10 15 20 25 3 35 40 45 S0
frame # frame #

Figure 4.15: Introducing non-convex inextensibility cmamts, for noise variance = 1
and 2. Since CFSQP can handle such constraints, we intradeaeinto our
CFSQP formulation and, as in Fig. 4.14, compare the resultdife) against
those of SOCP (in red). In addition to being much slower, CE$@es un-
stable results and fails to converge in some frames afted R8ations.
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Figure 4.16: Influence of the number of correspondencesah et on the reconstruc-
tion for noise variance = 2. We decreased the number of correspondences
per facet from 10 to 1, and display the median (red line) angimmam (blue
crosses) values of the same errors as in Fig. 4.14. We sho@[ttdistance
errors in the left image, and the reprojection errors comgbdior all 10 cor-
respondences per facet in the right one. Note that the 3@»#utsurface
distance is little affected by the correspondences, wisdteareprojection er-
ror decreases in a more noticeable manner, which is to be®dgesince, in
the first cases, not all correspondences were used duringipgtion.

our reconstruction in the case of a variance 2 gaussian.nbisedecreased the number
of correspondences in each facet from 10 to 1 and trackedutifece throughout the 50
frames of the sequence. For each frame, we computed the mestigx-to-ground-truth-
surface distance and median reprojection error for all X®espondences per facet. For
each number of correspondences per facet, we display oeftienhge, the median and
maximum values of such 3D distances over the sequence, atideonght image, the
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Figure 4.17: Reconstructing a deforming sheet of paper &offh frames video and a 116
frames video. The mesh is reprojected in the image in thedapand seen
from a different perspective in the bottom one. Even thouglsmoothness
constraint was enforced, the algorithm correctly recadesmooth deforma-
tions.

median and maximum values of such reprojection errors tneeséquence. The number
of correspondences has little influence on the 3D distargiesg the vertices can slide
along the true surface without changing these measuresrephgection errors are more
strongly affected, but note that, from 4 correspondencedgoet, they drop below one
pixel. Additionally, for cases with less than 10 correspemzes per facet, the reprojection
error is affected by matches that were not taken into acodurig optimization, and that
therefore tend to increase the error. Of course, this slimes at least one correspondence
in each facet. With such a weak deformation model, if somet§adid not contain any, the
reconstruction would inevitably degrade. This would efgdbcbe the case for facets on
the boundary of the surface, since their vertices are anstl by fewer neighbors than
the ones in the middle.

Finally, we compared the results of the SOCP motion modéi tibse obtained with
the linear motion model introduced in Section 4.1.2. Fas fhirpose, we used data recon-
structed from an optical motion capture system, as exgdaimenore details in Chapter 6.
The results of this comparison are shown in Figs. 7.11 an8 @f Chapter 7, where we
compare all our methods together. From these plots, it iabvhat the SOCP formula-
tion performs better than the linear one. This is not suirmisince the linear constraints
were only designed to be the minimal ones that address ougaities, and because SOCP
truly models the reprojection error.

75



4 Motion Models

Figure 4.18: Reconstructing the deformations of a pieceapépwith two sharp folds in it,
so that that they are no longer smooth. Note that our methodatty recovers
the creases.

Figure 4.19: Recovering the deformations of a plastic bat) wisharp crease in it from
from an 86 frames video.

4 5.2 Real Data

We now show reconstruction results of real deformable sagfanade of paper, cloth,
and plastic. The video sequences were acquired with anamdiligital camera. Due to
their very different physical properties, the behavior lué surfaces ranges from smooth
deformations for the paper to sharp folds and creases farlthie and plastic. However,
no parameter tuning was necessary to obtain these restht®wialgorithm.

Smooth Deformations  As a first experiment on real data, we considered a sheet of
paper that we modeled as an 88-vertex mesh. Fig. 4.17 shawvsvéhcan retrieve the
correct shape of a surface that deforms smoothly, even thougformulation involves no
penalty term on the curvature of the reconstructed surface.

Sharper Folds Because we do not penalize curvature, nothing stops ourathdtbm
recovering the correct shape in the presence of folds arabese as demonstrated by the
reconstruction of the pre-folded sheet of paper of Fig. 4th& plastic bag of Figs. 4.19
and 4.20, and the piece of cloth of Figs. 4.21, 4.22 and 4.23.
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Figure 4.20: Recovering more complex deformations of thstm bag. The first two rows
depict the reprojection of the mesh into the original imames the mesh seen
from a different perspective as before. In the third row, wertay the mean
curvature of the recovered surface on the images. The higlattuwe areas,
shown in red, correspond to the actual creases that can bensie top row.
In the fourth row, we overlay the level-lines of constanin the images. We
recommend viewing the last two rows in color as they might iffécdlt to
interpret on a greyscale printed copy.

Figure 4.21: Recovering the deformations of a piece of diatin a 50 frames video.

4.6 Conclusion
In this chapter, we introduced two different motion modelovercome the ambiguities

of monocular reconstruction that were formalized in thesjonés chapter. The first model
is linear and penalizes depth motion from one frame to the. riedirectly addresses the
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Figure 4.22: Recovering the deformations of a piece of alath several folds. The third
and fourth rows depict the same curvature and level-linerinétion as in
Fig. 4.20 and are best viewed in color.

observed ambiguities, and can therefore be considerea asittimal set of constraints re-
quired for monocular reconstruction. However, being malinthese constraints typically
never hold for real sequences and make a poor predictior sfitiace shape. Furthermore,
formulating the correspondence problem as the solutionliteear system only approxi-
mates the true reprojection errors and leads to treatingdirespondences unequally.

We then replaced our initial linear formulation of the cagendence problem by a con-
vex optimization one that correctly models the reprojecgorors. This let us define more
appropriate motion constraints that penalize excessaradrto-frame changes of edge ori-
entation, as well as excessive edge length variations beexhole sequence. This yielded
results that are both accurate and less sensitive to nasewith the previous method.
Furthermore, it proved effective to retrieve the shape abatimy deforming surfaces as
well as surfaces undergoing complex folds and creases.

Nonetheless, this formulation still has weaknesses. ,Firgquires the presence of cor-
respondences over the whole surface, because such gemestcaints are not sufficient to
interpolate the shape of untextured parts from the textonedg. Additionally, motion mod-
els have the disadvantage to link results from one framectaéit, therefore increasing the
risk of accumulating reconstruction errors throughoutgbguence. Finally, this represen-
tation uses all the vertex coordinates as unknowns, whéseawidely accepted that the
possible deformations of a surface lie on a much lower dimoaeat manifold. Rather than
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Figure 4.23: Another example of a different deformationhaittsame cloth in a 61 frames
sequence. The third and fourth rows depict the same cuevatut level-line
information as in Fig. 4.20 and are best viewed in color.

explicitly adding constraints that enforce the resultingmes to remain on this manifold,
it would be more efficient to use parameters that implicithig@de these constraints. This
is what we propose to do in the upcoming chapters, by intiodudeformation models
learned from training examples.
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5 Global Deformation Models

In this chapter, we introduce global deformation modelg dre learned from training
data. Whereas so far we have parameterized the global shapgudace in terms of the
vertex coordinates of its mesh representation, we now nibdsla linear combination of
modes, or basis shapes, which involves far fewer paramdthesmethods presented in this
chapter are directly inspired by Active Appearance Mod&lg,[Morphable Models [19]
and Structure-from-Motion approaches [25, 24, 154], whiehdiscussed in Section 2.2.

A well-known issue with such representations is that theyedd on training examples
that can be very hard to obtain and even harder to registetheg Even though this
has been done for faces [19], and is therefore feasibleydivad a painstaking manual
process which would be even harder for generic deformabfacas. In structure-from-
motion [24, 156, 154], this has been addressed by learnmfdkes online from the input
video. However, this requires a large number of images, aoduges bases that only de-
scribe the particular deformations observed in that sezpieRlere, we rather propose to
use modes learned offline from training examples. We considecase of inextensible
surfaces, and propose a way of automatically creating nefdversions of a single topol-
ogy, thus directly yielding registered shapes. From thbapes, we compute deformation
modes and use them to reconstruct surfaces from monocdkosi Even though our basis
shapes were constructed from inextensible surfaces, we stad they let us reconstruct
extensible ones.

Finally, in this framework, we show that reconstruction bardone in closed-form given
a single input image. Following the same linear formulatrthe correspondence prob-
lem as before, we overcome the depths ambiguities by intinduguadratic equations
accounting for inextensibility and solving the resultingtem. This alleviates the need of
a video sequence, and lets us recover the shape of surfacegfilividual images.

5.1 Inextensible Triangulations

One of the simplest ways to model a deformable surface igpi@sent it as a triangulated
mesh parameterized in terms of its vertex coordinates. pduiameterization, however,
does not account for the fact that, in a real surface, thécesrtannot move independently
from one another. By contrast, if we constrain the triantipfeedges to retain their original
length, the number of degrees of freedom (dofs) decreasgsigmificantly. At first sight,
considering inextensible surfaces only can seem veryictgty. However, at the level of
details that a standard camera can capture, many ojectsaswheets of paper, clothes, or
sails, are inextensible. Furthermore, as we will show Jater final representation will still
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(@)

Figure 5.1: Hexagonal triangulations. (a) Rectangulartmused to model a piece of paper.
(b) Triangular mesh used to model a spinnaker. (c) Stitcairegtangular patch
for the body part and two triangular ones for the sleevesigtnodel a t-shirt.

have the ability to model stretchable surfaces, and therdémks no generality.

5.1.1 Dofs of Inextensible Triangulations

We seek to characterize the number of dofs of a triangulaticontainingV,, 3D vertices,
Ny facets, andV, edges—that has a planar topology, which means it can bedaufdb
a plane and has an actual boundary that can form an arbitodyggn. In general, such a
triangulation has dofs per vertex. However, forcing the edges to retain tlegigth when
the triangulation deforms, imposes one quadratic comstpar edge and the total number
of degrees of freedom drops to

Ng=3N, — N, . (5.1)

Let N’ be its number of boundary edges afl = N, — N? the number of interior ones.
Since theN? boundary edges each belong to only one facet wheread'ifieternal ones
belong to two, we have

3Ny =2N! + N? . (5.2)

Furthermore, according to Euler’'s well known formula, i€ thiangulation has no holes,
N, +N;—N,=1. (5.3)

Substituting Egs. 5.2 and 5.3 into Eq. 5.1 yields
Ng=3+N’ . (5.4)

In other words, the number of degrees of freedom of an insikténtriangulation grows as
the number of its boundary edges. In this chapter, we exjil@tbehavior in the case of
regular hexagonal triangulations such as those of Figaf),(which can easily be stitched
together to model more complex surfaces such as the t-$hiigo5.1(c).

More specifically, the regular grid of Fig. 5.1(a) hals x N, vertices,N* = 2(N, —
1) +2(Ny — 1) boundary edges, and theref@év, + 2 N, — 1 degrees of freedom, which
is much smaller than thg N, N, it would have without the inextensibility constraints.
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Figure 5.2: Specifying the 3D shape of the rectangular mashsabdvided triangle. (a)
We fix the shape of the bottom row from left to right by rotatiech facet with
respect to its left neighbor. For each following row, we onbed to set the
angle between the leftmost facet and the one below and tHe batyveen the
rightmost facet and its left neighbor. (b) The angles betwibe facets of the
bottom row are first set from left to right. For each upper ronly the angle
of the first facet need be set. (c) Attaching two patches tmgetBecause the
base of each triangular patch is attached to the body, ordysorgle angle is
required to fully specify their first row.

Furthermore, this number of dofs includes the six that apwad to a rigid motion and can
be ignored for our purposes. The triangulation of Fig. 5.b@s /N, vertices per side and
was built by recursively subdividing a single triangle. #shV (N + 1)/2 vertices and
N? = 3(N, — 1) boundary edges, which resultsdmV, dofs instead 08 N, (N, + 1)/2.

The t-shirt of Fig. 5.1(c) is modeled by combining a rectdagpatch for the body part
and two triangular ones for the sleeves. In this case, thébpuwi dofs of the triangular
patches is reduced because they have common edges withcthagwar patch. As a
result, the total number of dofs resulting from assemblimg triangular and rectangular
patches is less than the sum of dofs of each patch taken separa

5.1.2 Angle-Based Parameterization

Here we show that the shape of a wide class of inextensibltesesan be parameterized
in terms of a small numbeiN, of determining angledetween theirs facets. We present
procedures for choosing thé, angles so that the number of degrees of freedom of Eqg. 5.4
can be written as

Ng= N, +6, (5.5)

where the5 degrees of freedom added A, represent the rigid motion.

5.1.2.1 Simple Triangulations

Let us first consider theV, x N, mesh of Fig. 5.1(a). As shown in Fig. 5.2(a), if we
constrain the horizontal, vertical and diagonal edges t@irrgheir original lengths, only
the facets of the bottom row and the first and last facets di epper row need be set
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Figure 5.3: Determining the position of interior verticeg the intersection of 3 spheres.
The positions of solid lines triangles have already beenptged. We seek to
determine the position of poif?. This can be done by computing the inter-
section of 3 spheres of known radii centereddp, C;, andC,, respectively.
This yields between two and zero solutions depending ondhéguration of
the other triangles.

to completely determine the shape of the grid. Each one ofdh®ining vertices can
then be computed as the intersection of three spheres ednber previously computed
vertices, as illustrated by Fig. 5.3. It can be easily chddkat this requires specifying
Ny = 2(N, — 1) + 2(N, — 2) — 1 determining angles and the 6 degrees of freedom that
fix the position and orientation of the first facet. This cepends to the predicted total of
Ng =2N, + 2N, — 1dofs derived in Section 5.1.1. In other words, the chosesedutf
angles gives us a model with the right number of degrees efltn.

In the case of the subdivided triangle with vertices per side of Fig. 5.1(b), we use the
very similar construction depicted by Fig. 5.2(b). The totamber of determining angles
iS N, = 2(Ng — 2) + (Ns — 2) = 3N, — 6. To this number, we must add the six dofs
required to fix the position and orientation of the first faicespace to get the expected
total of NV; = 3 N, dofs discussed in Section 5.1.1.

5.1.2.2 Complex Triangulations

As discussed in Section 5.1.1, we modeled the t-shirt of%:ifc) by combining a rectan-
gular patch for the body part and two triangular ones for teeves. We parameterize the
rectangular patch as before. As shown in Fig. 5.2(c), becthes base of each triangular
patch is attached to the body, only one single angle is reduw fully specify their first
row. The remaining rows of the triangles can then be spedificoefore.
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Figure 5.4: Deformation modes of the meshes of Fig. 5.1. lifiqalres, yq, the average
mesh, is shown in red. The other two are obtained by takingiglesimode
weight to be non zero. A positive value of that weight yields green mesh
and a negative one the mesh shown in blue. Bending and exttermgides of
(a) the flat rectangular mesh, (b) the triangular spinnaket,(c) the t-shirt.

Note that this approach is very general and could be extetwlady surface without
holes that can be unfolded to a planar polygon of arbitragpsh Any polygon can be
triangulated without adding any interior vertex [136]. Tdal graph of such a triangu-
lation, that is, the graph connecting the centers of neighgdacets, cannot contain any
cycle because such a cycle would have to enclose at leastex vetich would then be
an interior vertex. This implies that we can build the trialadion by sequentially insert-
ing triangles in such a way that each new one, except thetimsta single common edge
with one already present. Given this order, we can reprebenindividual triangles as
hexagonal triangulations attached to each other and ptegreethem as discussed above.

5.1.3 Dimensionality Reduction

The angle-based parameterization we introduced aboveesdhe number of parameters
required to specify the shape of an inextensible mesh. Hervi\is not particularly well
adapted to fitting surfaces to image data for several reasbirst, it imposes an arbi-
trary graph structure among the vertices and specifies thelicates othild vertices as a
function of those oparentvertices, which tends to degrade the performance of opdimiz
tion algorithms. Second, computing the actual shape iegosolving quadratic equations
representing the intersection of three spheres, whichngpotationally expensive. Addi-
tionally, intersecting 3 spheres may result in two solwiér some configurations or none
at all for others, which makes this parameterization imjicatfor optimization purposes.
Finally, its number of dofs still depends on the mesh regwiut

We therefore use the angle-based parameterization assamadiate representation that
lets us sample the set of possible shapes by randomly drawengngles from a uni-
form distribution between two bounds. In practice, the asghere drawn in the range
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[—7/6,7/6], or in the range—=/9,7 /9], depending on the expected flexibility of the
surface at hand. The sampled shapes can then be used amticata for dimensional-
ity reduction techniques, which will yield the true defotima model. Our representation
in terms of determining angles gives us an enormous advartegr usual training data
acquisition methods, since the resulting shapes are ahuei version of a single topol-
ogy. Therefore there is no need of the usual painstaking 8D alignment and remeshing
process, as, for example, was the case in [19].

