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We investigate generalizations of the following well-known prob-
lems in the framework of parameterized complexity: the feedback
set problem and the cycle packing problem. Our problem setting
is that we are given a graph and a vertex set S called “terminals”.
Our purpose here is to consider the following problems:

1. The feedback set problem with respect to the terminals S . We
call it the subset feedback set problem.

2. The cycle packing problem with respect to the terminals S , i.e.,
each cycle has to contain a vertex in S (such a cycle is called
an S-cycle). We call it the S-cycle packing problem.

We give the first fixed parameter algorithms for the two problems.
Namely;

1. For fixed k, we can either find a vertex set X of size k such
that G − X has no S-cycle, or conclude that such a vertex
set does not exist in O (n2m) time, where n is the number of
vertices of the input graph and m is the number of edges of
the input graph.

2. For fixed k, we can either find k vertex-disjoint S-cycles or
conclude that such k disjoint cycles do not exist in O (n3) time.
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1. Introduction

Packing and covering vertex-disjoint cycles is one of the central areas in both graph theory and
theoretical computer science. The starting point of this research area goes back to the following well-
known theorem due to Erdős and Pósa [8] in early 1960s.

Theorem 1.1. (See Erdős and Pósa [8].) For any k and any graph G, either G contains k vertex-disjoint cycles
or a vertex set X of order at most f (k) (for some function f of k) such that G − X is acyclic.

Theorem 1.1 concerns about both “packing”, i.e., k vertex-disjoint cycles and “covering”, i.e., at
most f (k) vertices that hit all the cycles in G . Starting with this result, there are a host of the
results in this direction. Packing appears almost everywhere in extremal graph theory. Also, the cycle
packing problem, which asks to find maximum number of vertex-disjoint (or edge-disjoint) cycles in
an input graph G , is a well-known problem too. For example, Krivelevich et al. [19] give an O (

√
log n)-

approximation algorithm for the edge-disjoint cycle packing problem and show some hardness results.
Also, “covering” leads to the well-known concept “feedback set” in theoretical computer science.

The problem of finding a minimum feedback vertex set in a graph, i.e., the smallest set of vertices
whose deletion makes the graph acyclic, has many applications and its history can be traced back
to the early 60’s (see the survey of Festa et al. [10]). It is also one of the classical NP-complete
problems from Karp’s list [16]. Thus not surprisingly, for several decades, many different algorithmic
approaches were tried on this problem including approximation algorithms [2,3], linear programming
[5], polyhedral combinatorics [4,12], exact algorithm [11] and parameterized complexity [14].

Natural generalizations of the feedback set problem and the cycle packing problem have been
studied extensively in theoretical computer science.

The problem called “subset feedback set” is that we are given a graph G and a subset S of its
vertices, and the goal is to find a vertex set X of minimum order such that G − X has no S-cycle
(for S ⊆ V , an S-cycle is a cycle which has a vertex in S). For this problem, Even et al. [9] give an
8-approximation algorithm for the subset feedback set problem.

The problem called “S-cycle packing” is that we are given a graph G and a subset S of its vertices,
and the goal is to find among the cycles that intersect S a maximum number of vertex-disjoint (or
edge-disjoint) ones. See [19] for the history of the cycle packing problem. As pointed out there, this
problem is rather close to the well-known problem “the disjoint paths problem” [20], and approxi-
mation algorithms to find an S-cycle packing have been studied extensively.

In this paper, we are interested in the framework of parameterized complexity developed by
Downey and Fellows [7] for both the packing problem and the feedback set problem. The standard
goal of parameterized analysis is to take the parameter out of the exponent in the running time.
A problem is called fixed-parameter tractable (FPT) if it can be solved in time O ( f (k)nc), where n is
the number of vertices of the input graph, c is a constant not depending on k, and f is an arbitrary
function. An algorithm with such a running time is also called FPT.

We can trivially determine whether or not G has a vertex set X of order at most k such that G − X
has no S-cycle in O (nk+2) time by enumerating all k vertices of G . Although this is polynomial time
for each fixed k, it is practically too slow for large inputs, even if k is relatively small. Our first main
result is the first FPT algorithm for the subset feedback set problem.

Theorem 1.2. For a graph G = (V , E), a terminal set S ⊆ V , and a fixed integer k, we can either find a vertex
set X of size k such that G − X has no S-cycle, or conclude that such a vertex set does not exist in O (n2m)

time, where n is the number of vertices and m is the number of edges.

Note that, in 2010, a FPT algorithm for the subset feedback set problem is also given in [6] inde-
pendently.

Second, we are interested in the packing problem. We give the first FPT algorithm for the S-cycle
packing problem.
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Theorem 1.3. For a graph G = (V , E), a terminal set S ⊆ V , and a fixed integer k, we can either find k disjoint
S-cycles or conclude that such k disjoint cycles do not exist in O (n3) time.

Let us observe that if S = V (G), then we can find k disjoint cycles in linear time for fixed k, if they
exist. Indeed, if a given graph has large tree-width, then we can do this from the existence of a large
grid minor, and otherwise we can use the dynamic programming to find disjoint cycles.

On the other hand, this would not work for the S-cycle packing problem. In fact, the problem
setting is closer to the well-known “the disjoint paths problem for fixed number of terminals” [20]
as pointed out in [19]. Using the result in [20], we can determine whether or not G has k disjoint S-
cycles in O (n2k+3) time as follows: we enumerate all k pairs of vertices such that each pair contains
at least one vertex in S , and for such pairs we apply Robertson–Seymour’s O (n3) time algorithm
for finding k disjoint paths [20]. We emphasize here that even obtaining a nO (k) time algorithm is
non-trivial without using the graph minor theory, which implies that the S-cycle packing problem is
harder than the subset feedback set problem. Thus we shall use some tools from the graph minor
theory.

