607 research outputs found

    Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing problem

    Get PDF
    AbstractWe investigate generalizations of the following well-known problems in the framework of parameterized complexity: the feedback set problem and the cycle packing problem. Our problem setting is that we are given a graph and a vertex set S called “terminals”. Our purpose here is to consider the following problems:1.The feedback set problem with respect to the terminals S. We call it the subset feedback set problem.2.The cycle packing problem with respect to the terminals S, i.e., each cycle has to contain a vertex in S (such a cycle is called an S-cycle). We call it the S-cycle packing problem. We give the first fixed parameter algorithms for the two problems. Namely;1.For fixed k, we can either find a vertex set X of size k such that G−X has no S-cycle, or conclude that such a vertex set does not exist in O(n2m) time, where n is the number of vertices of the input graph and m is the number of edges of the input graph.2.For fixed k, we can either find k vertex-disjoint S-cycles or conclude that such k disjoint cycles do not exist in O(n3) time

    Bidimensionality and EPTAS

    Full text link
    Bidimensionality theory is a powerful framework for the development of metaalgorithmic techniques. It was introduced by Demaine et al. as a tool to obtain sub-exponential time parameterized algorithms for problems on H-minor free graphs. Demaine and Hajiaghayi extended the theory to obtain PTASs for bidimensional problems, and subsequently improved these results to EPTASs. Fomin et. al related the theory to the existence of linear kernels for parameterized problems. In this paper we revisit bidimensionality theory from the perspective of approximation algorithms and redesign the framework for obtaining EPTASs to be more powerful, easier to apply and easier to understand. Two of the most widely used approaches to obtain PTASs on planar graphs are the Lipton-Tarjan separator based approach, and Baker's approach. Demaine and Hajiaghayi strengthened both approaches using bidimensionality and obtained EPTASs for a multitude of problems. We unify the two strenghtened approaches to combine the best of both worlds. At the heart of our framework is a decomposition lemma which states that for "most" bidimensional problems, there is a polynomial time algorithm which given an H-minor-free graph G as input and an e > 0 outputs a vertex set X of size e * OPT such that the treewidth of G n X is f(e). Here, OPT is the objective function value of the problem in question and f is a function depending only on e. This allows us to obtain EPTASs on (apex)-minor-free graphs for all problems covered by the previous framework, as well as for a wide range of packing problems, partial covering problems and problems that are neither closed under taking minors, nor contractions. To the best of our knowledge for many of these problems including cycle packing, vertex-h-packing, maximum leaf spanning tree, and partial r-dominating set no EPTASs on planar graphs were previously known

    Bidimensionality and Geometric Graphs

    Full text link
    In this paper we use several of the key ideas from Bidimensionality to give a new generic approach to design EPTASs and subexponential time parameterized algorithms for problems on classes of graphs which are not minor closed, but instead exhibit a geometric structure. In particular we present EPTASs and subexponential time parameterized algorithms for Feedback Vertex Set, Vertex Cover, Connected Vertex Cover, Diamond Hitting Set, on map graphs and unit disk graphs, and for Cycle Packing and Minimum-Vertex Feedback Edge Set on unit disk graphs. Our results are based on the recent decomposition theorems proved by Fomin et al [SODA 2011], and our algorithms work directly on the input graph. Thus it is not necessary to compute the geometric representations of the input graph. To the best of our knowledge, these results are previously unknown, with the exception of the EPTAS and a subexponential time parameterized algorithm on unit disk graphs for Vertex Cover, which were obtained by Marx [ESA 2005] and Alber and Fiala [J. Algorithms 2004], respectively. We proceed to show that our approach can not be extended in its full generality to more general classes of geometric graphs, such as intersection graphs of unit balls in R^d, d >= 3. Specifically we prove that Feedback Vertex Set on unit-ball graphs in R^3 neither admits PTASs unless P=NP, nor subexponential time algorithms unless the Exponential Time Hypothesis fails. Additionally, we show that the decomposition theorems which our approach is based on fail for disk graphs and that therefore any extension of our results to disk graphs would require new algorithmic ideas. On the other hand, we prove that our EPTASs and subexponential time algorithms for Vertex Cover and Connected Vertex Cover carry over both to disk graphs and to unit-ball graphs in R^d for every fixed d