Since all the resulting deformed meshes have the same tppoeile form a3 N, vector
for each one by concatenating the coordinates aWits/ertices. We then apply Principal
Component Analysis on these vectors, which involves theregecomposition of the data
covariance matrix. By retaining only the firadt,, < N; << 3N, principal components,
we can approximate the vector of coordinates of any mesh as

Nm

Y=Yo+ > XSk , (5.6)
k=1

whereyg is the vector corresponding to an undeformed meshsihare the principal
components or modes, and theare weights that specify the surface shape and act as low-
dimensional latent variables. In other words, the shapermgsh can now be expressed
as a function of the vectat = [x; ... x,]7. Note that, in some sense, this is similar to
modal analysis where the object’'s behavior is describedupgrposing its natural strain
and vibration modes [122]. However, unlike modal analysis,do not require the kind of
physical knowledge that building the appropriate stiffgsatrix requires.

Fig. 5.4 depicts the influence of two of the most significantdewin the case of the
meshes of Fig. 5.1. Giving weight to the first produces bandind, to the second, exten-
sion. The presence of extension modes may seem surprisicg &l the samples we used
to learn the model are instances of the same inextensiblk. hiesvever, given that the de-
formations are not linear when expressed in terms of 3D ¢oatels, there is no reason for
the manifold of all resulting shapes to lie on a hyperplamduitively, by using PCA, we
consider theV,,,-dimensional ellipsoid that includes this manifold withdeing limited to
it. This produces not only extension modes but also rigidsdhat we discard.

In practice, the presence of these extension modes makesethed more general: On
one hand, if the surface whose deformations we seek to recwily inextensible, we
can incorporate a term that prevents extension or shrinkitogour optimization scheme.
On the other hand, the presence of the extension terms leffegively model stretchable
materials using a low-dimensional deformation model. kotly, it should be possible to
remove those extension modes by replacing PCA by a nonkldieeensionality reduction
technique. However, this would not help much without usindatabase that is much
closer to the true physics. This is because a non-lineaniggé is very likely to force the
model to stick much closer to the training data. In some sehs¢ would negate one of
the strengths of our approach that does not require eitlveraie training data or precise
knowledge of the physics, both of which are often hard toiobfurthermore, as shown in
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Figure 5.5: Image data. (a) An image from an input sequernneOije of 15 images used
to build a textured 3D model of the spinnaker. For our expernits, we added
black scotch tape on the otherwise white parts of the sailetp bur wide-
baseline algorithm to find correspondences between modeingut images
such as those depicted by the black lines. (c) Contours teetexs texture
boundaries. Even though the boundary is not correct eversayltthanks to the
model and robust estimation we still recover the correcpsha

Chapter 7, learning a non-linear global model from real gate@ed intractable in practice
due to the memory requirements and the complexity of theiegralgorithm.

5.2 Shape Recovery by Tracking

We outline here our approach to using our models to take fivhatage of the available
image information, acquired using one or more cameras,ewgiloring erroneous data.
Note that this approach is defined as tracking, since itgelireimage-to-image correspon-
dences in addition to the usual model-to-image matches.edexyit does not rely on any
motion model as the methods described in the previous ahapte
Recall from Section 5.1.3 that the shape of the mesh is dedrby the vectorx of

weights assigned to the PCA modes. To handle the potentrediyng camera, or cameras,
we introduce a vector of extrinsic parameterfor each one and define the state vector

0= [ml,...,ﬁNP,x]T , (5.7)

whereN,, is the number of cameras being used. Note that this fornounlan handle both
one single camera and multiple cameras that may move wiplece$o each other.
We use the image data to wrilé, observation equations of the form

O'(+,0)=¢, 1<i<N,, (5.8)

where O’ is a differentiable objective function associated to aipaldr type of image
data, and; an error term. Here we consider the functian®, Ot and O¢ derived from
model-to-image point correspondences, image-to-imag# porrespondences, and con-
tour information respectively.

87



5 Global Deformation Models

Model-to-image correspondences. As shown in Fig. 5.5(a,b), when a textured 3D
model of the object in its rest position is available, we udast wide-baseline feature
matching technique [99] to compute correspondences batawgace 3D locationg and

2D image features. We defin@(q,©) as the Euclidean distance in the image plane
between the projection @f and the corresponding image feature.

Image-to-Image Correspondences. Given a couplem; = (u}, u?) of correspond-
ing points in two different images of the surface found uding same technique as be-
fore [99], we defineD!(m;, ©) as follows: We back-project! to the 3D surface and
reproject it into the second image. We then ték¢m;, ©) to be the Euclidean distance in
the image plane between this reprojection add

Boundary and Occluding Contours. As shown in Fig. 5.5(c), given the last known

shape of the target object, we predict the location of thgeption boundaries and occlud-

ing contours. We then sample these 2D contours and look éocltisest edge or texture

boundary in the normal direction [138]. We ta&¥ to be the Euclidean distance between
the projection and the image edges.

As we saw in Section 5.1.3, a linear combination of princqgmahponents can resultin a
mesh that expands or shrinks. To model surfaces that donettistwe force edge lengths
to remain constant by introducing a penalty term

Ny
Ep = > Y (vi-vil—Li;)?, (5.9)
1=1 v;eN(v;)

wherev; is a vertex of the meshy/ (v;) represents the set of all its neighbors, dng is
the initial edge length. Finally, we take the global objeetiunctionE we minimize to be

N,
1 e i ,
B = §§wip <HO (0] »7”) +wpEp , (5.10)

where thew; is the weight associated to the particular type of obsarmatand designed
so that the derivatives of all observations are of commensunagnitudewp is a user-
defined weight, ang a robust estimator whose radius of confidengarogressively de-
creases during the optimization. As discussed in [127% sikheme allows convergence
from arbitrary starting positions. A small, or zerop lets the mesh stretch or shrink.
Note, that besides the term that constrains the length, tnedimce no other shape regular-
ization term.

5.3 Experimental Results

In this section, we present results obtained with our traglalgorithm. Using synthetic
data, we first show that the linear model is sufficient to reca@emplex 3D shapes, and that
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Figure 5.6: Fitting test surfaces created by varying therdeihing angles. Using 50 defor-
mation modes proved sufficient to reconstruct the surfazasggpod precision.
(a,c) The original shapes are shown as shaded. (b,d) The dittes are dis-
played as wireframes.

the reconstruction is insensitive to initial conditionsnadly, we present results obtained
on real sequences.

5.3.1 Synthetic Data

Recall from Section 5.1.2 that we created the deformed nesples by varying a number
of determining angles between the mesh facets. Arguabiyg@smuch smaller number of
principal components could fail to cover all possible suefodmations and result in prin-
cipal components unable to describe some configurationslispoove this, we generated
a number of test meshes such as the ones of Fig. 5.6(a,c) thymézing the determining
the angles in a similar fashion. We then reconstructed themihimizing the 3D vertex-
to-vertex distance with respect to the PCA coefficienté\s can be shown in Fig, 5.6(b,d),
using N,,, = 50 principal components was sufficient to accurately fit thelteg) shapes.
To demonstrate that our optimization process is well-pasetinsensitive to initial con-
ditions, we ran our system on synthetic data. We createcbralyddeformed versions of
the rectangular mesh such as the ones shown in the first catifig. 5.7 and used them
to produce large numbers of synthetic model-to-image spmedences. For each test-run,
we started from a different random initialization such asdhes of the second column of
Fig. 5.7 and minimized the objective function of Eq. 5.1thgsiandom subsets of the cor-
respondences. In the third column of the figure, we plot thdiameof the mean distances
between the vertices of the recovered mesh to the correc®adunction of the number
of correspondences that were used. More precisely, givemdarn between 5 and 600,
we picked four different subsets afcorrespondences and ran the algorithm with 100 dif-
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Figure 5.7: Convergence using synthetic data. (a) Projsif the synthetic surfaces used
as input for the optimization process. (b) Examples ofati#ations. (c) Me-
dian of the mean distances between the vertices of the remmbwveesh and
the synthetic surface as a function of the number of cormdgaces that were
used. The measures are given as a percentage of the lordgesf the initial
rectangle. We did not draw error bars because, as soon aedenase than 50
matches, the first and third quartile of the mean distanaesdistinguishable
from the median.

ferent initial shapes for each. As soon as enough corregnoed are used, the algorithm
consistently converges towards the correct solution.

5.3.2 Real Images

Here we demonstrate the capabilities of our method to redheepossibly large defor-
mations of different kinds of objects that cover a wide ranfphysical properties. The
images have been acquired using ordinary camcorders, Wagiresent pure tracking re-
sults obtained by using image-to-image correspondenagsiliouettes only, and then we
show our results of combined tracking and detection by apdindel-to-image matches.

5.3.2.1 Tracking Results

We first applied our method to tracking deformable surfaneadnocular sequences using
frame-to-frame matches and silhouettes. This assumes tlas previous chapter, that the
shape in the first frame in known. For these results, we fudghsumed that the camera is
fixed, and thus the state vectronly contains the shape parametersSimply keeping
the number of principal components we use low is enough toreafsmoothness without
having to explicitly add a regularization term. Howeversome cases, we had to fix some
coordinates of the meshes to avoid ambiguities due to theech@ewpoints.
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Figure 5.8: Deforming a sheet of paper. Top row: Deformedmpesjected on the original
sequence as a wireframe. Bottom row: Deformed mesh shownasfaame
model seen from a different viewpoint. Note that even theklsleforms cor-
rectly.

Figure 5.9: Another deforming sheet. Top row: Projectecefrédme. Bottom row: De-
formed mesh shaded and seen from a different viewpoint.

Fig. 5.8 depicts the tracking of a piece of paper startinghfeon undeformed position.
Even though there is texture at only one place on the papemwtiole model deforms
correctly. This includes the back of the sheet that is natadlst seen in the video. Another
deforming sheet of paper is shown in Fig.5.9. The chosenpaéw makes it difficult to
clearly see the deformation in the first frames. Our algorithevertheless retrieves the
precise 3D shape throughout the whole sequence. In botls,cageused 30 principal
components.

Fig. 5.10 shows the behavior of our algorithm when appliea ¢ioth-like material that
is more flexible and required the use of 45 principal comptmérstead of the 30 used
before. The deformation is mostly perpendicular to the ienplgne, which again makes it
challenging to track. As can be seen in the figure, the regiejeshape closely matches
the object in the images, except occasionally near the cariiis can be attributed to the
fact that, because the fabric is very textured, our approactetecting edges can become
confused and should be replaced by a more sophisticated one.

As mentioned before, some of the PCA modes account for eaterssmd stretching.
Therefore, we used an inflating and deflating balloon to tessatyorithm’s behavior when
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Figure 5.10: Deforming fabric. The results are displayethexsame manner as in Fig 5.8.
Since the fabric is highly textured, borders of the mesh areetimes mis-
matched with texture edges, which results in small misatignts.

the surface can globally stretch or shrink. In all the ballexamples presented here, the
initial mesh shapes were obtained by scanning the balloefwrd starting inflation or
deflation and fitting our mesh models to the scans.

All the results shown above involved the use of the penalnt& of Eq. 5.9 to force
the mesh edges to retain their original lengths. In Fig. 5ad allow the mesh to stretch
by setting the weight of thig'p term to zero. The last row of the figure displays an
augmented version of the mesh. Indeed, having the 3D meshudete-texture it, and
project it onto the original image, thus creating a new wartialloon. Since we are not
tracking the whole balloon, but only its textured part, wdyamse correspondences and
ignore edges. The mesh then expands along with the balldeichws made possible by
principal components such as the one depicted by the bottanofrFig. 5.4. As shown in
Fig. 5.12, the opposite behavior is observed when the baliiediates.

Finally, Fig. 5.13 depicts the results obtained on the samqeence as in Fig. 5.11 when
penalizing the edge length variation. Because the surfameat stretch, it ends up covering
a smaller fraction of the balloon and gets flatter as the ballimflates. This also is a
correct representation if we do not assume that the meslaishat to a precise area of
the surface, but rather models the behavior of a fixed sizehich is valid since we use
image-to-image correspondences only. Our parametenzdties not force any vertex to
correspond to one particular point on the object and the rmastslide along the object
surface. Fig. 5.14 shows the superposed meshes in the firgistrframe of the sequence
for the case where extension is not penalized, and for the wasre it is. It can indeed
be noted that the final shapes are rather different, but ctn b considered as correct
depending on the expected behavior of the model.
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Figure 5.11: Tracking an inflating balloon with an extersibhesh. Note that the mesh
keeps on covering the same portion of the balloon. In thertagt we re-
textured the resulting mesh, and reprojected it into theyesa

5.3.2.2 Tracking and Detection

We now present results obtained by optimizing the full cdte of Eq. 5.10 using model-
to-image correspondences in addition to correspondendéstive previous image, and
optionally silhouette information. This runs at betwee® @nd 2.5 frames/second when
using 40 modes and 1024x768 images, the faster rate beiagettwhen not using sil-
houettes. Recall from Section 5.2 that we use an optimizaahedule that lets us start
from arbitrary positions, which means that this does natireceny manual intervention at
run-time. As shown in the figures of this section, the resglshapes are accurate enough
for correct reprojection. However, enforcing temporal gsietency only over image pairs
might leave a residual 3D jittering motion across framesmtreating videos. Therefore,
this jitter can be eliminated by reoptimizing our criterioging the same observations as
before, but over larger sets of 8 overlapping frames, andreinmig temporal coherence by
penalizing the second derivatives of all parameters.

We represent both the sheet of paper and the elastic suridwehy was cut out of an
inflatable balloon, of Fig. 5.16 and 5.18 as3@ x 20 rectangular grid. We model the
spinnaker using a 153-vertex triangle. The t-shirt meshasderof 2 sleeves that are 45-
vertex equilateral triangle attached t® & 25 rectangular grid. We used 45 PCA modes to
track the sheet of paper, 10 for the balloon, 40 for the sg@anand 50 for the t-shirt.

The rest shape of the spinnaker is not planar and NortiShimve us the CAD model
that was used to design it, thus allowing us to fit a trianguatash to it. This gave us
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Figure 5.12: The inverse behavior as in Fig. 5.11 can be wvbdavhen the balloon deflates.

the initial shape from which we computed the deformation esodlo create the textured
model needed for automated run-time operation, we develamoftware tool that allows

us to manually supply a few image-to-model correspondeircegsages such as those of
Fig. 5.15, which daot belong to the test video. By feeding these corresponderoag a

with automatically detected silhouettes into the optiri@aframework of Section 5.2, we

recover the spinnaker’s shape into the images and, thugfuag¢d model. In the specific

case depicted by Fig. 5.15, we only supplied 10 correspaedeper image, which did

not take long to do. In short, our deformation modes not cedyllto robust and automated
run-time operation but can also be used to limit the requaradunt of manual intervention

during model building.

These experiments display several strengths of our metkadt, for the deforming
sheet of paper of Fig. 5.16 and spinnaker of Fig. 5.17, ouesy@roved robust enough to
process sequences of more than 1500 frames acquired botbrsnand outdoors without
getting lost or drifting. When the image data was too weak,sBBpe recovery became
temporarily less accurate but the system soon recovered.

The t-shirt example of Fig. 5.16 shows that even though theltiag PCA modes repre-
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Figure 5.13: Tracking an inflating balloon with an inextétsimesh. The portion of the
balloon covered by the mesh becomes smaller and flatter dsatto®mn ex-
pands. This also is a correct solution if we do not assumetliganesh rep-
resents a particular portion of the object, but rather nete behavior of a
fixed size part, which is valid when relying on image-to-iraagatches only.

Figure 5.14: Superposition of the initial mesh in red andfihal one in blue. Left: When
extension is not penalized, the mesh increases as the hatfiftates. Right:
When we enforce the edges to remain of constant length, tfecsuremains
of same area, but becomes flatter.

sent global deformations, we can still track very local gsesh as only one moving sleeve,
by superposing these modes. Finally, in the case of thekingt surface of Fig. 5.18, we

can see that not only global extension can be modeled, lmaalsotropic stretching. This,

again, is due to the fact that local deformations can be atelyrdescribed by appropriately
superposing global modes.