2. Preliminaries

2.1. Basic notations

Let G = (V , E) be a graph with a vertex set V and an edge set E . In this paper, n and m always
mean the number of vertices of a given graph and the number of edges of a given graph, respectively.
For a subgraph H of G , the vertex set and the edge set of H are denoted by V (H) and E(H), respec-
tively. For X ⊆ V , the subgraph induced by X , denoted by G[X], is the subgraph G ′ = (X, F ), where
F consists of all edges in E with both ends in X . Let N(X) be the neighbor of X , i.e., the set of all
vertices adjacent to X . For an edge e ∈ E , contracting e means the operation that deletes e, identifies
the end vertices of e, and removes parallel edges (if exist). For an edge set F ⊆ E , let G/F denote
the graph obtained from G by contracting all edges in F . Similarly, contracting a subgraph H means
contracting E(H) and contracting a vertex set X means contracting G[X]. For two graphs G and H ,
we say that H is a minor of G (or G has a H-minor), if there exists an edge set F ⊆ E(G) such that G/F
contains H as a subgraph.

For an integer p, K p is the complete graph with p vertices. A graph G contains a K p -model if there
exists a function σ with domain V (K p) ∪ E(K p) such that

1. for each vertex v ∈ V (K p), σ(v) is a tree of G , and the trees σ(v) (v ∈ V (K p)) are pairwise
vertex-disjoint, and

2. for each edge e = uv ∈ E(K p), σ(e) is an edge f ∈ E(G), such that f is incident in G with a
vertex in σ(u) and with a vertex in σ(v).

Thus G contains a K p-minor if and only if G contains a K p-model. We call the tree σ(v) (v ∈ V (K p))
the node of the K p-model. The image of σ , which is a subgraph of G , is called the K p-model.

Let H = (V H , E H ) be a subgraph of G = (V , E). For X ⊆ V and F ⊆ E , let G − X be the subgraph
of G induced by V \ X , and let G − F = (V , E \ F ). For subgraphs H1 = (V 1, E1) and H2 = (V 2, E2)

of G , define H1 ∪ H2 = (V 1 ∪ V 2, E1 ∪ E2), H1 ∩ H2 = (V 1 ∩ V 2, E1 ∩ E2), and H1 − H2 = H1 − V (H2).
A separation of a graph G is a pair of subgraphs (A, B) of G such that G = A ∪ B and E(A ∩ B) = ∅.
The order of the separation (A, B) is |V (A) ∩ V (B)|.

For a vertex set S ⊆ V , a cycle is called an S-cycle if it contains a vertex in S . We say that a vertex
set X ⊆ V is an S-cycle feedback set if G − X contains no S-cycles. For S, T ⊆ V with S ∩ T = ∅, an
S-path with respect to T is a path with end vertices in T that contains a vertex in S .

2.2. Tree-width and wall

The tree-width of a graph is defined as follows.
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Fig. 1. An elementary wall of height 8.

Definition 2.1. Let G be a graph, T a tree and let V = {Vt ⊆ V (G) | t ∈ V (T )} be a family of vertex
sets Vt ⊆ V (G) indexed by the vertices t of T . The pair (T , V ) is called a tree-decomposition of G if it
satisfies the following three conditions:

• V (G) = ⋃
t∈T Vt ,

• for every edge e ∈ E(G) there exists a t ∈ T such that both ends of e lie in Vt ,
• if t, t′, t′′ ∈ V (T ) and t′ lies on the path of T between t and t′′ , then Vt ∩ Vt′′ ⊆ Vt′ .

The width of (T , V ) is the number max{|Vt |−1 | t ∈ T } and the tree-width tw(G) of G is the minimum
width of a tree-decomposition of G .

An elementary wall of height eight is depicted in Fig. 1. An elementary wall of height h for h � 3
is similar. It consists of h levels each containing h bricks, where a brick is a cycle of length six. A wall
of height h is obtained from an elementary wall of height h by subdividing some of the edges, i.e.,
replacing the edges with internally vertex disjoint paths with the same endpoints (see Fig. 2). The
nails of a wall are the vertices of degree three within it.

Any wall has a unique planar embedding. The perimeter of a wall W , denoted per(W ) is the
unique face in this embedding which contains more than six nails. For any wall W in a given graph G ,
there is a unique component U of G − per(W ) containing W − per(W ). The compass of W , denoted
comp(W ), is the subgraph of G induced by the vertex set V (U ) ∪ V (per(W )).

A subwall of a wall W is a wall which is a subgraph of W . A wall is flat if its compass does
not contain two vertex-disjoint paths connecting the diagonally opposite corners. Note that if the
compass of W has a planar embedding whose infinite face is bounded by the perimeter of W then
W is clearly flat. It is shown in [22,23] that a wall W is flat if and only if there are pairwise disjoint
sets A1, . . . , Al ⊆ V (comp(W )) (l � 0) containing no corners of W such that

(1) for 1 � i, j � l with i �= j, N(Ai) ∩ A j = ∅,
(2) for 1 � i � l, |N(Ai)| � 3, and
(3) if W ′ is the graph obtained from comp(W ) by deleting Ai and adding new edges joining every

pair of distinct vertices in N(Ai) for each i, then W ′ may be drawn in a plane so that all corners
of W are on the outer face boundary.