    Subset feedback vertex set is fixed parameter tractable

    Full text link
    The classical Feedback Vertex Set problem asks, for a given undirected graph G and an integer k, to find a set of at most k vertices that hits all the cycles in the graph G. Feedback Vertex Set has attracted a large amount of research in the parameterized setting, and subsequent kernelization and fixed-parameter algorithms have been a rich source of ideas in the field. In this paper we consider a more general and difficult version of the problem, named Subset Feedback Vertex Set (SUBSET-FVS in short) where an instance comes additionally with a set S ? V of vertices, and we ask for a set of at most k vertices that hits all simple cycles passing through S. Because of its applications in circuit testing and genetic linkage analysis SUBSET-FVS was studied from the approximation algorithms perspective by Even et al. [SICOMP'00, SIDMA'00]. The question whether the SUBSET-FVS problem is fixed-parameter tractable was posed independently by Kawarabayashi and Saurabh in 2009. We answer this question affirmatively. We begin by showing that this problem is fixed-parameter tractable when parametrized by |S|. Next we present an algorithm which reduces the given instance to 2^k n^O(1) instances with the size of S bounded by O(k^3), using kernelization techniques such as the 2-Expansion Lemma, Menger's theorem and Gallai's theorem. These two facts allow us to give a 2^O(k log k) n^O(1) time algorithm solving the Subset Feedback Vertex Set problem, proving that it is indeed fixed-parameter tractable.Comment: full version of a paper presented at ICALP'1

    Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal

    Full text link
    The Odd Cycle Transversal problem (OCT) asks whether a given graph can be made bipartite by deleting at most kk of its vertices. In a breakthrough result Reed, Smith, and Vetta (Operations Research Letters, 2004) gave a \BigOh(4^kkmn) time algorithm for it, the first algorithm with polynomial runtime of uniform degree for every fixed kk. It is known that this implies a polynomial-time compression algorithm that turns OCT instances into equivalent instances of size at most \BigOh(4^k), a so-called kernelization. Since then the existence of a polynomial kernel for OCT, i.e., a kernelization with size bounded polynomially in kk, has turned into one of the main open questions in the study of kernelization. This work provides the first (randomized) polynomial kernelization for OCT. We introduce a novel kernelization approach based on matroid theory, where we encode all relevant information about a problem instance into a matroid with a representation of size polynomial in kk. For OCT, the matroid is built to allow us to simulate the computation of the iterative compression step of the algorithm of Reed, Smith, and Vetta, applied (for only one round) to an approximate odd cycle transversal which it is aiming to shrink to size kk. The process is randomized with one-sided error exponentially small in kk, where the result can contain false positives but no false negatives, and the size guarantee is cubic in the size of the approximate solution. Combined with an \BigOh(\sqrt{\log n})-approximation (Agarwal et al., STOC 2005), we get a reduction of the instance to size \BigOh(k^{4.5}), implying a randomized polynomial kernelization.Comment: Minor changes to agree with SODA 2012 version of the pape

    Towards a Polynomial Kernel for Directed Feedback Vertex Set

    Get PDF
    In the Directed Feedback Vertex Set (DFVS) problem, the input is a directed graph D and an integer k. The objective is to determine whether there exists a set of at most k vertices intersecting every directed cycle of D. DFVS was shown to be fixed-parameter tractable when parameterized by solution size by Chen, Liu, Lu, O\u27Sullivan and Razgon [JACM 2008]; since then, the existence of a polynomial kernel for this problem has become one of the largest open problems in the area of parameterized algorithmics. In this paper, we study DFVS parameterized by the feedback vertex set number of the underlying undirected graph. We provide two main contributions: a polynomial kernel for this problem on general instances, and a linear kernel for the case where the input digraph is embeddable on a surface of bounded genus
    • 

    corecore