All these results were generated using a single video segueger object except in the
spinnaker case where we used either one or two cameras.sloabe, the two cameras
were hand-held by two people on a chase-boat so that they witiveespect to each other
in an unpredictable fashion and do not form a stereo-rig enubual sense of the term.
Our framework is powerful enough to handle this case andk® fiall advantage of all the
available information, even in such non-standard conalticAs shown in Fig. 5.17, once
reprojected on the images, the results are almost indigsshgble. Of course, because
a single camera cannot see both sides of a curvy object, @@yqaf the 3D results is
bound to be better when using two cameras looking from vdfgrdint angles so as to see
different parts of the object. However, the superpositibbaih 3D results in Fig. 5.17(e)
shows that, in this case, the model approximates the hiddenagll. This behavior is
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Figure 5.15: 3D model of the spinnaker overlaid on the thneagies used to compute its
reference shape and texture. In each image, we specifiedEspgondences
with a CAD model of the spinnaker and used them, along witloraati-
cally detected silhouettes, to deform it. We assume thaspgienaker did
not deform in these images because they were taken in quidession by a
chase-boat.

Figure 5.16: Tracking a deforming sheet of paper and a t-dhiboth cases, we show the
deformed 3D mesh overlaid on the original images in the top and then
seen from a different viewpoint in the bottom row.

consistent over the whole video sequence.

Finally, to estimate the accuracy of our reconstructions, aequired three videos of
another sheet of paper using three calibrated and synaeamiameras. We used one to
monocularly reconstruct the deforming shape using our atktiWe used the other two
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Figure 5.17: Tracking a spinnaker with either one or two casie(a,b) Two synchronized
images from independently moving cameras, with recovepethaker repro-
jection. (c) Tracking using only one camera. Note that, aegeojected on
the images, the results are almost indistinguishable. Qd)e3ults with two
cameras. Both camera positions are also retrieved. (e)uged 3D shapes
retrieved using either one (red) or two (blue) cameras. Nweboth shapes
are very similar, which indicates that the deformation niquievides a good
approximation when data is missing.

Figure 5.18: Tracking an extensible surface undergoingagirdpic deformations. In the
top row, we show the original images and, in the bottom rowpwerlay the
recovered 3D grid that stretches appropriately.

to triangulate thex-, y-, andz-coordinates of 10 selected points by manually establishin
correspondences every 10 frames of the 70 frames-long 1seggie These points—the
four corners of the sheet plus six additional ones spread itvsurface—are depicted
by Fig. 5.19(d) and were chosen to be representative of ttiendurface. As shown in
Fig. 5.19(e), the largest average errors occur inzHgirection, which was to be expected
since itis close to the viewing direction. In Euclidean terihis corresponds to the median
errors of Fig. 5.19(f), which are in the order of 1cm. This istg small considering that
this was achieved using a single camera that was approxjnfate meter away from the
29.7cm x21.0cm rectangular sheet of paper.
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Figure 5.19: Evaluating the accuracy of our approach. ¢g,bmages from videos ac-
quired using three synchronized and calibrated cameraagdnb) belongs
to the video we used to monocularly reconstruct the 3D shagireg wour
method and, then, re-projecting it into the image. (d) Wangulated the
3D coordinates of the 10 keypoints shown as crosses by marasshblish-
ing correspondences in images (a) and (c). (e) We repeaieabration
every 10 frames and plot the average differences between-the, and z-
coordinates of those manually computed and those deriveed @ur auto-
mated and monocular reconstruction. (f) We also computecdEilclidean
distances between the monocular reconstructions and theaiyacomputed
points, and plot their medians together with values at 258l 7&956.

5.4 Closed-Form Solution to Non-Rigid 3D Registration

In Section 5.2, we have presented an optimization appraacecbvering the shape of a
non-rigid surface from a video sequence. In this sectionyilenow show that, when us-
ing model-to-image correspondences only, this can als@be th closed-form. The major
advantage of this is that we can now reconstruct a defornsabface from individual im-
ages and a reference configuration. Furthermore, this alspletely prevents the results
from drifting troughout a video sequence.

As in Section 3.2.1, we first formulate 3D reconstructiontesdolution to a linear sys-
tem. We then show that the depths ambiguities can be overbgnselving a system of
guadratic equations accounting for constant edges lengthish can be done in closed-
form using linearization techniques. Since modeling tHemeations in terms of the ver-
tices coordinates involves too many parameters for thel@molo be tractable, we then
show how our global models can be introduced in this framkwor
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5.4.1 Linear Formulation

Let us consider the 3D registration of a mesh to an input imgigen a reference configu-
ration. Asin Chapter 3, we assume that we are given a €t 8D-to-2D correspondences
between the surface and the image. Each correspondentssralaD point on the mesh,
expressed in terms of its barycentric coordinates witheetsip the vertices of the facet to
which it belongs, and a 2D feature in the image.

Additionally, we assume the camera to be calibrated andefire, that its matrix of
intrinsic parameterg is known. To simplify our notations without loss of generalive
express the vertex coordinates in the camera referential.

Let us first set aside our linear deformation model and cengfee reconstruction of the
3D coordinates of thév,, mesh verticesr; , 1 < i < N,. Recall from Section 3.2.1 that,
in this framework, the correspondence problem can be fatadlas the solution to the
linear system

My =0, (5.11)
whereM is the2N,. x 3N, matrix of Eq. 3.6, an¢y = [v7 ... vffVU]T.

As detailed in Section 3.2.1, although solving this systésidg a surface that reprojects
correctly on the image, there is no guarantee that its 3Deshagesponds to reality. This
stems from the fact that, for all practical purposks,is rank deficient. More specifically,
even when there are many correspondences, one thirdV,j,@f the eigenvalues a&¥1” M
are very close to zero, as illustrated by Fig. 5.20(c). Asalteeven small amounts of noise
produce large instabilities in the recovered shape.

This suggests that additional constraints have to be aduedarantee a unique and
stable solution. Following what was proposed in the previpart of this chapter, we
will argue that imposing inextensibility of the surface e a closed-form solution to the
problem.

5.4.2 Inextensibility Constraints

Following the idea introduced in [111] in the context of dgbbject pose recovery, we
write the solution of the linear system of Eq. 5.11 as a weidigum of the eigenvectors
1, ,1 <i< N, of MTM, which are those associated with the eigenvalues that rm@sal
zero. Therefore we write

Ny
y=>_ B#ili, (5.12)
=1

since any such linear combinationlpis in the kernel otM” M and produces a mesh that
projects correctly on the image. Our problem now becomesinalppropriate values for
the 5;, which are the new unknowns.

We are now in a position to exploit the inextensibility of thaface by choosing the,
so that lengths of théV, edges are preserved. Syghcan be expressed as the solution of
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Figure 5.20: (a,b) Original and side views of a surface ugedenerate a synthetic se-
quence. The 3D shape was reconstructed by an optical m@jmuare system.
(c,d) Eigenvalues of the linear system written from coroeslences randomly
established for the synthetic shape of (a). (c) The systeswnidten in terms
of 243 vertex coordinates. One third of the eigenvalues lasedo zero. (d)
The system was written in terms of 50 PCA modes. There atastilimber
of near zero eigenvalues. (e) First derivative of the cud)€(iq reversed-
direction). We take the maximum value of to be the one with maximum
derivative, which corresponds to the jump in (d).

a set of quadratic equations of the form

Ny ' Ny
> sr = | =
i=1 i=1

wherel’ is the 3«1 sub-vector of; corresponding to the coordinates of vertex andv;fef

andvzef are two neighboring vertices in the reference configuration

Typical closed-form approaches to solving systems of qtadequations involve lin-
earizing the system and introducing new unknowns for thelguic terms. This results in
a system of the form

2

ref ref
Vj _Vk

2
‘ (5.13)

Db=d, (5.14)

whereb = [3161, -+, B10N,, 58202, , B28n,,- -+, Bn, Bn,]T is the vector of quadratic
terms of sizeV, (N, +1)/2. D is aN. x N, (N, +1)/2 matrix built from the knowr;, and

d is the N, x 1 vector of edge lengths in the reference configuration. Unfately, since,
in hexagonal meshes, the number of edges growgvasthe number of quadratic unknown
terms in the linearized system quickly becomes larger thamtimber of equations.
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5.4 Closed-Form Solution to Non-Rigid 3D Registration

Here, we solve this problem by using Extended Linearizgd®, a simple and powerful
approach to creating new equations in a linearized systeimasl been shown to perform
better than Groebner bases with a large number of paramatstscan be considered as
a generalization of relinearization which introduces newations that link the quadratic
terms together to make them coherent. The idea is to multigyoriginal set of equations
by the monomials, and linearize the resulting system. Inpauticular case, we can, for
example, multiply the existing quadratic equations by a#cthe linear terms, thus creating
new equations of the form

Ny Ny 2 )
s ([ Smd -S| | = o (v -w])
=1 i=1
Ny ) Ny 2 2
B, [ [DoBH =Y 81| | = 6w, (\v;?ef i ])
=1 =1
Let b® = [B16151, -+, B1B1Bn,: 518282, -+, B1B26n,, B20202, -+, B, BnyBn,] T, @and
b! = [B1, -+, Bs,]T. The resulting system can be written as
d;
b .
[ Dy [ D5 DS | b | = ¢ | (5.15)
bC
with
T 0 .- 0
_—
Dy, = d, 0 | (5.16)
- 1,1 1,N, 2,2 Ny, Ny
D' - Dj D ... D]
T I R
© 0 0
. e 5 18
XL Dyt ... DN oo | (5.18)

and where we only explicitly show the first line of the oridisgstem of Eq. 5.14 and its
product with3;. D}’ stands for the coefficient on the first line Bf corresponding to the

product; 3;.
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5 Global Deformation Models

Size of the quadratic system after Extended Linearization
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Figure 5.21: Lin-Log plot of the number of equations and namif unknowns as a func-
tion of the number of Extended Linarization iterations fog tase of 40 x 10
square mesh. Note that after 4 iterations, the number otieqpgeexceeds the
number of variables, making the system, in theory, solvablewever, the
size of the system is of the ordé&p'?, which makes its solution intractable in
practice.

Unfortunately, we can show that, when dealing with reldyil@rge meshes, multiplying
the inextensibility equations by all th& is not practical to solve the system of Eq. 5.14.
Given a hexagonal mesh for whidgk, « 3N,, the number of equations after Extended
Linearization iSN., = (N, + 1) N, 3N? + 3N,. Since, the new equations also give
rise to new unknowns, the linear and cubic terms, the totallvar of variables becomes
Ny, = Ny + Ny(N, +1)/2 + Ny(N, + 1)(N, + 2)/6. For the system to be solvable, we
need

Neq 2 Nu
& 3N243N, > N,+ NU(NU+1) + Ny (Nv+1)(Nv+2)
& 0 > N, (N2 — 12N, — 7)

N, being greater than zero, this implié&’? — 12N, — 7) < 0, which is only true for
N, < 12. In practice, we rarely face cases where 12 vertices aregbntmimodel the
deformations of a surface.

Of course, Extended Linearization can be applied iterlgtigg re-multiplying the new
equations by the linear terms. Let us assume that, at eaalidte we only consider the
newly created equations, but not the original set, and tleastart after a first Extended
Linearization step, to avoid the special case of constght-tiandside valued. If we
separaté\féo) = N(0)+N( g into the numbers of linear terms and cubic terms, respdgtive

u,1
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5.4 Closed-Form Solution to Non-Rigid 3D Registration

we can then write the following recursive procedure:

i+1 7
NED = N,ND
N+ g (Neti
u,1 u,l 'L+ 1 ?
; ) [Ny +i+2
NG = N0 (e T T2
u,3 u,3 i+3 ’

where a superscrigt) indicates the iteration. The number of equations therejooes as

O(N+1), whereas the number of unknownsd$N:*3 /(i + 3)!). As shown in Fig. 5.21,

for the case of d0 x 10 vertices square mesh, after a few iteratiovig indeed becomes
larger than\V,,. However, the size of the system is then of the ordgf, which makes it

impossible to solve in practice.

In other words, Extended Linearization cannot deal with @bjam as large as ours
and we are not aware of any other closed-form approach tingobystems of quadratic
equations that could. Fortunately, we can address thig igsth the help of our linear
deformation model.

5.4.3 Linear Deformation Model

As discussed above, to solve the set of quadratic equatiahexpress edge length preser-
vation, we need to reduce its size to the point where Extehdsehrization becomes a
viable option. Furthermore, we need to do this in such a wayttie solution of the cor-
respondence problem can still be expressed as the soldteoaystem of linear equations,
as discussed in Section 5.4.1.

To this end, we make use of the linear deformation model destin Section 5.1.3 that
models the plausible deformations of the mesh as a lineabic@tion of V,,, deformation
modes. We re-write EQ. 5.6 in matrix form as

y =Yyo+Sx, (5.19)

whereS is the matrix whose columns contain the deformation modesxais the vector
of their associated weights.

In this formulation, recovering the shape amounts to coinguhe weightsc. Since the
shape must satisfy Eqg. 5.1 must then satisfy

M(yo +Sx)=0. (5.20)

When solving this system, to ensure that the recovered weigh not generate shapes
exceedingly far from our training data, we introduce a ragmétion term by penalizing
x; With the inverse of the corresponding eigenvalyef the data covariance matrix. This
follows the probabilistic interpretation of PCA [153]. Weetrefore solve

MS My, [x]
Lot o J[T]0 621
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5 Global Deformation Models

whereA is anN,,, x N,,, diagonal matrix whose elements are thendw, is a regulariza-
tion weight that only depends on the maximwm and whose precise value has only little
influence on the results.

As shown in Fig. 5.20(d), we have considerably reduced thetsu of near-zero eigen-
values. The system of Eq. 5.21 is therefore better conditidhan the one of Eq. 5.11,
but still does not yield a well-posed problem that would haweique solution. This is at-
tributable to the fact that, because the solution is expreas a sum of deformation modes,
inextensibility constraints, which are non linear, are exforced.

Nonetheless, we can follow the same procedure as in Sectidgh Ve write the solution
of the linear system of Eq. 5.21 as a weighted sum of the e@gors]; ,1 < i < N, <
N,, associated with the smallest eigenvalues of its matrix, famtithe weights3; as the
solution of the linearized system of quadratic equations

Db=4d, (5.22)

whereb = [617 o 75N1761ﬁ17 e >ﬁlﬁNpﬁQﬁ27 e 7625]\7[7 o 7ﬁNlﬁNl]T now also con-
tains the linear terms arising in the quadratic equatioos fthe mean shapg. Further-
more, the system also encodes the additionnal linear equéitat constrains thé;1; v, , +1
to sum up to 1, wherg v, . is the last element df.

Since in practiceV; < N,, < N, the system is now much smaller. Therefore a single
iteration of Extended Linearization is sufficient to coasirits solution while keeping it
tractable, even for relatively large numbers of modes—attice up to 60—thus allowing
complex deformations.

In this formulation, the numbeW; of eigenvectors strongly depends on the nunilgr
of modes used for the recovery. This is in contrast with [1tha} only uses at most 4 of
them, since they deal with rigid objects. However, as shawfig. 5.20(e), we can easily
set the maximum numbey; of eigenvectors to use by picking the number corresponding
to the maximum first derivative of the ordered eigenvaluaseuwe then simply test for
all N; < N, and pick the optimal value as the one that, for a small enoagtojection
error, gives the smallest mean edge length variation. Intiees NV, was typically about
25 when using 60 deformation modes, while the valu&/pthat generates the best results
was around 10.

5.5 Experimental Results

In this section, we present the reconstructions obtainetbsed-form from individual im-
ages and a reference image. Even though some of the resuéscamputed from video
sequences, nothing relates the frames of the sequencabangend no initialization is
required. We first present results on synthetic data to gatnely evaluate our recon-
struction accuracy, and then show results on real images.
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Figure 5.22: Shape recovery of a 20200mm synthetic mesh imaged by a virtual cam-
era placed 20cm away from it. Each plot shows the mean véoterrtex
3D distance between the recovered surface and the groutidats a function
of its mean curvature. The three different curves in eacplg@rrespond
to a varying number of correspondences per facet. Left tat,ripe number
of outliers grows. Top to bottom, the gaussian noise addeldet@orrespon-
dences increases. For each experiments, we plot the avaevagdO trials.
The last row shows in blue recovered shapes for the grouni-turface of
Fig. 5.20(a,b), shown in red. The corresponding mean voeertex dis-
tances are 9mm, 19mm and 38mm. This highlights the fact e éor
distances around 40mm, the recovered shape remains migning
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5 Global Deformation Models
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Figure 5.23: Comparison of our closed-form results agdivestesults of constrained opti-
mization. Optimization was performed on the vertex coatis using Mat-
lab’sf mi ncon function, and starting from the flat position. (a) Mean verte
to-vertex distance. (b) Reprojection error. Constrainptintization is both
much slower and far less accurate than our approach.