If such A1, . . . , Al exist, we say that comp(W ) can be embedded into a plane up to 3-separations, and an
embedding as in (3) is called a flat embedding.

2.3. Folio

As we mentioned in the end of Section 1, we use some tools from the graph minor theory. In this
subsection, we state some results of Robertson and Seymour.

In [20], Robertson and Seymour gave a polynomial-time algorithm for the vertex-disjoint paths
problem for fixed number of terminals. Actually, they solved a generalized problem called folio. For
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Fig. 2. A wall of height 3.

a vertex set X , a partition X = {X1, . . . , Xq} of X is realizable if there are disjoint trees T1, . . . , Tq in
G such that Xi ⊆ V (Ti) for i = 1, . . . ,q. We say that a vertex v ∈ V \ X is irrelevant with respect to X
when a partition of X is realizable in G − v if and only if it is also realizable in G . The list of realizable
partitions of X is called the folio relative to X , and the problem of computing it is also called the folio.

It is known that the folio can be solved in polynomial time if the tree-width is bounded.

Theorem 2.2. (See [1,20].) For integers w and k, there exists a (k + w)O (k+w) O (n2) time algorithm for com-
puting the folio relative to a set of k vertices in graphs of tree-width w. Furthermore, if w and k are fixed, there
exists an O (n) time algorithm.

When tree-width is large, in Robertson–Seymour’s algorithm for the disjoint paths problem or the
folio, they first find a large clique minor or a large “almost flat” wall. The precise description of their
theorem is as follows.

Theorem 2.3. (See Robertson–Seymour [20, Theorem (9.8)].) For any p and any h there are computable con-
stants g1(p,h) and g2(p,h) such that, if a given graph G has tree-width at least g1(p,h), then there is an
O (nm) time algorithm to find either a K p-minor or a pair (X, W ) satisfying the following conditions:

(C1) X is a vertex set with |X | � (p
2

)
,

(C2) W is a flat wall of height h in G − X,
(C3) all the components A1, . . . , Al (as in the definition “up to 3-separations”) have tree-width at most

g2(p,h).

Note that the statement of [20, Theorem (9.8)] is stated in terms of “branch-width” instead of
tree-width, it does not cause any problems because branch-width differs only by a constant factor
from tree-width. We also note that there is now an O (n) time algorithm to either a K p-minor or a
pair (X, W ) satisfying (C1)–(C3) in [18].

Robertson and Seymour find an irrelevant vertex if the graph contains a large clique minor or a
large flat wall. The following theorem plays a crucial role in their algorithm when the graph has a
large clique minor. Actually, this theorem is used to find an irrelevant vertex in a clique model in
O (m) time.

Theorem 2.4. (From [20, Theorem (5.3)] by Robertson–Seymour.) Let Z be a vertex set with |Z | = 2k in a given
graph G. Suppose that there is a clique model K of order at least 3k in G, and there is no separation (A, B) of
order at most 2k − 1 in G such that A contains Z and B − A contains at least one node of the clique model.
Then, we can find mutually disjoint connected subgraphs H1, . . . , H2k of G such that |V (Hi)∩ Z | = 1 for every
i and there is an edge between Hi and H j for every i �= j, in O (m) time. Moreover, they satisfy the following.

• The edges between Hi and H j are contained in E(K ).
• If the order of K is at least 3k + 1, then we can take H1, . . . , H2k not intersecting with some node of K ,

and the vertices in the node of K are irrelevant to the folio relative to Z .
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We note that symbols k, ξ,μ, and Gi in [20, Theorem (5.3)] correspond to 3k,2k,0, and a node of
K in the above statement, respectively. If we have a large flat wall, we can find an irrelevant vertex
by the following theorem.

Theorem 2.5. (See Robertson and Seymour [21], see also [20, Theorem (10.2)].) For fixed integers k, p, there is
a computable constant h2(k, p) satisfying the following: if there is a subset X ⊆ V (G) of order at most p such
that there is a flat wall W of height h2(k, p) in G − X, then there is a vertex v in W such that v is irrelevant
to the folio relative to a set of k vertices. Furthermore, if all the components G[A1], . . . , G[Al] have tree-width
bounded by a fixed constant, where A1, . . . , Al (l � 0) are as in the flat embedding of comp(W ), we can find
in O (m) time the irrelevant vertex v.

Note that Robertson and Seymour actually showed that the “middle” vertices of a large flat wall
are irrelevant. With these theorems, Robertson and Seymour gave a polynomial-time algorithm for
the folio.

Theorem 2.6. (See Robertson and Seymour [20].) For a fixed integer k, the folio with k terminals in graphs can
be solved in O (n3) time.

Note that the running time of their algorithm is improved to O (n2) time in [18]. We now introduce
a new concept S-folio, which is similar to the folio. Let G = (V , E) be a graph, S ⊆ V be a terminal set,
and X ⊆ V be a vertex set. Let X = {(X1, s1, t1, δ1), . . . , (Xq, sq, tq, δq)} be a set of quadruples, where
X1, X2, . . . , Xq are mutually disjoint subsets of X , si and ti are distinct vertices in Xi , and δi ∈ {0,1}
for i = 1,2, . . . ,q. We say that X is S-realizable if there are paths P1, . . . , Pq in G such that

• X ∩ V (Pi) = Xi ,
• end vertices of Pi are si and ti , and
• Pi contains a vertex in S if and only if δi = 1

for i = 1,2, . . . , p. The S-folio relative to X in G is the set of all S-realizable sets of quadruples.
In the same way as Theorem 2.2, the S-folio can be computed in polynomial time in graphs of

bounded tree-width.