5.5.1 Synthetic Data

We first applied our method to images such as those of Fig(&),28/nthesized by project-
ing known deformed shapes using a virtual camera. The defibishapes were obtained
by recovering the 3D locations of reflective markers stuck @0x 200mm piece of card-
board with an optical motion capture system. This allowedausandomly create:.s
perfect correspondences per facet to which we added zeno gaegsian noise of variance
o4. Finally, we simulated outliers by setting the image coaatiés ofr, percents of the
correspondences to uniformly and randomly distributedesl

In Fig. 5.22, we show results as a function of the surfaceamuairvature, the maximum
one being that of Fig. 5.20(a). Each plot includes three esicorresponding to.; =
{5,1,1/2}, which depict the mean vertex-to-vertex 3D distance betwtee recovered
mesh and ground-truth. The plots are ordered on a grid whalieection corresponds to
ro = {0%, 5%, 10%} andy-direction too, = {0, 5,10}. Each experiment was repeated 40
times, and we show the average results. Note that the elwasgrith the mean curvature
of the shape, which is natural since the shape becomes mbiguous when seen from the
viewpoint shown in Fig. 5.20(a). In the last row, we displasee shapes reconstructed from
the image of Fig. 5.20(a) with their corresponding groundkt Note that even for average
distances of 40mm between the true and recovered shapettiieremains meaningful
and could be used to initialize an iterative algorithm.

In Fig. 5.23, we compare our results against results oldawith Matlab’s constrained
optimizationf m ncon function. We used it to minimize the residual of the lineastsyn
of Eq. 5.11 with respect to the vertex coordinates, undectmstraints that edge lengths
must remain constant. We first tried to use the similar regradion in terms of modes.
However, since the constraints could never be truly satistiee algorithm would never
converge towards an acceptable solution. This forced ugréatty use the vertex coor-
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5.5 Experimental Results
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Figure 5.24: 3D registration of a folded bed-sheet to arviddal image given a reference
configuration. Top row: Recovered mesh overlaid on the waigmage. Mid-
dle row: Synthesized textured view using the recoveredehBpttom row:
Real side view of the sheet from similar viewpoints. Desfijfeting changes,
the synthetic images closely match the real ones.

dinates. To improve convergence and prevent the surface édrompling, we added a
smoothness term [127]. For all the frames, the initialativas set to the flat position. In
Fig. 5.23(a), we show the mean 3D vertex-to-vertex distdocehe case where, = 5,

r, = 0, andn.y = 5. The red curve corresponds to our closed-form solution hedlue
one to constrained optimization. Note that our approaceggmuch better results. Further-
more, it is also much faster, requiring only 1.5 minutes pamie as opposed to 1.5 hours
for constrained optimization. Fig. 5.23(b) shows the rgguion errors for the same cases.

5.5.2 Real Images

We tested our method on a folded bed-sheet, a piece of clattaarshirt deforming in
front of a 3-CCD DV-camera. In all these cases, we first eistaddl SIFT [103] correspon-
dences between the reference image and the input one. Weaypbéad the closed-form
non-rigid 2D registration technique described in Sectich133 to find the correct 2D pro-
jection of the mesh on the image. This let us establish deBsw-2D matches. In the
following results, we never explicily show 2D registratiogsults. This would be mean-
ingless, since they would look almost identical to the retarcted 3D meshes reprojected
onto the images that we show.
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5 Global Deformation Models

Figure 5.25: Shape recovery of a bed-sheet. Top row: Reedveiesh overlaid on the
original image. Bottom row: Mesh seen from a different vieinp.

Figure 5.26: Shape recovery of a piece of cloth. From top ttobm Mesh computed in
closed-form overlaid on the input image, side view of thasmeefined mesh
after 5 Gauss-Newton iterations.

In the case of the sheet, we deformed it into several unceldiapes, took pictures from
2 different views for each deformation, and reconstruckedsurface from a single image
and a reference configuration. In Fig. 5.24, we show the tesu four different cases.
From our recovered shape, we generated synthetic texturagkis roughly corresponding
to the viewpoint of the second image. As can be seen in the ditorb rows of Fig. 5.24,
our synthetic images closely match the real side views. #atdilly, we also reconstructed
the same sheet from the images of a video sequence, and shossthts in Fig. 5.25. Note
that no initialization was required, and that nothing lirkee frame to the next.

In Figs. 5.26 and 5.27, we show results for images of a pieadotti and of a t-shirt
waved in front of the camera. Note that in both cases, theedléerm solution closely
follows what we observe in the videos. To further refine it, wilemented a simple
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Figure 5.27: Shape recovery of the central part of a t-stirom top to bottom: Mesh
computed in closed-form overlaid on the input image, sigendf that mesh,
refined mesh after 5 Gauss-Newton iterations.

Gauss-Newton optimization technique, and minimize thieluas | Db —d|| corresponding
to Eq. 5.22 with respect to thé. In the third row of the figures, we show the refined
mesh after 5 iterations of this scheme. This proved suffidiemecover finer details at a
negligible increase in overall computation time.

In some images of the t-shirt, such as those of Fig. 5.28, gtemblur was too large, or
the drawing was too hidden to allow us to detect enough Sl&ilifes. In such cases where
we obtained less than 30 correspondences, we simply cotileggister the 2D mesh with
the image, and therefore were unable to recover the shape sfitface. This, nonetheless,
has no influence on the rest of the sequence, since we do okt ina detect the surface.

5.6 Conclusion

In this chapter, we have studied the use of global deformatiodels to recover the 3D
shape of a non-rigid surface from images. We have first ptedemway of automatically
generating deformed versions of an inextensible mesh kygrandomly a determining
subset of the angles between its facets. This let us cregistered training examples from
which we could build a linear deformation model using PipatiComponent Analysis.
We then applied this low-dimensional model to reconstrizts8rfaces from video using
feature points and silhouettes. Finally, we showed thatrrstruction could also be formu-
lated as the closed-form solution to a set of quadratic espust This alleviated the need of
having a good initialization to the shape recovery procasd,let us reconstruct non-rigid
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5 Global Deformation Models

Figure 5.28: In such cases where a large part of the drawingpe-shirt is hidden, or
where the image becomes too blurry, not enough feature omtld be
found. We therefore fixed a threshold, and only recoveredstiape in im-
ages where we found a least 30 SIFT correspondences. Notesitihae we
are not tracking the surface, this does not prevent us framecily recover
the shape in the other frames.

surfaces from individual images.

Even though the approach proposed in this chapter provezkssitil in many cases,
it still suffers from several weaknesses. First, the maahitd the possible deformations
of a highly flexible material is far from being linear. Thevef, PCA might not be the
best choice to model it, as has already been noticed when P@&g unable to respect
inextensibility constraints. Second, global models mayatways have enough degrees of
freedom to model the complex deformations of a highly flexdlirface. Finally, and most
importantly, global deformation models are only valid fosecific surface. Therefore, a
new model must be built for every new object’s shape, evemvitiis made of a material
seen before. In the next chapter, we will overcome thesesdsyintroducing local models
that represent the deformations of surface patches andecaarbbined to form arbitrary
global shapes.
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6 Local Deformation Models

In the previous chapter, we showed that global deformatiodets can effectively disam-
biguate the reconstruction problem. However, they do neagd have enough degrees of
freedom to handle complex deformations, such as those shoWwiy. 6.1(a). More im-
portantly, a global model is only valid for a specific shaped @annot be re-used for a
different one, even if it is made of the same material, astitated in Fig. 6.1(b).

In this chapter, we show that we can replace the global deftom models by more
flexible local ones. Given a surface made of a homogeneolerialatve learn a model that
approximates the behavior of a patch of such material, goittate it to cover the whole
object of interest. This lets us use the same local modebkctnistruct the deformations of
surfaces of arbitrary shapes, as long as they are made oathe material. Furthermore,
since a small patch can only undergo much simpler deformativan a large object, much
fewer examples are required to train the model.

A direct extension of the approach presented in the prewihapter is to model the de-
formations of a surface patch as linear combinations of moti¢hile effective for shape
recovery, as in the global case, the linear local models daowount properly for prop-
erties such as surface inextensibility. One way to overctimisedifficulty is to explicitly
introduce inextensibility constraints into our algorittmAnother is to replace the linear
models with non-linear ones. In this chapter, we explord apiproaches.

More specifically, we learn local representations as GansBrocess Latent Variable
Models (GPLVM) [94]. This lets us build both linear and nanelar local models de-
pending on the kernel we use. We then show that going from toaglobal can be done
following a Product of Experts (PoE) paradigm [64]. Thislggemodels that not only
disambiguate the reconstruction and allow for closed-feotutions, as the global ones
presented in the previous chapter, but also generalizefiacss of arbitrary shape.

6.1 Learning Local Models

We now show how to learn our local deformation models. As i global case, this
requires training examples that represent the possibtemeations of the surface of inter-
est. However, rather than a global surface, these trainiagiples now are much smaller
surface patches. In theory, any technique that providessitglefunction over the high-
dimensional space of the training examples would yield &ablé model. However, since
the vertices of the mesh representation of surface patdmasot move independentely,
the degrees of freedom of the training examples are couplad thus they lie on a low-
dimensional manifold. We therefore learn models whoseatibiy density functions are
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(b)

Figure 6.1: Advantages of the local models over global of&sHighly flexible surfaces
may undergo too complex deformations for the global modéigreas, locally,
these deformations remain relatively simple. (b) A new glahodel must be
learned for this surface even though it is made of the sameriabfs the
surface in (a). Local models can be combined into surfacesbitrary shapes.

conditioned on a space of reduced dimensionality. Thivialies the need of a number of
training examples that grows exponentially with the dinemaslity.

In the remainder of this section, we first propose a lineantdation of the local models,
where the deformation of a patch is represented as a lin@abication of modes. Since
this formulation does not perfectly model the manifold ofgbadeformations, we replace
it with one that more accurately accounts for the non-litiear of such a space. We then
show that the linear models can be seen as a special casenafithimear ones.

6.1.1 Linear Local Models

In the previous chapter, we have introduced global modeksravthe shape of a surface
was computed as a linear combination of modes. Such modesol&ined by applying
PCA on a collection of synthetic training examples generéerandomly sampling a set
of determining angles between the facets of a mesh.

Since these models proved effective at disambiguating 8DBnruction, it seems nat-
ural to follow a similar idea for our local models. Given a sétN deformed surface
patchesY = [yq,--- ,yN]T obtained, for example, in the same manner as for the global
case, deformation modes can be taken as the eigenvecifrthe data covariance matrix
cC=Y"Y.

Under this formalism, the shape of a new pagéltan be expressed as

y =yo+Sx, (6.1)

wherey is the mean shap8,is the matrix whose columns are thés, andx’ contains the
weights of the different modes. The number of modes usedsmépresentation is chosen
S0 as to obtain the desired reconstruction accuracy.
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6.1 Learning Local Models

As was already observed with the global models, and will lmsvehin the experimental
results of this chapter, such a linear formulation does retyan accurate representation
of the surface deformations manifold. Indeed, such a sgageri-linear and a linear tech-
nique only retrieves its englobing ellipsoid. Thus, for mxde, inextensibility constraints
are not enforced by this linear formulation. To overcome Weakness, we therefore study
non-linear local models. In theory, this could also havenlsiene for global models. How-
ever, in practice, as will be shown in Chapter 7, learning a-lneear global model is
intractable due to the complexity of the possible deforaratiand the number of required
training examples.

6.1.2 The Gaussian Process Latent Variable Model

We learn our non-linear local deformation models as GansBi@mcess Latent Variable
Models (GPLVM) [94], which have been shown to be effectiveeabvering the underlying
low-dimensional structure of high-dimensional data [1617]. The GPLVM relates a
high-dimensional data s€¥ = [y, - ,yN]T, wherey; € ®P, and a low dimensional
latent spaceX = [xq,- - ,xN]T, wherex; € ®?, using a Gaussian process mapping from
X toY. The likelihood of the data given the latent positions caeXgessed as

p(Y|X,0) = W exp (—%tr (K_lYYT)> , (6.2)

where the elements of the kernel matkxare defined by a covariance functidn, such
that(K); ; = k(x;, x;), which is entirely determined by the kernel hyper-paransete

The kernel matrix must be positive definite, but can be eithear or non-linear. Whereas
there exists a single formulation of the linear kernel, asitkl in the following section,
different non-linear covariance matrices can be chosethisnwork, we use a non-linear
kernel that is the sum of a Radial Basis Function, a bias ostemterm, and a noise term,
and can be written as

k(Xi,Xj) = @1 exp (—@gﬂxi — Xj”2) + @3 + @4&7]' R (63)

whered; ; is the Kronecker delta function, at®} <;<4 are the kernel hyperparameters.
Learning a GPLVM [94] involves maximizing the posterior

pX,0]Y) o p(Y[X,0)p(X)p(©) (6.4)

with respect taX and ©, wherep(©) is a simple prior over the hyper-parameters of the
covariance function, ang(X) encourages the latent positions to be close to the origin.

Given a new test point’, inference in the GPLVM is done by maximizipdy’, x'|X,Y, ©)
with respect to the latent coordinatesof the test point, or equivalently by minimizing its
negative log likelihood given, up to an additive constant, a

ly' —u)* D 2 1 2
Liocal(X',¥') = TR + 5 Ino®(x) + §HX,H ) (6.5)
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with mean and variance given by

px') = yo+ YK 'k(x), (6.6)
2(x) = k(x,x)—k(x) Kk, (6.7)

whereyy is the original mean value of the data, ak(k’) is the vector with elements
k(x',x;) for latent positionst; € X.

While effective at learning complex manifolds, the GPLVMfets from the fact that
its computional cost grows ag8(N?), due to the inversion of th&/ x N kernel matrix.
Sophisticated sparsification techniques have recently pemposed [96] to overcome this
issue. Such techniques introduce a setoinducing variablesX,,, which allows to split
the covariance matrix into two matricéé, , andK¢ ,,. The former is the kernel matrix
for the elements oX,,, and the latter denotes the covariance betwendX,,. This re-
duces the computational complexity of learningG/N:m?), and has proved more accurate
than simply using a subset of the data. In our particular,caeeuse the Fully Indepen-
dent Training Conditional (FITC) approximation [143], whiinvolves an independence
assumption when estimating the probability of the examgiesn the inducing variables.

In this sparse formulation, learning is done by maximizing posterior

p(Y X, Xy, 0) =N (Kg o Ky L Xy, diag[Ke ¢ — Q] + 67'T) (6.8)

with respect taX, X,, and©, wherediag[B] is a diagonal matrix whose elements match
the diagonal 0B, andQ¢ ¢ = K¢ oK L Ky .

Finally, for inference, we can re-write the mean and vaeganot the sparse GPLVM
likelihood p(y’, x'| X4, Y, ©) as

Ns(x/) = Yo+ YTKu,fA_lku s (69)
ap(x) = k(,x) - kKL - A Dk (6.10)
whereA = B‘IKu,u + K, K¢ v, andk, is the vector with elements(x’, x;) for latent
positionsx; € X.

When used for tracking purposes [161], the likelihood of @LVM, sparse or not, is
typically optimized with respect t¢’ andx’. This is in contrast with the linear approach
proposed in Section 6.1.1, wheyéis directly taken as the mean prediction of the model.
The reason for optimizing both variables is that it allowes thodel to better generalize and
avoid remaining too close from the training examples. Farrtiore, this will prove crucial
to combine local models into a global one.

6.1.3 Probabilistic PCA as a GPLVM

We now show that the linear model introduced in Section Gdld particular case of the
GPLVM, and thus that the framework introduced in the presisaction is valid for both
linear and non-linear representations. Given a linearddethe GPLVM has been shown
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6.1 Learning Local Models

to be equivalent to probabilistic principal component gs@l [95]. The covariance matrix
then becomes
K=XX"+p371, (6.11)

whereg is the inverse noise variance of the model.
When learning a GPLVM under this assumption, the maximumheflikelihood of
Eqg. 6.2 can be computed analytically, and is reached for

X = ULVT | (6.12)

whereU is the N x d matrix containing the firsil eigenvectors o’ = YY'. Lis a
similar matrix as in Eq. 5.21 whose diagonal elements(are- 5~1)~1/2 where);’s are
the eigenvalues of’. Finally, V is an arbitrary rotation matrix.

This can be thought of as a dual formulation of probabiliB{€A, since, in its standard
form, the high-dimensional data is related to its low-digienal representation through
the eigenvectors; of the data covariance matri® = YZY. The eigenvectors of both
formulations are linked through the relation

S=YTUA?, (6.13)

whereS is the matrix whose columns are thgs, and their eigenvalues, contained in the
diagonal matrixA, are the same.

For inference, the negative log likelihood of a new test pginand its latent represen-
tationx’ is still given by Eq. 6.5. Furthermore, by settiéyto the identity matrix, we can
use Egs. 6.12 and 6.13 to rewrite the linear kernel of Eq. &sld function o5, Y, andA.
Substituting this in the mean prediction of Eq. 6.6 lets usiol up to a scaling by, the
usual probabilistic PCA mean prediction

w(x") =yo+Sx" . (6.14)

Note that this corresponds to the linear formulation inticetl in Section 6.1.1.

As mentioned in the previous section, for tracking purpptesnegative log likelihood
of Eqg. 6.5 is typically optimized with respect 3d andx’ to generalize over the training
examples. In the linear case, this can even be achieved byipipig with respect toy’
only, while still following the model. Since thg’s are orthonormal, the latent variable
x’ corresponding to the test point can directly be obtainedrbjeptingy’ into the low-
dimensional manifold, which we can write as

x'=S"(y' - yo) - (6.15)
Eq. 6.14 then becomes
w(y') =yo+SST(y —yo) - (6.16)
In this formulation, the latent representatishdoes not appear anymore, since it can di-
rectly be computed frony’. By contrast with the non-linear formulation, this themefo
yields a model whose number of degrees of freedom only depemdhe number of ver-
tices of the mesh.
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6 Local Deformation Models

Figure 6.2: We used an optical motion capture system to eeqeal training data. Left:
We stuck reflective markers as a rectangular grid on the cirdd interest.
Right: We deformed the object in front of six infrared cansera

6.1.4 Acquiring the Training Data

As we have seen in Sections 6.1.1 and 6.1.2, learning a loodéhnequires training data.
When dealing with large surfaces, the amount of necessdsy tdacover the space of
possible deformations can be very large. However, sinca fmatches have fewer degrees
of freedom and can only undergo relatively small defornratjdearning local deformation
models becomes easier.

One way to create training examples would be to apply thenigqok of Section 5.1.2
to obtain deformed versions of the patches. This is peyfecited for the linear formula-
tion of Section 6.1.1, where the generated modes typicallyesent deformations sorted
from low spatial frequencies to higher ones. Because theehiffequency modes can be
dropped, the training data does not need to be particuladyrate. By contrast, a non-
linear mapping interpolates more accurately between #ieitig examples than the linear
one, which makes synthetic data inappropriate, as showrhapt@r 7. In this case, it is
important that the training examples be representativeefeal behavior of the material
of interest, and thus, real data is required.

6.1.4.1 Real Data Acquisition

To collect training examples from real surfaces, we usecca/™ optical motion capture
system. As depicted in Fig. 6.2, we stuck 3mm wide hemisphkréflective markers as a
rectangular grid on a surface and deformed it arbitrariljramt of six infrared Vicord™
cameras that reconstruct the 3D positions of individualkexa: Since the markers were
positioned to form & x Q grid, lety = [z1,y1, 21, ..., LPxQ, YPxQ, zPXQ]T be the vector
of their concatenated coordinates acquired at a speciféc #ar goal being to learn a local
model, as opposed to a global one, we decompg@sido overlappingp x ¢ rectangular
patches centered on individual grid vertices, as showngn-B.

We collected these patches from individual frames in séwaadion sequences, sub-
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Figure 6.3: Decomposing the surface into patches. In thég,ctihe global surfacg is
composed of four overlapping patches.. 4.

tracted their mean, and symmetrized them with respect o thgy- andz-axes to obtain
additional examples. This resulted in a large seNgfp x ¢ patchesy; ;—1,. n,. Since
the sequences were acquired at 30 Hz, they comprised maigrsileformations that do
not bring new information. We therefore retained only a stihs = [y, -- ,yx]|” of
N < N, patches that were different enough from each other basedvertex-to-vertex
distance criterion.

In particular, we used this technique for two different mials: Relatively rigid card-
board and a more flexible tissue paper. For the cardboardlagegthe reflective markers
on a %9 grid, and for the napkin, in @87 one. This difference in resolution was only
introduced to facilitate the motion capture and has no hgash the rest of the approach.
In both cases, the markers were placed 2cm apart in bothtidmec Out of 10 motion
sequences for each material, we set one aside for validatigposes and used the other 9
for learning. In each frame, we selected five®bpatches for the cardboard and six for the
napkin, and pruned the resulting set such that the minimstamie between correspond-
ing vertices in separate patches was greater than 0.7crhdarardboard and 1cm for the
napkin. This produced 2032 patches for the cardboard antl 288he napkin. The larger
number of the latter reflects the greater flexibility of thestie paper.

6.2 Global Models as Mixtures of Local Ones

Our ultimate goal is to recover the shape of a surface frong@sa We therefore need a
global model of the surface of interest. Rather than learaimglobal representation for a
particular surface, which would imply doing so for every name, we make use of the local
models introduced in Section 6.1 and combine them using duet@f Experts (PoE) [64]
paradigm. The choice of PoE is a natural one, since they w@tely designed to model
high-dimensional data subject to low-dimensional coistisa as is the case for a large
surface made of small patches. We represent a global suafaadriangulated mesh with
N, verticesv; = [z;,:,2]7 , 1 < i < N, connected byV, edges. We defing’ =
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6 Local Deformation Models

[vi,--, vk, ]" asthe vector of 3D coordinates obtained by concatenatimgetticesv;.

6.2.1 PoE for Deformable Surfaces

As mentioned above, PoE [64] are good at representing higkfsional data subject to
low-dimensional constraints by combining probabilistiogels. Each constraint is treated
by an individual expert, which gives a high probability t@ tbxamples that satisfy it. The
probability of examples statisfying some constraints hatating others will naturally be
zeroed out by the experts associated with the violated @nt.

In the general case, training a PoE is difficult because osécdentify the experts that
simultaneously maximize the probabilities of the trainex@mples and assign low prob-
abilities to unobserved regions of the data space. Howavéhe case of homogeneous
surfaces, this task is greatly simplified; We do not need émtifly the different experts
since all local patches obey the same deformation rulesail@xperts are the same. As
a consequence, one can simply train a single local defoomatiodel corresponding to
one expert and, for inference, replicate it to cover thererirface as shown in Fig. 6.3.
This simply assumes that maximizing the likelihood of a glothape is achieved through
maximizing the likelihoods of all the patches. Note that¢heice of the patch size influ-
ences both the local and global representations. Smalles sesult in local models that
are more constrained since less deformations are possilenpose a higher number of
experts to cover the global surface. Furthermore, we usdapyeng patches to enforce
smooth transitions between neighboring experts. Howehvisrdoesnot impose global
surface smoothness, since the local models may allow fop $bkls.

More formally, lety’ , 1 < i < S be the vectors of the 3D coordinates of th@ver-
lapping patches associated with the experts, wigére §'. Note that, because patches
overlap, the same vertex coordinatesyofappear in severalt!’s. Furthermore, note also
that using a single global meghprevents conflicts arising from two experts predicting dif-

T
ferent shapes for the same mesh protion.®et [x’lT, " x’ST} be the low-dimensional

latent coordinates of each of ti$eexperts. Under our formalism, the conditional probabil-
ity of the global surface can be expressed as
o [ pi(y:lx;, M)
p(y |x' M) = AT — (6.17)
VM= T ity M)
whereM is a local model described in Section 6.1.

Since the denominator of Eq. 6.17 is constant, we can defirieragver the deformation
of the whole surface according to all the experts whose neglaty is

S
ﬁpoe(xla S’/) = Z Liocal (X;, y;) > (618)
=1

whereL;,.; is the local negative log likelihood defined in Eqg. 6.5.
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6.3 Monocular 3D Tracking

6.2.2 Surface Boundary Effects

As can be observed in Fig. 6.3, vertices in the center of thfase appear in several
patches, whereas those in the corners belong to a singlefsre consequence, the latter
have less influence on the global negative log likelihoodegiby Eq. 6.18. To prevent
them from moving freely, we re-weight the vertices such thair influence is inversely

proportional to the number of patches they belong to. Thiloise by replacing in Eq. 6.5

the distance between the patch vertigésind their mean prediction(x}), by the term

pXxq
1 .
AGG ) =D g7y Wi =i (6)” (6.19)
g=1 "7

wherey? ; is the;*" vertex of patch andp(x!) its corresponding mean predictiovi(i, ;)

is the number of patches for a vertex, which depends on thexiimdthe global represen-
tation of thej*" vertex of patch. Furthermore, we also introduced a3 diagonal matrix
W in Eq. 6.20 that defines the global scales along#he/- and z-axes, and accounts for
the difference in scale between the training and testinfases. In practice, we allow for
at most 10% scaling. The negative log likelihood of the glaaface can then be written

S
. A yi)
Lo .7) = Y- (Gt

D 1
+5 Ino?(x}) + §|yxgu2> ) (6.20)
=1

6.3 Monocular 3D Tracking

Here, we formulate our reconstruction algorithm as a frapagame optimization prob-
lem. Even though tracking the surface deformations fromfoarae to the next increases
the risk of drifting, it might be the only practical solutiamsome cases, for example when
the surface is not sufficiently textured to rely on featurinf® In such cases, template
matching is more adapted, but yields an objective functigh l@cal minima that requires
a good initialization. Similarly, the negative log liketibd of the non-linear local model
is a highly non-convex function and needs a good startingtfoi converge to a correct
solution, which makes tracking more suitable.

At each timet, we seek to recover a state vectigrthat determines the shape of the

/ / T
surface. With the non-linear local models, the state is deftsp; = [ytT,xtT} , where

¥, is the vector of the 3D coordinates of the global surface, €né- [xf;, ...,xgt]

denotes the latent variables for the local models. Withitiear models¢, = y;, because,
as mentioned in Section 6.1.3, the latent representatiande obtained directly fror;.
Note that both formulations guarantee surface continsiitige the patches share acommon
vector of vertex coordinates. This would not have been tlse dave had optimized with
respect to the latent variables only, since several expartpredict different locations for
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6 Local Deformation Models

the same vertex. Given an imafieand a local deformation modé\t, we look for the
MAP estimatep,, and therefore approximate the posterior

p(p¢| L, M) o< p(Ig|py)p(t| M) (6.21)

where p(I;|¢;) is the image likelihood, and the negative log | M) is given by
Eq. 6.20.

6.3.1 Image Likelihood

To estimate the image likelihood, we rely on texture and edf@mmation. The latter
constrains the boundary vertices which are not as welltcangd by texture as the interior
ones. We assume that both sources of information are indepegiven the state, which
writes

p(Telor) = p(Te|de)p(Eelepy) - (6.22)

To take advantage of the whole texture, we use template ingtci he negative log
likelihood of such an observation is given by

~ 10 p(Tilon) = = Bru(¥) 623)
T
whereET); was defined in Eqg. 3.11, ard- is a constant set to the variance of the expected
texture error.

To constrain the boundary of the surface, we first projectbiiigler of the mesh into
the image. We then sample poirison this projected boundary, and look in the direc-
tion of their normal for edge points; ; detected by Canny’s algorithm. We allow for
multiple hypotheses and retain all the matches within adcsr from the current repro-
jection. Starting from 8 pixels, this distance is iteralvdivided by 2 after a fixed number
of optimization steps, until it reaches 2 pixels. The negatog likelihood of the edge
observations is then

N Nh

—In p(Ey[¢,) = 02 TQZZH% ei(@nl” ] - (6.24)

i=1 j=1

where N; is the number of sampled boundary points, aidi) is the number of edge
hypotheses for point As for texturegg is a constant corresponding to the variance of the
expected error. In practice, our method is relatively isgare to the exact values ofy
andog.

6.3.2 Optimization

Reconstruction is performed by minimizing the negative dbthe approximate posterior
of Eq. 6.21, which we write, up to an additive constant, as

Liot(0t) = Laiobar(¢r) — In p(T¢|dy) — In p(Eq|oy) . (6.25)
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Figure 6.4: Validating the linear deformation models. Wenpate the mean of the aver-
age vertex-to-vertex distances between test data and ttel meedictions, and
plot it versus the number of modes. Top: The error for the lmaadd model
(left) decreases faster than for the napkin one (right)s thrresponds to our
intuition that fewer dimensions are necessary to model #ferthations of a
more rigid material. Bottom: We tried to reconstruct thekiaglata using the
cardboard model (left), as well as the opposite (right). \Ale cbserve that,
since the napkin is more flexible, its deformations are arsgp®f those of the
cardboard, and thus can model it quite accurately. This tishecase when
trying to reconstruct napkin data with the cardboard model.

In practice, we assume that the camera projection matrixasvk and remains constant
throughout the sequence. This entails no loss of genemilitge the vertices are free to
move rigidly.

In the first frame of a sequence, we start from the referenapeshnd, in the non-linear
case, initialize the latent positions of the local modelshsihat their mean predictions best
correspond to the different patches of the reference shepms.is done by optimizing the
negative log likelihood of Eq. 6.5. Then, at every frame, wididlize the state with the
MAP estimate of the previous time and optimize to get the rieaps.

When considering large surfaces, the number of degreesaddm of our optimization
problem quickly becomes large, since it includes the 3Dtmos of the vertices. To
improve convergence, we introduce a coarse-to-fine apprimaoptimization. In the first
step we only consider every other row and every other linehefdrid representing the
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6 Local Deformation Models

local patches. Therefore, we end up with patches<8 8ertices separated by 4cm instead
of 5x5 vertices separated by 2cm. While not changing the numbkrcaf models that
we use, this drastically reduces the number of vertices tiongge. Furthermore, this only
changes the resolution of the patches, but not their sizereftre we can still use the same
local deformation models to represent the shape of the @atchhis proved most useful
with the non-linear models, since the resulting objectiwaction is much more complex
than in the linear case.

As mentioned in Section 6.1.1, using a linear local modekdus enforce the inexten-
sibility of the mesh. This is still the case when using a pdweer the latent variables to
prevent them from taking overly large values, since extemgipically appears in the first
10 modes. To overcome this issue and prevent the mesh fretshstrg, we introduce a
prior over the global shapg whose negative log is

N”U

1
~In p(§) = — Z > lvi—vill = Liy)?, (6.26)
D

=1 v;eN(vy)

whereN (v;) is the set of neighbors of vertex, ando, corresponds to the variance of
the expected extension error and has the same value for segquence. When using a
linear model, this term is simply added to Eg. 6.25. Thismpcauld also be used in the
non-linear case, since nothing explicitly enforces thesgstaints. However, as shown
in Section 6.4, even though it yields better accuracy onh&tit results, it did not prove

necessary to reconstruct surfaces from real sequences.

6.4 Experimental Results

In this section, we first validate the local models we learfoedardboard and tissue paper,
and then use both synthetic and real data to demonstratihéyagufficiently constrain the
reconstruction to achieve accurate results, even wherathkedf texture on the surfaces
makes it difficult for texture-based approaches.

6.4.1 Local Models Validation

We used the technique of Section 6.1 to learn models for tledatasets discussed in
Section 6.1.4 for increasing latent dimensions. We thekepiche dimensionality that best
fitted our validation set.

In the linear case, this is done by computing the mean piedigiven by Eq. 6.16 and
taking the error as the average vertex-to-vertex distameteden this prediction and the
true test shape. In the top row of Fig. 6.4, we plot the meahesdd values for each of the
dimensions, ranging from 1 to 75. Note that, in the case aftuzard, the curve quickly
decreases, thus indicating that using a small number of smisdeufficient to accurately
represent a large portion of the shape space, whereas fpafier napkin, more modes
are required. This tallies with our intuition that the maidf of potential deformations of
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Figure 6.5: Validating the non-linear deformation modélfie same reconstruction error
as in the linear case is computed and plotted as a functidmedatent dimen-
sion. Top: In the cardboard case (left), we chose latent wkioe 4, since it
corresponds to the point where the error stabilizes. In #se ©f the napkin
(right), we chose to use dimension 7 because of convergantdéems during
training in dimensions 8 and 9. These would have requiredgefanumber
of inducing variables, which would have incerased the cdatmnal burden.
Bottom: As in the linear case, we can observe that the cardboadels are
unable to reconstruct napkin data, whereas the inversesgtpe.

the napkin is larger than that of the cardboard. In the botmm we display, on the left,
the same error when trying to reconstruct the napkin test ulsing the cardboard model,
and, on the right, the opposite. As expected, the napkin hgrdes good reconstructions
of cardboard data, since the deformations of cardboard ambdset of those of the paper
napkin. The inverse is not true.