Theorem 2.7. (See [1,20].) For integers w and k, there exists a (k + w)O (k+w) O (n2) time algorithm for com-
puting the S-folio relative to a set of k vertices in graphs of tree-width w. Furthermore, if w and k are fixed,
there exists an O (n) time algorithm.

3. Algorithm for finding a feedback vertex set

Suppose we are given a graph G = (V , E) and a terminal set S ⊆ V . Recall that a vertex set X ⊆ V
is said to be an S-cycle feedback vertex set if G − X contains no S-cycle. The objective of this section is
to prove Theorem 1.2, that is, to give an O (n2m) algorithm for the following problem.

Subset Feedback Vertex Set.
Input. A graph G = (V , E), a terminal set S ⊆ V , and a fixed integer k (parameter).
Problem. Find an S-cycle feedback vertex set X ⊆ V of size k, or conclude that such a vertex set does
not exist.

3.1. Overview

To show Theorem 1.2, we use a standard technique for fixed parameter tractable problems. We use
the following proposition, whose proof is given later.
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Proposition 3.1. Suppose that we are given a fixed integer l, a graph G = (V , E), a terminal set S ⊆ V , and
an S-cycle feedback vertex set T of size l. Then, we can find an S-cycle feedback vertex set T ′ of size l − 1 with
T ′ ∩ T = ∅ or conclude that such a vertex set does not exist in O (nm) time.

By applying this proposition repeatedly, we obtain Theorem 1.2 as follows.

Proof of Theorem 1.2. We begin with a subgraph G0 of G with k + 1 vertices and its S-cycle feedback
vertex set3 T0 of size k. In each step, by adding one new vertex to the subgraph, we obtain a new
subgraph G1 of G with an S-cycle feedback vertex set T ′

1 of size k + 1. We apply Proposition 3.1 for
every set T ⊆ T ′

1 in a graph G1 − (T ′
1 \ T ). Then, we can obtain an S-cycle feedback vertex set T1 of

size k in G1 or conclude that such a vertex set does not exist. Note that the number of subsets of
T ′

1 is at most 2k+1, which is a constant depending only on k. By repeating this procedure at most n
times, in O (n2m) time, we obtain an S-cycle feedback vertex set of size k if exists. �

We now give a high-level description of the proof of Proposition 3.1. Our framework follows
Robertson–Seymour’s algorithm for the disjoint paths problem described in Section 2.3.

Suppose that we are given a graph G = (V , E), a terminal set S ⊆ V , and an S-cycle feedback
vertex set T of size l. The first step of our algorithm is to examine whether or not the tree-width of
G − T is large. If it is bounded by a fixed constant, then we can find an S-cycle feedback vertex set T ′
of size l−1 with T ′ ∩ T = ∅ or conclude that such a vertex set does not exist in O (n) time by applying
a standard dynamic programming technique to a tree-decomposition of bounded width similarly to
Theorem 2.7. Note that tree-width of G is bounded by tree-width of G − T plus |T |. Otherwise, we
apply Theorem 2.3 to G (p and h will be given later) and obtain either a large clique minor or a
large “almost flat” wall. For both cases, we shall find an “irrelevant” vertex v in G − T . Here, we say
that a vertex v ∈ V \ (S ∪ T ) is called l-irrelevant when G has an S-cycle feedback vertex set T ′ of
size l − 1 with T ′ ∩ T = ∅ if and only if G − v has an S-cycle feedback vertex set T ′′ of size l − 1
with T ′′ ∩ T = ∅. We remove an l-irrelevant vertex v and go back to determine whether or not the
tree-width is bounded. By repeating this at most n times, we obtain a desired S-cycle feedback vertex
set T ′ .

Therefore, the remaining task in this algorithm is to find an l-irrelevant vertex in the large clique
minor or the large “almost flat” wall efficiently. In what follows, we consider these two cases, sepa-
rately.

3.2. Large clique minor

Suppose that G − T contains a K p-minor. The objective of this subsection is to show that we can
find an l-irrelevant vertex in the clique minor.

We begin with the following lemma. We say a K p-model K is minimal if for every vertex v and
for every edge e in K , both K − v and K − e do not have a K p-model.

Lemma 3.2. Let p, l be integers, and let K be a minimal K p-model. Then, for any vertex set U of K with |U | � l,

K − U consists of at most
( l

2

) + 1 connected components.

Proof. Let V 1, . . . , V p be the nodes of the K p-model. Then, G[V i] is a tree by the definition of a
K p-model. Since at most l of these sets intersect with U , we may assume that each of V 1, . . . , Vl′
intersects with a vertex in U and each of Vl′+1, . . . , V p does not intersect with any vertex in U for
some l′ � l. Clearly Vl′+1, . . . , V p are contained in the same connected component K ∗ of K − U .

3 Formally, it should be written as “(S ∩ V (G0))-cycle feedback vertex set”. However, we denote “S-cycle feedback vertex set”
for simplicity.
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Fig. 3. Structure of G − T .

For any 1 � i � l′ , if |V i ∩ U | = ti , then there are at most ti − 1 connected components of G[V i]− U
containing no leaf of G[V i]. By the minimality of K , there are at most

(l′
2

)
leaves of G[V i] that are not

contained in K ∗ . Hence, the number of connected components of K − U is at most

l′∑
i=1

(ti − 1) +
(

l′

2

)
+ 1 = |U | − l′ +

(
l′

2

)
+ 1,

which is maximum when l′ = |U | = l. Thus, K − U consists of at most
( l

2

) + 1 connected compo-
nents. �

With this lemma, we can find an l-irrelevant vertex as follows.