In the non-linear case, we picked latent dimensions rangetgeen 1 and 9. For each
patchy’ extracted from the validation sequence, we infered theesponding latent vari-
ablesx/ by minimizing the negative log likelihood given in Eq. 6.Bidecomputed its mean
prediction from Eqg. 6.9. In Fig. 6.5, we plot the same curve$oa the linear case. For
the cardboard, the models were all trained using 100 ingwzmiables. We picked = 4
since it corresponds to the point where the error stabilizes some larger values df we
can even observe worse results, thus indicating that thehoodrfits the training data. For
the napkin that has more samples and a greater variety ofualassshapes, we had to use
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Figure 6.6: We used Isomap to compute the low-dimensionakeleings of our cardboard
(left) and napkin (right) data for different latent dimemrss. We plot the resid-
ual variances given by Isomap as a function of the dimensidns confirms
our choice of dimension 4 for the cardboard and 7 for the mapki

(a) (d)

Figure 6.7: Synthetic images generated from optical matepture data (a) Shaded view
of a cardboard surface (b) Similar shaded view for a papekinagc,d) Im-
ages synthesized by texture-mapping using either a richreerr a much more
uniform one.

200 inducing variables to make the training process comrvdrythis case, the higher val-
ues ofd yield slightly better results. However, training in dimenss 8 and 9 suffered from
problems in convergence and would have required a largebauof inducing variables.
Since this would imply a larger computational burden, in experiments we usedi= 7,
which we will show to be sufficient for our purposes. In thetbot row of the figure, it can
again be observed that the cardboard model is unable toctigrpgedict napkin shapes,
whereas the inverse is possible.

Another way of finding the latent space dimension is to usm&n[149] to unfold the
high-dimensional shape space to a lower-dimensional midniT his non-linear technique
has proved efficient at finding the underlying dimension ofr@bfgm, but provides no
inverse mapping or density over the shape space. It thereomot be used for inference,
as required for tracking, but it allowed us to confirm our fatdimensions. As can be
seen in Fig. 6.6, the residual variance given by Isomap agutpto dimension 4 for the
cardboard and 7 for the paper napkin.
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Figure 6.8: Comparison of the linear (dashed red) and mwati (solid blue) models for
cardboard using sequences of synthetic images. No petiatizzt extension
was used to obtain these results. Top row: For each of thetesdlired images,
we plot, on the left, the mean 3D vertex-to-vertex distarce], on the right,
the mean reprojection error of randomly sampled surfacetpoBottom row:
Same plots for much less textured images. Note that the ineafl models
yield a better 3D reconstruction than the linear ones. Thi® ibe expected
since they suffer less from the absence of stretching penalt

6.4.2 Synthetic Data

We measured the accuracy of our method on syntheticallyrgtkeimages. Using a
subset of the cardboard and napkin validation data, sucheasurfaces in Fig. 6.7(a,b),
we formed two sequences of deforming meshes, textured tinenprjected them with
known perspective camera to obtain noise-free images, [@steé in Fig. 6.7(c,d). We
then added i.i.d. noise in the rangel0, 10] to the image intensities. We reconstructed
surfaces from a well-textured sequence and from a moremmiéme. In Fig. 6.8 and 6.9,
we plot reconstruction errors for both models without piavad extension of the global
mesh. It can be observed that the linear models performyovothe cardboard case. This
can be explained by the fact that the mesh tends to stretckptaie the images, which
gives a large error. This is less noticeable for the napkijusece, since the deformations
of a more flexible object tend to remain closer to a flat shapeFi¢. 6.10, we show
similar results when using inextensibility constraints lbeth models. Note that the non-
linear models are less affected by these constraints tlelimgar ones. This was expected
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Figure 6.9: Same plots as in Fig. 6.8 for the napkin modelss fiilme, the linear models
perform as well as the non-linear ones. This can be explaigatie fact that
the deformations of a flexible material remain closer to theshape than that
of a more rigid one. Thus, even when stretching, the lineadatsoyield rea-
sonable 3D errors, but visually less accurate shapes, aBecahecked from
the last row of the figure which depicts the linear (left) amsh4tinear (right)
reconstructions of the same ground-truth (middle) cooedmng to frame 60
of the less-textured sequence.

since the non-linear models give a better approximatiom®fensity in shape space, and
thus should implictly better satisfy the length constrainin the case of poorly-textured
cardboard, the non-linear results are even degraded vétimttoduction of inextensibility
constraints. This can be explained by the fact that they aneconvex constraints, and
can prevent the already complex objective function invblag the non-linear models to
converge.
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Figure 6.10: 3D reconstruction errors for the linear and-lmoear models when using in-
extensibility constraints. Top: Mean vertex-to-vertestdnce as a function
of time for the cardboard textured (left) and less-textufigght) sequences.
Bottom: Same plots for the napkin sequences. Note that mdaxes, the lin-
ear models strongly benefit from the inextensibility coaistis, whereas the
non-linear ones are less affected.

6.4.3 Real Sequences

We then applied our local models to recover the shape ofssfmade of the same card-
board and paper tissue from real video sequences. Noteuvbatire the cases where the
global shape we track is rectangular, we had to assemblentamiels to represent it since
the global shape is not the same as that of our training data.

We first applied our approach to the sheet of carboard of Fil.6The top row of
Fig. 6.11 shows the behavior of our technique when theresslately no texture to anchor
the surface. The recovered surface belongs to a family ailglikely shapes whose ver-
tices can slide across the surface, while their boudar@®ject correctly. Nothing in the
image likelihood prevents this, since all facets look simiNote that, without using shad-
ing cues, even a human eye could hardly differentiate betwee such shapes. However,
as shown in the second example of the figure, adding only ueytexture disambiguates
the reconstruction. Finally, when increasing only sligthlg amount of texture, even more
complex deformations can be recovered accurately, as shothe third example. The
results of this figure were all obtained with non-linear mede

We then tested our linear models on the same sheet of catibdfith synthetic data, we
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Figure 6.11: Reconstructing a rectangular piece of camdbfvam a single video. In each
of the three examples, we show the recovered surface avénlaed on the
original images, and the surface seen from a different viemipAs shown in
the top rows, a complete absence of texture leads us towettisurface that
is plausible, but not necessary accurate. It is only one ohalevfamily of
equally likely solutions. However, this problem is fixed lyding very little
image information, as shown in the other two examples. Wa tieeover
deformations that match the real ones.

observed that the prior over the global mesh that enforaedensibility was very helpful.
To check if this was still the case in real sequences, weéghtike same sequence with and
without those constraints. As can be checked in Fig. 6. EXtemsibility constraints truly
improve the results.

One of the main advantages of local models over global orthaithey can be applied
to represent very different shapes and topologies. Weftirerassembled local cardboard
models to form the circular shape of Fig. 6.13. Our modelsd@nade of rectangular
patches, the mesh we use only roughly approximates thecsup@undaries, which pre-
vented us from using edge information. We neverthelessvegdbe correct 3D deforma-
tions. The second row of the figure shows results obtaineld t# non-linear models,
and the bottom row, those computed with the linear ones. ithddise, the linear models
perform slightly better than the non-linear ones. Howetles, is to the price of additional
inextensibility constraints. In the top row, we only show tleprojection of the non-linear
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6.4 Experimental Results

Figure 6.12: Reconstructing a rectangular piece of camdbivam a single video with lin-
ear local models. In the first row, we show the surface re@alerith inex-
tensibility constraints overlaid in red on the original iges. In the middle,
we show a side of the surface recovered without penalizirggcéting. In the
bottom row, we can see that inextensibility constraintsrioup the 3D shape,
and therefore should be used in conjunction with the lineeaillmodels. Note
that we do not show the reprojection of the compressed syr&iuce it yields
similar images as in the first row.
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Figure 6.13: Reconstructing a circular piece of cardboati the same local models. Note
that assembling square patches only allows us to approithet object’s
outline. This prevents us from using image edges, but doestop us from
successfully recovering the deformations. In the middig, nee show the
results of the non-linear models, and in the bottom row, éhafsthe linear
ones.
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Figure 6.14: Despite a very large occlusion, we manage twnstaict a deforming piece
of cardboard in each frame of a sequence. Note that even & somall recon-
strution errors occur, the global shape nevertheless resttie true one.

T

Figure 6.15: Reconstructing a much more flexible paper mapks opposed to cardboard,
results obtained with non-linear models (first and secondyare better than

with linear ones (third and fourth rows). This confirms ouuition that com-
plex deformations are non-linear.

results, since they are almost indistinguishable from tiahe linear ones. Finally, in
Fig. 6.14, we show that our models make our approach robustdosions.

We then applied our local models to recovering the shape ofichmmore flexible pa-
per napkin. In Fig. 6.15, we show non-linear and linear tssoh the same sequence.
This time, we show both reprojections, since the one of thelt® obtained with the linear
models is noticeably worse than the other. This could be@ggesince it is well-known
that highly flexible materials follow a non-linear behayiatich makes linear models not
adapted. Furthermore, folds can appear between two veriche mesh, which makes
inextensibility constraints inappropriate, and thus pres the mesh from matching the im-
age correctly. Nonetheless, thanks to our models, thetseguhain plausible. In Fig. 6.16,
we show the results of our non-linear models on another seguef the same napkin.

We applied our napkin models to recover the shape of a sudbdéferent topology.
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Figure 6.16: Reconstructing a different deformation ofghme napkin. Even though there
is little texture, the 3D shape of the surface is correctbowered, as shown in
the bottom row where the surface is seen from a differentpeeta/e.

Figure 6.17: Reconstructing a napkin of different topolegth non-linear (top) and linear
(bottom) models. As with cardboard, assembling squarehpatonly allows
us to approximate the outline of the hole, but still lets uwer correct de-
formations.

Fig. 6.17 depicts the results of our non-linear and lineade®on a video sequence of
a napkin with a hole. As before, square patches cannot pirieodel the triangular
hole, but still let us recover correct shapes. In this case,might consider no explictly
modeling the hole, and simply cover the whole rectanguleiasa with patches. However,
as shown in Fig. 6.18, in some places, such as the upper byuoidhe hole, the recovered
shape does not perfectly reproject on the image anymores typically corresponds to
the frames where the hole creates discontinuities in thieafjleurface, thus modifying its
behavior. Explicitly modeling the hole allows for such distinuities.

Finally, since the linear local models do not enforce inesgigility, nothing prevents
us from using them to track stretchable materials, as wadstrated with our global
models. Therefore, we applied our local models to the samaesee of a stretching
balloon as in the global case. The results are shown in Fi§, &nd compared to the
ones obtained with the global model. Note that the local @eesn to better match the
texture of the balloon. However, they were obtained withgkate matching as opposed to
correspondences, which can explain this improvement.
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6 Local Deformation Models

Figure 6.18: Modeling the napkin without explicitly accoug for the hole. The local
models are replicated to cover the whole rectangular seurfédote that the
surface does not always reproject correctly, as can be ¢dbe hole upper
boundary. The hole creates discontinuities in the surfabéch modifies the
global behavior. It should therefore be modeled explicitly

6.5 Closed-Form 3D Reconstruction

When there is enough texture to rely on feature points, we shat we can use the linear
local models to perform 3D reconstruction in closed-form.

In Section 5.4, we showed that 3D reconstruction could hadtated as the solution to
a linear system whose unknowns were the modes weights. Tt mthis system con-
tained the correspondence equations as well as the reggtian of these weights. Solving
this system directly proved under-constrained. Howevershowed that the remaining am-
biguities could be overcome by solving a system of quadeafi@tions accounting for con-
stant edge lengths, which can be done in closed-form usingnBgd Linearization [40].
Here, we show that the same formulation is still valid with tioear local models.

6.5.1 Constraining the Reconstruction via Linear Local Mod els

In Sections 3.2 and 5.4, we formulated shape recovery asothgos to a linear system
of equations. Assuming that we have more equations thanownis) which is true in

practice, we obtain a solution in the least-squares serisge bbserve the first term of
the negative log likelihood of Eq. 6.5, we notice that, wheimg the mean prediction of
the linear formulation given by Eq. 6.16, it becomes a sungabses. Therefore, for each
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6.5 Closed-Form 3D Reconstruction

Figure 6.19: Using local models to track the same extensiltace as in the global case.
In the top row, we show the original images, the second rowlays our
results with a global model, and in the bottom row, we showstiaces ob-
tained with local models. Note that the improvement in textuatching most
probably comes from using template matching rather tharespondences.
Furthermore, the change of mesh resolution was only intreddor conve-
nience of use with the local models.

patchy’ of a surface, we can re-write this term as the least-squatetan to
y' = wmy)
= yo+SST(y —yo). (6.27)

Similarly, the prior over the latent variables that pregethiem from becoming overly large
can be re-written as solving in the least-squares sense

A28T(y —yo) =0. (6.28)

Note that this formulation differs from the original tetfw’||? of Eq. 6.5 by a factoA~1/2,
This is due to the fact that our modes are normalized, by asnhtrith the standard prob-
abilistic PCA formulation where the norms of the modes ampprtional to the values
on the diagonal ofA. This formulation follows that of the regularization in tpeesvious
chapter and forces the modes weights to conform to theldlisimh of the training data.

This, in conjunction with correspondence equations, lstsvtte the solution to 3D
reconstruction under the linear local models as

oc’M 0 &
Tty || ] -0 (6.29)
S =Sy
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6 Local Deformation Models

whereT is the matrix containingl — SS”) for the different patches of the global surface,
thus encoding Eq. 6.27. Similarlg, contains the\ ~'/2S” term for each patch to account
for Eqg. 6.28. Asin EqQ. 6.19, the lines corresponding to tmerdsetween patch shape and
mean prediction can be weighted according to the numbertohpa each vertex belongs
to. Finally,o¢ is a constant set to the variance of the expected reprajeetior.

Solving this system yields a shape that reprojects coyrectthe image, and simultane-
ously remains close to the linear local models predictioowelver, as with global models,
the linear local models do not yield a well-posed problenme ¢brresponding linear system
still has a number of small eigenvalues, since inexterigilmbnstraints are not enforced.

6.5.2 Inextensibility Constraints

To enforce inextensibility of the mesh, we can follow the sadea as in Section 5.4.2. We
first express the solution of Eq. 6.29 as a linear combinatidhe system’sV; eigenvectors
1; associated to its smallest eigenvalues. Then, we seek toaethe weightss; of the
combination that satisfy the inextensibility constraints

As before, these constraints can be written as quadratatiens, which we can linearize
by introducing new unknowns for the quadratic terms. Thésilts in a system of the form

Db=d, (6.30)

withb = [B1,-- , Bny, G181, -+ BiBNy, BalB2, -+, Bn, B, ] 7. As with global modelsb
contains the linear terms, since the system also encodesldlittonnal linear equation that
constrains the last coordinates®t; to sum up to 1. However, since our unknowns are the
vertices coordinates and not the modes weights anymoregumtien of this system links
the linear and the quadratic terms together. Therefore onkel@btain solutions where the
relationships between these terms are violated.

Fortunately, this can again be solved by using Extendeddrirnation [40]. However, in
this case, as opposed to the global model approach, we simgplito link the linear and
guadratic terms together. Therefore, we only multiply #et linear equation by the linear
monomials, thus creatindy; additional equations of the form

N
> " BiBilisN,+1 = Bi (6.31)

i=1

without the need of additional unknowns. This, in practipmved sufficient to enforce
the constraints between linear and quadratic terms andt&no# good recovered shape.
Nonetheless, nothing prevents us from using Extended tizsgin more extensively as

in the global case. The correct numk¥y of eigenvectors to use was chosen in the same
fashion as for the global case, by testing several valueschadsing the one that, for a
small enough reprojection error, gives the smallest mege &hgth variation.
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Figure 6.20: Mean vertex-to-vertex distance (left) and megorojection error (right) for
the closed-form reconstruction using linear local modelhe dashed red
curve corresponds to the closed-form solution, and thel $dlie one to the
refined solution after optimization. Top row: The errors &geomputed for
the textured cardboard sequence from correspondencdsetigatly sampled
on the facets of the mesh. Bottom row: Same plots for the tedtpaper
napkin sequence.

6.6 Experimental Results

We tested our closed-form reconstruction on synthetic dsiaell as real sequences. Note
that we rely on image correspondences only. This forced apjity our technique to more
textured objects than when tracking.

6.6.1 Synthetic Data

We used the same synthetic sequences as in the trackingoaasantitatively evaluate our
method. However, rather than using image noise, we samipéetarycentric coordinates
of the facets of the ground-truth meshes to obtain 3D-to-@Despondences to which we
added zero-mean gaussian noise with variance 5. Fig. 6(#6tsi¢he same 3D reconstruc-
tion and reprojection errors as for tracking when usingtal modes. We further refined
the closed-form solution by using it as an initializatiorthe tracking algorithm presented
in Section 6.3. The dashed red curve corresponds to thedefos@ solution, and the solid

blue one to the refined solution. Note that the closed-foriutiem error is close to that ob-
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Figure 6.21: Similar plots as in Fig. 6.20, but with more ist& matches obtained with
SIFT [103]. Left: We plot the errors obtained with synthetiatches (dashed
red) and with SIFT matches (solid blue) as a function of tiordlie cardboard
case. Right: Same plots for the paper napkin sequence.
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Figure 6.22: We studied the influence of the number of modesohyputing the solutions
with 20 modes rather than the original 75 ones. Left: We shuosverrors
obtained from synthetic matches with 75 modes (dashed retip@ modes
(solid blue), and from SIFT matches with 20 modes (dotted@K)ldor the
cardboard case. Right: Same plots for the paper napkin segue

tained by tracking the surface, and that refining the satutioes not dramatically improve
the results. Since our matches are synthetic, there is ribtndest with different textures
and we used only the well-textured images.

To study the more realistic case where we cannot establisespmndences syntheti-
cally, we used SIFT [103] to find matches in noisy texturedges Since SIFT can give
outliers, we iterated five times our closed-form solutiorthvd decreasing weight for the
regularization of the latent variables, and re-weighteddbrrespondences based on their
reprojection error. In Fig. 6.21, we compare the 3D recow§isn errors obtained with
synthetic matches and SIFT matches. As can be checked fepidts, the solution with
SIFT matches remains close to the synthetic one, exceptdasamal cases that either
presented too many outliers, or where parts of the surface laeking correspondences.

We also studied the influence of the number of modes. Ratherttdking all 75 modes
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Figure 6.23: Recovering the shape of a piece of paper. Frptotoottom: Mesh computed
in closed-form overlaid on the input image, side view of thadsh, refined
mesh after 5 Gauss-Newton iterations.

as in the previous cases, we computed our results with onlyTh@ errors are depicted
in Fig. 6.22, where we plot the results obtained from symthetatches with all modes in
dashed red, those obtained from synthetic matches with 2izsio solid blue, and those
obtained from SIFT matches with 20 modes in dotted blackeMwit the number of modes
has little influence on the quality of the results.

6.6.2 Real Images

Finally, we applied our closed-form solution to recover di@pe of different surfaces
from real images. For all the following cases, we used deosespondences obtained as
described in Section 3.3.1.2. Furthermore, since we déhlatlher materials than the card-
board and paper napkin of the previous sequences, we cothfhgeleformation modes
synthetically, as described in Section 5.1.3 but for snetitipes of 5 5 vertices, and used
all of the modes for reconstruction. As before, even thobhgtsurfaces recovered here are
rectangular, they were modeled as combinations of linezal le@presentations. Addition-
ally, despite the fact that we used video sequences, theesnag treated independently
and nothing links our results from one frame to the next.

As a first case, we recovered the deformations of the piecapémpof Fig. 6.23. In
the first row of the figure, we reprojected our closed-formusoh on top of the original
images. In the middle row, we show a side view of our closedifsolution. As with
global models in Section 5.4, we used this solution as amlizition for a simple Gauss-
Newton optimization scheme. We display the refined solugiber 5 optimization steps in
the bottom row. Fig. 6.24 depicts similar results for a mavenplex deformation of the
same piece of paper.

137



6 Local Deformation Models

Figure 6.24: Recovering more complex deformations of aeieicpaper. From top to
bottom: Mesh computed in closed-form overlaid on the inpoade, side
view of that mesh, refined mesh after 5 Gauss-Newton itergtio

Figure 6.25: Reconstructing a sharp fold in a piece of cldtrom top to bottom: Mesh
computed in closed-form overlaid on the input image, siganof that mesh,
refined mesh after 5 Gauss-Newton iterations.

Since by using synthetic modes, nothing prevents us fromnstoucting different ma-
terials, we applied our technigue to recover the deformatiof a piece of cloth and of
a plastic bag. Figs. 6.25 and 6.26 depict our results on shoases. Note that our local
models manage to reconstruct sharp folds and very locatrdet®ons.
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Figure 6.26: Recovering the shape of a plastic bag. Fronotbpttom: Mesh computed in
closed-form overlaid on the input image, side view of thasimeefined mesh
after 5 Gauss-Newton iterations.

6.7 Conclusion

In this chapter, we have introduced local deformation metelrecover the shape of de-
formable surfaces from a single viewpoint. The main adwgegaof local models over
global ones are that they can be learned from smaller amo@irgining data, since small
patches of a surface deform less than the surface itselfthatdhey can be assembled to
represent any surface shape and topology using a PoE fesmalDur local models are
formulated as Gaussian Process Latent Variable Modelghai us define linear or non-
linear mappings from a low-dimensional manifold to the haiimensional shape space.
They can be used both to track deformations from image to énaayl, when there is
enough texture, to recover the shape of a surface from oha@iimages.
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7 Comparative Results

In this chapter, we compare the different models that we ppagsented in Chapters 4, 5,
and 6, as well as other state-of-the-art techniques. Ristcompare the deformation
spaces covered by our various learned models. We then ev#hagsaccuracy of the models
on synthetic and real data. Since the different models sorastwork with different kinds
of inputs, we chose the image sequences accordingly, arshnire cases, only evaluate
some of the models.

7.1 Competing Techniques

As discussed in Chapter 2, many methods have been investigegr the years to constrain
3D shape recovery. Since a majority rely on physics-ingpgenstraints, for compari-
son purposes, we will consider two physics-based apprsacheegularization: imposing
smoothness either by minimizing a simple quadratic termygrdsforming modal analysis
on a more sophisticated stiffness matrix.

7.1.1 Smoothness Assumptions

A very popular approach to constraining 3D reconstruct®itoiassume that the surface
is locally smooth. This was a key components of Active Corgd&4] and has often
been used for stereovision, or non-rigid 2D registratid®7[1 In regular 3D meshes, this
amounts to minimizing the sum of the squared curvatures efstirface, which can be
written as

Ep = Z (22— 21 —2i11)*+ Ui —Yic1 —yir1) + (22— zic1—2i41)”, (7.1)
{i—1,ii+1}

where{i—1,1i,i+ 1} spans the set of all triplets of aligned vertices. When rstanting a
surface from images, we minimize this term together withutgal image term. Whereas
the 2D version of these constraints is perfectly suitalbleecomes unnatural in 3D since
we expect one direction to deform more than the others. Akhgilshown below, this
indeed limits the applicability of this method.

7.1.2 Physics-based Deformation Modes

The physics-based approach has been very popular in Comgisten. Since 3D re-
construction often involves high-dimensional models, al@halysis [122, 43] was often
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7 Comparative Results

Figure 7.1: Effect of adding (green) or subtracting (blus)rale deformation mode to the
rest shape (red). From top to bottom, modes were obtainddreal cardboard
data, real napkin data, synthetically generated meshegoodifferent topolo-
gies, a stiffness matrix for cardboard, and a stiffnessiwfair the napkin. The
plots display the first five modes other than global motion.

applied to reduce the number of parameters by describindgaaindation as a linear com-
bination of vibration modes. This follows the same idea adioear models. However, in
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Figure 7.2: Comparison of the reconstruction error as atfomof the number of modes
for the different linear global models. On the left, the enm@as computed on
the cardboard validation data, whereas on the right it wae dor the napkin
case. From top to bottom, we display such errors for the candbmodel, the
napkin model, the model obtained from synthetic data, aactlysics-based
models.

this case, the modes are obtained by eigen-decompositiarstiffness matrix rather than
from training data.
Following this approach, we built such a stiffness matrixtfin shell structures [92],
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Figure 7.3: Residual variance obtained with Isomap on thidbzard (left) and napkin
(right) global training data. These plots suggest latemtedisions 16 for the
cardboard and 30 for the napkin.

which typically correspond to our objects of interest. Wertheplaced our PCA modes by
the eigenvectors of that stiffness matrix and performegeahacovery in the same manner
as described in the previous chapters.

Another possibility to apply physics-based methods coeltblzreate training data. This
would involve randomly applying forces to a finite elementd®lp and simulate deforma-
tions. However, solving such a problem is known to be very glemy especially in the
case of large deformations of thin structures.

7.2 Comparing Deformation Spaces

In this section, we compare our learned models by measuraigreconstruction errors on
test data, as well as by visually displaying the effect of sahtheir latent variables. For
the linear local and global models, we can compute the deftiorm modes by simulating
training data using the angle-based parameterizationopeapin Section 5.1.2, by using
real training data as explained in Section 6.1.4, or throongidal analysis as explained
above.

7.2.1 Global Models

First, we study the global modes obtained with the threeufit techniques mentioned
above. In Fig. 7.1, we visually compare the first five defororatnodes that do not in-

volve a global motion of the surface. In the first row, we shbevinodes obtained from the
real cardboard data and in the second one, those obtainedh&inhapkin data. The third

and fourth rows depict the modes obtained from synthetideabgsed data with different

topologies, and the fifth and sixth ones, those correspgnidirthe physics-based models
for the cardboard and for the napkin, respectively. The tifferént physics-based mod-
els were obtained by using values of Young’s modulus, Poisgatio and thickness that

approximately correspond to the two materials.
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Figure 7.4: Reconstruction errors on synthetic images rg¢en from validation data. We
applied a nicely textured image (left) or a much more unifamne (right) to
ground-truth meshes, and projected them with known cameé&le top row
corresponds to a piece of cardboard, and the bottom one tpea papkin. In
each plot, we show the results for the global models obtafrad real data
(red), synthetic data (blue), and modal analysis (blackpteNhat the latter
performs significantly worse as the others in the napkin.case

As can be seen from the figure, using different parameteresailu the physics-based
models produces similar modes, but in a different order.tHeumore, these modes are
quite different from the ones obtained from real and syithgdta. Similarly, the modes
obtained with cardboard data are slightly different fromsth of the paper napkin, but are
closer to the synthetic ones. As could be expected, chanigenppology of the mesh does
not influence the first few synthetic modes.

We then validated these different models in a similar mamsemn Section 6.4.1, by
computing their mean reconstruction error for various $éstpes. To do so, we used the
global test shapes that were kept aside during motion aapfuhe cardboard and napkin
surfaces. As for the local models, we computed the mean giredligiven by Eq. 6.16
and took the error as the average vertex-to-vertex disthat@een such prediction and
the true test shape. Fig 7.2 shows such distances as a furdtibe number of modes
for the cardboard data on the left, and for the napkin on ttet.ri Note that, since the
global napkin and cardboard data do not have the same sizeadvi®d cut our cardboard
examples to train a new model with the same shape as the napdinit can be observed
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7 Comparative Results

Figure 7.5: Visual interpretation of the local deformatimodes. From top to bottom, we
show the cardboard, napkin, synthetic, cardboard stigfreasd napkin stiffness
modes. Note that they closely ressemble the global ones.

that, whereas the models learned from real data yield thesuhat decrease fastest on the
test set for the same material, this is not always the casanfather material. By contrast,
the models learned from synthetic data perform relative®yi wn both test sets, though
slightly worse than the real models. This suggests thathwitereal data is available,
using synthetically generated ones still yields good gieni

Even in the global formulation, nothing in theory prevenégrom learning a non-linear
model as was done for the local representations. Sincertgaamnon-linear model is com-
putationally much more expensive, we applied Isomap to fierctbrrect latent dimension,
to avoid having to learn a model in 50 different dimensione Tesulting residual vari-
ances are shown in Fig. 7.3, and suggest dimensions 16 faatidboard and 30 for the
napkin. Given these latent dimensions, we then tried tmlean-linear GPLVM's as with
patches data. Unfortunately, even though we tried severabers of inducing variables,
learning never converged. Thinking this might have beenraifact of sparsification, we
tried training a full model. However, Matlab ran out of memaorhis again strongly con-
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7.2 Comparing Deformation Spaces

Figure 7.6: We computed the mean predicitions of the nogalifocal models for the min-
imum (green) and maximum (blue) values for a single latemedision while
setting the others to zero. Here, we show the deformatiargyahe 4 possible
dimensions for our cardboard model.

Figure 7.7: Same plot as in Fig. 7.6, but for the 7 dimensidrikeopaper napkin model.

firms the superiority of local models over global ones.

Finally, we compared the accuracy of the different modelsemitising them to recover
the shape of a surface from images. To do so, we applied otnoghen the same synthetic
images that we used in Section 6.4.2, which were obtained fn@ cardboard and napkin
validation sets and are depicted by Fig. 6.7. At each franesgamputed the mean vertex-
to-vertex distance between our reconstruction and thengktwth mesh. In Fig. 7.4, we
show these errors for the textured and more uniform cardbaad napkin sequences. In
the carboard sequence, all models perform roughly equitlgleHowever, in the napkin
case, the model learned from real data performs best, glskiwed by the synthetic one.
Modal analysis has much more troubles recovering the amhepes. This is probably due
to the fact that the chosen material parameters were notlgxacrect. This sensitivity to
parameters reflects the weakness of such representations.

7.2.2 Local Models

We then performed similar comparisons in the case of localeiso As for global ones,
we plot the influence of the first five non-rigid modes of theeéin models. As can be
seen in Fig. 7.5, even with>X&b patches, the various approaches yield different modes.
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7 Comparative Results

Additionally, we studied the effect of the different dimenss of the non-linear models.
To do so, we computed the mean predictions given by the mdmelsarying a single
latent dimension at a time between its minimum and maximuhlaeg and setting the
others to zero. Note that if the low-dimensional space isdeoise, this might not always
be meaningful. Furthermore, since we applied a non-lineelrtique, a single direction
can represent more complex deformations than in the linese.c The resulting mean
predictions are depicted in Figs. 7.6 and 7.7 for the candbaad napkin, respectively.

As before, we also compared the reconstruction error foeasing latent dimensions.
We computed the same average mean vertex-to-vertex destémetween the model mean
prediction and the true shape as in Section 6.4.1. Having/shio the previous chapter
that the non-linear models perform better in much smalleregisions than the linear ones,
here we only compare the different linear models. As can kel@d in Fig. 7.8, the linear
models trained with real data perform again better on th@iresponding test sets, and, as
with global models, the angle-based parameterizationlyiglodes that perform relatively
well independentely of the material.

Since the training examples obtained by randomly varyiegétermining angles of the
mesh yield good and stable linear models, we tried to use #eetraining data for a non-
linear GPLVM. We applied Isomap to find the correct latent @insion. Even though the
error in Fig. 7.9(a) is already very low for dimension 4, ilfg stabilizes at dimension 10,
as shown by the plot in Fig. 7.9(b). In theory, as explaine&eaation 5.1.2, this number
should be 16, without accounting for translations that weraoved. The fact that the
determining angles are bounded, and that some of them aglly yery small deformations
can explain the difference.

Since we aim at recovering smoother cardboard or napkin degaan expect the true
dimension to be lower than that. We therefore learned mddeldimensions between
1 and 10, and validated them on either the coardboard or thlemdata. The resulting
reconstruction errors are shown in Fig. 7.9(c). Note thasé¢hmodels perform poorly
compared to the ones trained on real data. Furthermoreg gpiarsification techniques
prevented the training to converge. We therefore had tmlédlt GPLVM's, which is
computationally expensive and would make our trackingritlgms excessively slow.

As with global models, we compared the reconstruction aaguof the different local
models on synthetic images. Fig. 7.10 shows the recongtnuetrors on the same se-
guences as in the global case, but with local models. We dotygsults obtained with the
different linear models, since a comparison with non-lir@@es was shown in the previous
chapter. As can be checked from the figure, the models le&roiedreal data perform best,
especially with poorly-textured surfaces. As with globaldals, modal analysis gives the
worst results on the napkin data.