Lemma 3.3. Let l � 2 be an integer. Suppose we are given a graph G = (V , E), a terminal set S, an S-cycle
feedback vertex set T of size l, and a clique minor of size p = 5

2 l3 + 1 in G − T . Then, in O (m) time, either we
can find an l-irrelevant vertex, or we can conclude that there is no S-cycle feedback vertex set T ′ of size l − 1
with T ′ ∩ T = ∅.

Proof. We may assume that G is 2-connected. Let G1, . . . , Gr be the connected components of
G − T − S . Let K be a minimal K p-model in G − T . Since G − T contains no S-cycle, and hence
the clique model K does not contain any vertex in S , therefore we may assume that K is contained
in G1.

Let G ′ be the graph obtained from G by removing all edges connecting T and V (G1). From each
vertex t of T , we try to find l2 paths in G ′ to K that are mutually vertex disjoint except for t . If
such paths exist, then there exist at least l2 − |T ′| paths from t to K − T ′ for any set T ′ ⊆ V (G) \ T

with |T ′| � l − 1. Since removing T ′ ⊆ V (K ) splits K into at most
(|T ′|

2

) + 1 < l2 − |T ′| connected
components by Lemma 3.2, some component of K − T ′ is connected by two internally disjoint paths
from t , which means that G − T ′ contains a cycle containing t . We note that this cycle contains a
vertex in S , because every path from t to K contains a vertex in S by the construction of G ′ .

Thus, we only consider the case when there exists a vertex set Ct for each t ∈ T such that |Ct | �
l2 − 1 and Ct separates t and K in G ′ . Since G − T contains no S-cycles, if Ct contains a vertex v not
contained in V (G1) ∪ N(V (G1)), then there exists a vertex v ′ ∈ N(V (G1)) such that v and G1 are not
connected in G − T −{v ′} (see Fig. 3), which means that (Ct \ {v})∪ {v ′} also separates t and K in G ′ .
Thus, we may assume that Ct ⊆ V (G1) ∪ N(V (G1)) for each t ∈ T .

Then C = T ∪ ⋃
t∈T Ct separates S and K in G , because we assume the 2-connectivity of G . Hence,

there is a separation (A′, B ′) of G such that A′ contains all vertices in S , B ′ contains a node of K , and
|V (A′) ∩ V (B ′)| = |C | =� |T | + (l2 − 1)|T | = l3. Note that since p > l3, there must exist a node of K
in B ′ − A′ . Let (A, B) be a separation of minimum order (at most l3) such that A contains all vertices
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in S and B − A contains a node of K . Then B − A contains at least p − l3 = 3
2 l3 + 1 nodes of K , and

hence it has a K p−l3 -minor.
Since B − A contains no vertices in S , the existence of S-cycles depends on the folio relative to

V (A) ∩ V (B) in B , and we do not necessarily need all information of B . By applying Theorem 2.4
with Z = V (A) ∩ V (B) and this K p−l3 -minor, we can find mutually disjoint connected subgraphs
H1, . . . , H |Z | in B such that |V (Hi) ∩ Z | = 1 for every i and there is an edge between Hi and H j for
every i �= j in O (m) time. Also there is a vertex v in V (K ) not contained in any Hi , which is an
l-irrelevant vertex. To see this, let vi be the vertex in V (Hi) ∩ Z and let X ⊆ V − T be an S-cycle
feedback vertex set in G − v with |X | � l − 1. Then, by the definition of Hi , the vertex set X ′ defined
by

X ′ = (
X \ V (B)

) ∪ {vi | X ∩ Hi �= ∅}
is an S-cycle feedback vertex set in G with |X ′| � |X | � l − 1. This means that v is l-irrelevant.

Since all these procedures can be done in linear time, the total running time is linear. �
3.3. Large wall

Suppose that we have a pair (X, W ) in G − T satisfying (C1)–(C3). Then, we can find an l-irrelevant
vertex by the following lemma.

Lemma 3.4. For any integers p and l, there exists an integer h1(p, l) satisfying the following. Suppose we are
given a graph G = (V , E), a terminal set S, an S-cycle feedback vertex set T of size l, and a pair (X, W ) in
G − T such that

• X is a vertex set with |X | � (p
2

)
,

• W is a flat wall of height h1(p, l) in G − T − X.

Then, in O (m) time, either we can find an l-irrelevant vertex or conclude that there is no S-cycle feedback
vertex set T ′ of size l − 1 such that T ′ ∩ T = ∅.

Proof. Let h = l2 + 1, and we show that h1(p, l) = (
(p

2

) + l)(2l + 2)(h + 1) satisfies the condition. We
may assume that G is 2-connected. Suppose the flat wall W is of height h1(p, l) � |X ∪ T |(2l + 2)×
(h + 1). Then W contains |X ∪ T |(2l + 2) disjoint flat subwalls W1, . . . , W |X∪T |(2l+2) of height h. By
the 2-connectivity of G , for each i, if compG−T −X (W i) contains a vertex in S , then there exist a
vertex x ∈ X ∪ T and a path P such that P connects x and W i , V (P ) ⊆ compG−T −X (W i) ∪ {x}, and P
contains a vertex in S . If such a path P exists, we say that x is S-attached to W i . Now we observe the
following.

• Since G − T contains no S-cycle, for each x ∈ X , x is S-attached to at most one of W1, . . . ,

W |X∪T |(2l+2) .
• For each x ∈ T , if x is S-attached to at least l + 1 of W1, . . . , W |X∪T |(2l+2) , then there exist l + 1

internally vertex-disjoint paths from x to W each containing a vertex in S , which shows that
there is no S-cycle feedback vertex set T ′ of size l − 1 such that T ′ ∩ T = ∅.

By these observations, in what follows, we may assume that x is S-attached to at most l of
W1, . . . , W |X∪T |(2l+2) for each x ∈ X ∪ T . Then, there exist at least |X ∪ T |(2l + 2) − |X ∪ T |l =
|X ∪ T |(l + 2) subwalls whose compasses contain no vertex in S . By changing the indices if neces-
sary, let W1, . . . , W |X∪T |(l+2) be such subwalls.

We say that a vertex x in X ∪ T is universal if x has neighbors in at least l + 2 of compG−T −X (W1),

. . . , compG−T −X (W |X∪T |(l+2)). By pigeon hole principle, there is a vertex set X ′ ⊆ X ∪ T and a wall
W ′ of height h such that X ′ is the set of vertices in X ∪ T which has neighbors in compG−T −X (W ′),
and each vertex in X ′ is universal. In particular, this condition implies that W ′ is flat in G − X ′ .

We claim that the middle vertex v in W ′ is l-irrelevant. To show this, it suffices to show that any
minimal S-cycle feedback vertex set T ′ of order l with T ′ ∩ T = ∅ does not contain v . Suppose for
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a contradiction that v is in T ′ . Thus G − (T ′ − {v}) has an S-cycle C through s ∈ S . Note that W ′ − T ′
still has a (non-proper) subwall W ′′ of height h − l.

Since G − T ′ has no S-cycle, there exists a separation (A′, B ′) of order one in G − T ′ such that
B ′ − A′ contains V (W ′′) and A′ − B ′ contains s. We take such a separation such that A′ is as small as
possible. We can observe that if a nail u of W ′ is contained in A′ , then the row and the column of W ′
containing u have to intersect with T ′ . With this observation, one can see that A′ contains at most
l2 nails of W ′ , because at most l rows and at most l columns of W ′ intersect with T ′ . Furthermore,
A′ − B ′ cannot contain a universal vertex x′ ∈ X ′ , because there exist l + 2 internally disjoint paths
from a universal vertex x′ to the wall W ′′ in the original graph G .

On the other hand, the existence of C implies that v is adjacent to a vertex in A′ − B ′ , which
means A′ − B ′ contains a neighbor of v . This neighbor u has to be in compG−X ′(W ′), since u /∈ X ′ ,
whereas s is not contained in compG−X ′(W ′). By our choice of the separation (A′, B ′), there is a path
P from u to s in A′ − B ′ . Since P has to go through at least h

2 nested cycles of the wall W ′ , A′ has to

contain at least h
2 > l2 nails of W ′ , which is a contradiction.

Thus v cannot be contained in a minimal S-cycle feedback vertex set T ′ of order l with T ′ ∩ T = ∅,
which shows that v is l-irrelevant. It is easy to see that we can find the middle vertex v in W ′ in
linear time. �
3.4. Proof of Proposition 3.1

Now we are ready to give a proof of Proposition 3.1. Set p = 5
2 l3 + 1 and h = h1(p, l). Here is the

description of our algorithm.

Algorithm for finding a smaller S-cycle feedback vertex set.
Input. A graph G = (V , E), a terminal set S ⊆ V , and an S-cycle feedback vertex set T of size l.
Output. Find an S-cycle feedback vertex set T ′ of size l − 1 with T ′ ∩ T = ∅ or conclude that such a
vertex set does not exist.

Step 1. Determine whether tree-width of G is at most g1(p,h) + |T | or not. If it is at most g1(p,h) +
|T |, then solve the problem by a dynamic programming technique in a similar way as Theorem 2.7.
Otherwise, go to Step 2.

Step 2. Apply Theorem 2.3 to G − T and obtain either a K p-minor or a pair (X, W ) satisfying the
conditions in Lemma 3.4. If we have a K p-minor, then apply Lemma 3.3 to find an l-irrelevant vertex.
Otherwise, apply Lemma 3.4 to find an l-irrelevant vertex. Then, remove the l-irrelevant vertex and
go to Step 1.

Since Step 2 can be done in O (m) time, the total running time is O (nm). This completes the proof
of Proposition 3.1. �
4. Algorithm for packing S-cycles

In this section, we prove Theorem 1.3, that is, we give an O (n3) time algorithm for the following
problem for fixed k.

S-cycle Packing.
Input. A graph G = (V , E), a terminal set S ⊆ V , and a fixed integer k (parameter).
Problem. Find k vertex-disjoint S-cycles in G , or conclude that such cycles do not exist.

In the same way as the procedure for the Subset Feedback Vertex Set, our algorithm for the S-
cycle Packing consists of the following two steps. First, we examine whether or not the tree-width
of G is large. If it is bounded by a fixed constant, then we can solve the problem by Theorem 2.7.
Otherwise, we apply Theorem 2.3 to G (p and h will be given later) and obtain either a K p-minor or
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a pair (X, W ) satisfying (C1)–(C3). For both cases, we find an irrelevant vertex v , i.e., a vertex v such
that G has a solution if and only if so does G − v , remove v , and go back to determine whether or
not the tree-width is bounded.

In what follows, we give an algorithm for finding an irrelevant vertex in the large clique minor or
the large “almost flat” wall.