7.3 Comparison of our Shape Recovery Techniques

We now compare the performances of the different methodsragoped to recover the
shape of surfaces from images. Since some methods rely nrorgly on texture, or
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Figure 7.8: Comparison of the different local models. We e average reconstruction
error on cardboard (left) and napkin (right) test patchemnftop to bottom,
the models used were obtained from cardboard data, napkin sinthetic

data, and with modal analysis.

require real training data, we could not always apply allheinh to all cases. The results
nonetheless highlight their strengths and weaknesses.
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applied a nicely textured image (left) or a much more unifane (right)

to ground-truth meshes, and projected them with known canidre top row
corresponds to the piece of cardboard, and the bottom ohe fmaper napkin.
In each plot, we show the results for the local models obthfrem real data
(red), synthetic data (blue), and modal analysis (black).
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Figure 7.11: Reconstruction errors on synthetic welltieed cardboard images using all
the methods discussed in this thesis.

7.3.1 Synthetic Data

We first tested our approaches on the same synthetic imagesttas previous section.
However, here we applied our techniques as presented inrdév@ps chapters. There-
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Figure 7.12: Same plots as those of Fig. 7.11, but for muchtéedured cardboard images.
Since some methods rely on correspondences, we could ngttapm to this
case.

fore, linear models, both global and local, were used inwuttjon with inextensibility
constraints. Additionally, since preventing the surfaseexpand or shrink proved use-
ful in many cases, we computed results using inextensilmtinstraints only. In Figs. 7.11
and 7.12, we show these errors as a function of time for thanes and more uniform card-
board sequences. Figs. 7.13 and 7.14 show similar plotdiéopaper napkin sequences.
Note that methods that rely on correspondences were onlyated in the textured cases.

These error plots show us that, with a well-textured surfaest methods perform well,
with the exception of the linear motion model of Section 2.1This was to be expected,
since it really represents the minimal set of constraintselp recovery, and does not truly
account for the behavior of deformable surfaces. Similamgoothness alone performs
poorly, especially on the cardboard case. By contrast, thateinextensibility constraints
alone yield a good reconstruction. This implies that thégl@nd local linear models also
perform very well.

When dealing with much less-textured surfaces, the reatdiglifferent. First, the per-
formances of smoothness constraints have further degré®sebnd, inextensibility con-
straints cannot be used on their own anymore, since there isxture to prevent sharp
creases from appearing on the surface. However, when usmhjunction with a defor-
mation model, global or local, they yield good reconstics.

Furthermore, these experiments show that convex optiimizahd closed-form methods
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Figure 7.13: Reconstruction errors on synthetic welltieed napkin images. We compare
our methods together and with smoothness and inextemgibinstraints.

yield very similar results. This seems natural since théyely on correspondences, and
approximate inextensibility constraints, though in difiet ways: In the SOCP method,
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Figure 7.14: Same plots as in Fig. 7.13, but for much lessitegtnapkin images. Since
some methods rely on correspondences, we could not applytthéhis case.

we ensure that edges lengths will not change by more thah &@d in the closed-form

solutions, we solve linearized quadratic equations in seahparameters that can only
approximately enforce these constraints. As can also befse® the plots, linear global

and local models used in tracking perform better than inedeferm. The fact that they

rely on template matching and that an objective functiomulytminimized is expected to

improve the registration with the image and thus the re@/shape.

An interesting observation is that linear global and locatieis perform similarly, which
might seem surprising. This suggests that our global madd@e sufficient flexibility
to undergo complex deformations, which might seem to ma&al lmodels unnecessary.
Nonetheless, global models can only handle the specifiacifbr which they have been
trained, whereas local ones can be assembled to handle apg. $hs will be shown below,
we believe this to be their real strength.

Finally, we note that the linear models perform slightlytbethan the non-linear ones
when inextensibility constraints are enforced, but worseemvthey are not. This makes
the non-linear models more attractive when dealing withilflexmaterials where folds can
appear in-between vertices, as has already been showntiorgéal.3. Recall, however,
that they can only be used for tracking purposes, whereabnibar ones can recontruct
surfaces from individual images.
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Figure 7.15: We compared our methods on a real video of ami&igrsheet of cardboard.
In order to texture it, and thus make it usable for correspands-based tech-
niques, we stuck a piece of paper on the cardboard. Sincbazandiis more
rigid, its behavior remains unchanged. Top row: Reprapectf the results
obtained with the linear local model. Next rows: Resultsoi#d, from top to
bottom, with linear motion model, convex optimization,dar global model
by tracking and in closed-form, non-linear local modelse#r local models
by tracking and in closed form.
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Figure 7.16: Same comparison as in the cardboard case biltefonore flexible napkin.

In this case, we computed correspondences from the restéined with the
non-linear local models.

156



7.3 Comparison of our Shape Recovery Techniques

Figure 7.17: Comparing our approaches on a piece of papérshiarp creases. From
top to bottom, we show the results of the convex optimizagéipproach and
the closed-form solutions of global and local models. Mdtheelying on a
deformation model are not truly adapted to this case, ardittenversmooth
the surface. Nonetheless their results are reasonablexap@ations of the
true shapes.

7.3.2 Real Images

We applied our methods to several real sequences of morestdetured surfaces under-
going large deformations. The surfaces were made of cardbpaper, and more flexible
tissue, which all have very different physical properti€&ince some of our approaches
rely on correspondences, we needed to have textured ssirfagethe cardboard, we stuck
a textured piece of paper on top of the surface. Since cardlieanore rigid, this did
not influence its deformations. This allowed us to use oualloardboard model, as well
as methods relying on feature points. Results are depiotédgi 7.15, whose first row
shows the mesh obtained with linear local models reprajestethe original images. The
following rows show the results of the different methodsnsieem a different viewpoint.

As we can see, most models, to the exception of the linealomatiodel, perform rela-
tively well on this case. The poor results of the linear motinodel can be explained by
the fact that, in such a deformation, the motion along the d¢ifisight is large. Therefore,
a method that penalizes it is not adapted. Note that the ineafl models tend to flatten
the top of the bent paper. We believe this to be due to the absgftrue inextensibility
constraints, which typically would not allow this to happen

We then wanted to compare our methods on the paper napkinveaish is much more
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7 Comparative Results

Figure 7.18: We compared the reconstructions with locgl)(#md global (bottom) models
of a surface with a hole. Even though the global model mansm&ack the
surface, it oversmoothes the parts where the hole createsntinuities. This
yields a bad reprojection of the resulting mesh.

flexible. Unfortunately, in this case, we cannot stick texton it without changing its
properties. Therefore, for methods that rely on correspooés, we established them from
the results of the non-linear local models, by sampling #weydentric coordinates of the
facets and adding gaussian noise with variance 2 to thejegtians of these points. This
is a convoluted way of computing correspondences, butesivie only aim at checking
whether a model can recover complex deformations, it isoregtde. Similar results as in
the cardboard case are depicted in Fig. 7.16. For this erpetj we notice the superiority
of the non-linear local models over the other techniquesnil&ily, we observe that the
convex optimization approach performs well. Linear logad global models have troubles
modeling such a flexible surface where inextensibility ¢@sts can be violated since
folds may appear between neighboring vertices. The linediom model again performs
worst, though not as dramatically as for the cardboard case.
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Figure 7.19: Comparison of the local and global models oneaepiof cardboard from
which a large part was cut out. This simulates the extreme o&s rect-
angular hole where the two opposite parts can move indepépddn the
top two rows, we show the results of the local models thatemblyr recover
the shape. In the middle, we display results obtained wittolba model for
which we penalized stretching. For small deformationss tepresentation
still works, but the two parts cannot be moved far apart,esthés would vio-
late inextensibility constraints. Without these constigithe mesh reprojects
correctly on the images, but gives a meaningless 3D shamhoam in the
bottom two rows.
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7 Comparative Results

We also evaluated our methods on a sequence of a piece ofwiipeharp creases. This
corresponds to the ultimate flexible case, and is a challargeethods that favor smooth
results. For this case, we only evaluated the closed-forrsiomes of the linear models,
and compared them to the convex optimization technique hdws in Fig. 7.17, only our
convex optimization technique manages to recover such geghacisely. Nonetheless,
both global and local models yield meaningful approximadiof the true shape.

Finally, since from results on synthetic data it appeared diptimized global and local
models performed equally well, we applied them on surfadéshweles and cuts to demon-
strate the advantage of local models over global ones. Abeaeen in Fig. 7.18, using a
global model to reconstruct the same napkin with a hole ag@ti& 6.4.3 yields the same
kind of error as when we used local models without explicitgounting for the hole. The
global model smoothes the discontinuities created by tle, ndhich results in a surface
that does not reproject correctly. This, nonetheless, mygyesents a relatively small hole
compared to the global surface. To study the case of a mugérlaole, we cut out a large
piece of a cardboard surface, as shown in Fig. 7.19. Thislaterithe extreme case where
to opposite sides of the hole can move independently. As easbberved from the figure,
when penalizing stretching of the mesh, the global mode} ardnages to explain small
deformations, and fails to reproject correctly for largaees, since they would violate in-
extensibility constraints. One could then think of rema@vsuch constraints. In that case,
as shown in the last two rows of the figure, the reprojectiothefmesh is correct, but its
3D shape completely meaningless.
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8 Conclusion

In this thesis, we have presented several solutions to tidgm of recovering the 3D shape
of a deforming surface from a single viewpoint. We have shdvent, when using feature
points and representing the surface as a mesh, recovesisgape amounts to solving an
ill-conditioned linear system. This is because the distartzetween the vertices and the
camera are only poorly constrained by correspondenceshwhakes 3D shape recovery
much more complex than 2D registration.

This observation lead us to study different approaches noutating the deformation
models required to resolve the ambiguities. In a first apgroae constrained shape re-
covery by using temporal information. The key observati@s that vertices cannot move
arbitrarily between the consecutive frames of a video sacgle The resulting two tech-
niques, that is imposing a linear motion model or using Sé@@rder Cone Programming,
are extremely easy to apply, but are subject to drift as thlgyyan frame-to-frame tracking.

In a second approach, we introduced the use of shape modelstst\broposed a linear
global model and presented a technique to create trainiageshautomatically by ran-
domly setting values to a set of determining angles betwkerfacets of a mesh. Since
this global model was restricted to represent a particutgead shape, we introduced lo-
cal models that can be combined to form any shape, and thersimulate a particular
material rather than a particular surface. In this framéware studied both linear and
non-linear models, the latter providing a more accurateesgmtation of the deformation
space. However, when inextensibility constraints can bereed, both kinds of models
perform similarly.

Comparing our models allowed us to draw several conclusiétist, the convex op-
timization method, assuming enough correspondences avelpd, yields very good re-
sults. This is especially true for surfaces with sharp fadd creases, which the other
approaches tend to oversmooth. Unfortunately, it cannaitwigh individual images. The
linear models, global or local, let us solve the reconsimacin closed-form. They can
therefore work on a single image and require no a priori slegtienate. However, such a
closed-form solution still requires texture. Neverths|eghen there are too few keypoints
on the surface, these models can still be used for trackingerms of performance, the
global and local approaches seem to give equivalent rediisetheless, the local models
let us represent surfaces of arbitrary shapes. The majadwistage of linear models is
that their approximation of the shape space is not as aecasathe non-linear ones. This
forced us to use them in conjunction with inextensibilitystraints, which may not always
be truly valid, as was the case with the napkin. For such c#sesion-linear local models
are therefore the most adapted. However, they requirenagnirtg data and yield a much
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8 Conclusion

Figure 8.1: Some of our techniques have been used in a seftwar computes the shape
of the spinnaker of the swiss sailing team Alinghi.

more complex objective function, which only makes them ficatfor tracking purposes.

In short, local models should generally be favored, as l@ngoesharp creases appear on
the surface. Given a video sequence and real training dieaan-linear models are more
appropriate. However, when these two conditions are nifigdt, the linear ones are most
adapted.

8.1 Applications

As mentioned in the introduction, 3D deformable surfacemnstruction is applicable in
domains such as medical imaging, entertainment, or spBame of our techniques have
already been used for the latter. In a collaboration withsthiess sailing team Alinghi, we
have developed the Deform3D software that integratesnlRiiet's image correspondence
technique [128] and reconstructs the shape of a spinnader drseries of images, such as
the ones of Fig. 8.1. As depicted by Fig. 8.2, our methods hs@been used to recover
the shape of the main sail of the french boat Hydroptére gtigwn in Fig. 8.3.

Several other applications following similar ideas arerently under developement.
Among them, we study the problem of recovering the shape efatimgs of a plane in
flight. We also consider applying our techniques to recowerdeformations of the rotat-
ing turbine blades of a plane. Finally, in medical imagingy;, methods could be of interest
for laparoscopic surgery. First, they could be used to reitoat the shape of organs from
the noisy laparoscope images. Second, from an externalraathey could help recov-
ering the motion of the patient’s torso, from which the defations of the organs can be
infered. We are currently trying to find partners in the matheorld to put these ideas into
practice.
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Figure 8.2: Similarly as for the spinnaker, our methods vegelied to recover the shape
of the main sail of the french boat Hydroptére.

8.2 Future Work

Even though the methods developped in this thesis have eeldahe state-of-the-art in
deformable 3D shape recovery, many further improvemesetpassible. One of the major
limitations of our approaches is their need of a referenagernn which we know the shape
of the surface. In many real life applications, such an imaget available and we only
have images of the deformed surface. This problem is retatedn-rigid structure-from-
motion. However, the current solutions require many fraawes only recover relatively
small deformations. Furthermore, they only reconstruatva 3D points rather than the
whole surface. A challenging topic for future research wdu to study the ambiguities
when given two images of the same surface undergoing twerdiit deformations. One
could reasonably further assume that a 3D model is knowngddbes$ not correspond to
either images. Given these ambiguities, one could studyagmeopriate constraints to
solve them, and possibly use the ones developped in this. wbhle main challenge in
solving this problem stems from the fact that we do not knowlich facet of the mesh
a feature point detected on the image belongs. This woulaternateger programming
problems with new unknowns for the facets indices.

In a more straightforward direction, one could study moreptie the inextensibility
constraints. As shown in this thesis, they are very good latteg plausible solutions
of an ill-conditioned linear system. However, by themsg/uliey cannot resolve all the
ambiguities. This was observed in the case of human motiberevone can flip in depth
the links between the joints of a skeleton and still obtainraexct reprojection [142]. In that
work, the ambiguities were solved by exploring all possihjes of the links, and choosing
the most appropriate ones. In our case, the problem becanesofe complex, since we
are dealing with complete surfaces as opposed to jointddhat a simple tree structure.
Nonetheless, we could find the multiple minima of the quaciequations accounting for
edges lengths that appear in our closed-form solution®rdklan one solution, as is the
case with Extended Linearization. For small meshes, thikldme achieved using Groebner
bases. For larger surfaces, the problem has too many unkni@vGroebner bases to be
practical, however, one could consider finding the multgg&itions of small parts of the
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8 Conclusion

Figure 8.3: Images of the french boat Hydroptére [71].

mesh, and link them together in a consistent manner.

This would give us a way to exploit shading, an important immage that we have ne-
glected in this work. As mentioned in Chapter 2, it gives ady@ea of the shape of a
surface, but relies on very strong assumptions that almesgrrhold. To make it practical,
it would seem more appopriate to use it as a qualitative nmeasther than a quantitative
one. Given the multiple results obtained with inextengipdontraints as described above,
one could then use shading to select the correct one. In samtitions, an approximate
shading model should be sufficient, and should let us find ¢dnect shape even when the
assumptions made by the model are violated. The selectidd be done by choosing the
shape that yields maximum mutual information with the imaxgawas proposed in [166].

Finally, another avenue of research arises from the forimonlaof our problem in a
different metric space than the standard Euclidean spaeeerfly, a non-rigid structure-
from-motion method formulated as an optimization problera Riemannian manifold has
been proposed [139]. The main advantage of using such awoithisfthat it allows to de-
fine geodesic distances and isometric deformations. Thsdwa introduced in Computer
Graphics for simulation purposes [86]. Following this ayguh, we could implicitely en-
force inextensibility constraints without the need of rmmvex constraints. However, the
drawback of the current formulations is that they relateodeftions over time, and thus
are inappropriate for shape recovery from a single image.
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