4.1. Large clique minor

We say that a K p-model is even if the K p-model is a bipartite graph, which is called a bipartite
expansion in [13]. We also say that a K p-model is odd if for each cycle C in the union of the nodes of
the K p-model, the number of edges in C that belong to nodes of the K p-model is even. Let v ∈ V (K p).
A center for σ(v) is a vertex t ∈ V (σ (v)) such that for each component H of σ(v) − t , the number
of edges e ∈ E(K p) such that σ(e) is incident in G with a vertex of H is at most half the number of
edges in K p incident with v . It is not hard to see that every node σ(v) has a center (perhaps more
than one). Thus we assume that for each node, one of its centers has been selected, and we often
speak of the center of a node without further explanation. Recall that, for S, T ⊆ V with S ∩ T = ∅,
an S-path with respect to T is a path with end vertices in T containing at least one vertex of S .

Set p = p′ + 3k when we apply Theorem 2.3, and suppose that G has a K p -model K ′ . We may
assume that K ′ is minimal. If there exists a node of the K p-model that contains a vertex in S , then
we can find an S-cycle and a K p−3-model that are mutually disjoint. By finding a node that contains
a vertex in S repeatedly, we can obtain either k vertex-disjoint S-cycles or a K p′ -model K containing
no vertices of S . Therefore, in what follows in this subsection, we assume that we have such a K p′ -
model K .

Now we shall prove the following.

Theorem 4.1. Suppose there is a K36k-model containing no vertices of S. Let T = {t1, . . . , t36k} be the centers
of the nodes of the K36k-model. If there are 12k vertex-disjoint S-paths P1, . . . , P12k with respect to T , then
G has k vertex-disjoint S-cycles in the union of the nodes of the K36k-model, together with vertex-disjoint
S-paths P1, . . . , P12k.

Proof. We construct a graph G ′ from G as follows. We first subdivide every edge with a new vertex,
and, for every vertex in S , add an edge between it and all its original neighbors.

It is easy to see that we have an even K36k-model K in G ′ , and all vertices in T are still center.
Moreover, if a path connecting two vertices of T in G ′ is odd, then the corresponding path in G
contains a vertex of S , i.e., an S-path. Furthermore, an S-path with respect to T in G gives rise to an
odd path connecting two vertices of T in G ′ . Therefore, G ′ has k disjoint odd paths with end vertices
in T if and only if G has k disjoint S-paths with respect to T .

A path P with end vertices in an even clique model is called parity breaking if P together with the
even clique model gives rise to an odd cycle. Note that in the graph G ′ defined as above, a path with
end vertices in T is parity breaking if and only if it has odd length. So we can take parity breaking
paths P ′

1, . . . , P ′
12k with respect to K that correspond to P1, . . . , P12k . We now use the following result

in [13] (see also [17]).

Lemma 4.2. (See Geelen et al. [13].) Let K ′ be an even K12k-model in G. If there are 4k vertex-disjoint parity-
breaking paths with respect to K ′ such that the 8k endpoints of these paths are the centers of distinct node
of K ′ , then G contains an odd Kk-model in K ′ .

By Lemma 4.2, the even K36k-model, together with the paths P ′
1, . . . , P ′

12k gives rise to an odd K3k-
model K ′′ . Hence K ′′ contains k vertex-disjoint odd cycles such that each of the odd cycles contains
exactly three nodes of the odd K3k-model K ′ . On the other hand, each such an odd cycle has to
contain at least one vertex in S by our construction of G ′ . Let us observe that each vertex in S is
contained in a triangle in G ′ , with one vertex of degree two in G ′ . But this triangle cannot be any of
the above k vertex-disjoint odd cycles because each of the odd cycles contains exactly three nodes of
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the odd K3k-model K ′ . Thus these k vertex-disjoint odd cycles in G ′ correspond to k vertex-disjoint
S-cycles in G . This completes the proof of Theorem 4.1. �

We also use the following theorem, which is obtained from the algorithm for finding odd paths
in [13] and the reduction from S-paths to odd paths in [15]. Note that a non-bipartite matching
algorithm is used in [13]. Since we find an augmenting path at most k times in the algorithm, the
running time is bounded by O (kn2).

Theorem 4.3. (See Geelen et al. [13] and Kakimura et al. [15].) Let G = (V , E) be a graph with S, T ⊆ V and
k be an integer. Then, we can find either

• k vertex-disjoint S-paths with respect to T , or
• Z ⊆ V with |Z | � 2k − 2 that intersects every such path.

in O (kn2) time.

By Theorems 4.1 and 4.3, we have the following.

Theorem 4.4. Let G = (V , E) be a graph with S ⊆ V and k, p′ be integers with p′ � 36k. Suppose we have a
K p′ -model containing no vertices in S and let T = {t1, . . . , tp′ } be the centers of the nodes of the K p′ -model.
Then, we can find either

• k vertex-disjoint S-cycles, or
• Z ⊆ V with |Z | � 24k − 2 such that G − Z contains no S-paths with respect to T

in O (kn2) time.

Let p′ be a sufficiently large integer (the definition will be given later), and we apply this theorem
to a K p′ -model K containing no vertices in S . If we find k vertex-disjoint S-cycles, then we stop the
algorithm. Thus, in what follows, we consider the case when we have a subset Z ⊆ V with |Z | �
24k − 2 such that G − Z contains no S-paths with respect to the set T of the centers. Let S ′ ⊆ S be
the set of terminals contained in a connected component of G − Z intersecting with T . By Menger’s
theorem, for any vertex s ∈ S ′ , there exists a vertex τ (s) ∈ V such that the connected component of
G − Z − {τ (s)} containing s, say Gs , does not intersect with any vertex in T . We take such a vertex
τ (s) ∈ V − Z so that Gs is maximal. We denote

⋃
s∈S ′ {τ (s)} by U = {u1, . . . , uq}, and let V i be the

vertex set defined by

V i =
⋃{

V (Gs)
∣∣ s ∈ S, τ (s) = ui

}
for i = 1, . . . ,q. Then the collection of V i ’s is mutually disjoint by the definition of τ (s). Let V 0 =
V − Z − U − ⋃

i V i . Then G[V 0] intersects with K because T ⊆ V 0.
Let U0 ⊆ U be the vertex set defined by

U0 = {
ui ∈ U

∣∣ G[V i] contains an S-cycle
}
,

and define U1 = U \ U0. Note that we can easily compute U0. If |U0| � k, then we can immediately
find k vertex-disjoint S-cycles, since the collection of V i ’s is mutually disjoint.

Suppose that |U0| < k. Since a path internally disjoint from V 0 with end vertices in V 0 must
contain at least one vertex in Z , we observe the following:

(1) If G has k vertex-disjoint S-cycles, then they intersect with at most 2|Z | sets of {V 1, . . . , Vq}.

If |U1| is bounded by a fixed constant, then we can find a vertex that is irrelevant to the existence
of k vertex-disjoint S-cycles in an enough large clique model K as follows. We find a separation
(A, B) of G of minimum order such that A contains all vertices in S and B − A contains at least one
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node of K . Then, we find a vertex that is irrelevant to the folio relative to V (A) ∩ V (B) in B using
Theorem 2.4, which is a desired vertex.

However, the number of elements in U1 is not necessarily bounded. Our main idea is that we only
need 2|Z | elements in each “equivalence class” of U1 by observation (1). We now describe how to
divide U1 into the equivalence classes.

We introduce a new concept weak folio, which is a weaker concept than the folio. Let G = (V , E)

be a graph and X ⊆ V be a set. We say that (s, t, γ ), where s and t are distinct vertices in X and
γ ∈ {0,1}, is admissible if G has a path P from s to t such that P has a vertex of S if γ = 1. Let X =
{(s, t, γ ) | (s, t, γ ) is admissible, s, t ∈ X}, called the weak folio relative to X . Note that |X | is bounded
by a function of |X |.

For each ui ∈ U1, we compute the weak folio relative to Z ∪ {ui} in G[V i ∪ Z ∪ {ui}]. This can be
computed in O (m) time by checking whether or not each (s, t, γ ) is admissible. Let U 1

1, . . . , U r
1 be

the partition of U1 depending on the weak folios, that is, ui and ui′ are in the same set if and only if
the weak folio relative to Z ∪ {ui} in G[V i ∪ Z ∪ {ui}] and that relative to Z ∪ {ui′ } in G[V i′ ∪ Z ∪ {ui′ }]
are the same by exchanging ui and ui′ . Note that r is bounded by an exponential function of |Z | + 1,
say f1(|Z |).

If |U j
1| > 2|Z | for some j, then we replace the vertex sets V i ’s corresponding to all vertices in

U j
1 by 2|Z | new vertices, and add all edges between these new vertices and the vertices in U j

1. Let

U ′ j
1 be the set of these 2|Z | vertices, and we replace V 0 and U j

1 by V 0 ∪ U j
1 and U ′ j

1 , respectively
when we find an irrelevant vertex. After executing this reduction for each j, we can find a vertex
that is irrelevant to the existence of k vertex-disjoint S-cycles by Theorem 2.4 in O (m) time, since
|U | � 2|Z | f1(|Z |). More precisely, we find a separation (A, B) of G[V 0 ∪ Z ∪ U ] of minimum order
such that A contains all vertices in Z ∪ U and B − A contains at least one node of K . Then, we find a
vertex that is irrelevant to the folio relative to V (A) ∩ V (B) in B using Theorem 2.4. Note that by the
conditions of Hi in Theorem 2.4, we do not need to consider paths (or trees) not intersecting with K
when we find an irrelevant vertex in K . Thus, by observation (1), we can see that this vertex is also
irrelevant to the existence of k vertex-disjoint S-cycles.

Note that, for the above arguments, we define p′ as an integer at least 3 · (2|Z | f1(|Z |) + |Z |)+ 1 �
3(|U | + |Z |) + 1, and the total time to find an irrelevant vertex is O (m).

4.2. Large wall

We may assume that each connected component of G is 2-connected. Suppose we are given a
graph G = (V , E), a terminal set S , and a pair (X, W ′) in G − T such that

• X is a vertex set with |X | � (p
2

)
,

• W ′ is a flat wall of height h in G − X (h will be given later).

Then W ′ contains k disjoint flat walls of height h/k. If the compasses of all these walls contain
vertices in S , then we can easily find k vertex-disjoint S-cycles. Otherwise, we can find a flat wall W
of height h/k whose compass does not contain vertices in S . We now use the following lemma.

Lemma 4.5. (See Kakimura et al. [15].) Let k be a positive integer. Assume that G has a cycle C with no vertices
of S. If G has 4k log2(k + 10) vertex-disjoint S-paths with respect to V (C), then there are k vertex-disjoint
S-cycles. Moreover, such k disjoint S-cycles can be found in linear time.

Then, by Theorem 4.3 and Lemma 4.5, we have the following theorem.

Theorem 4.6. Let G = (V , E) be a graph with S ⊆ V and k be an integer. Suppose we have a flat wall W
containing no vertices in S and let T = V (per(W )). Then, we can find either

• k vertex-disjoint S-cycles, or
• Z ⊆ V with |Z | � 8k log2(k + 10) − 2 such that G − Z contains no S-paths with respect to T ,

in O (kn2) time.
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We execute Theorem 4.6 for the wall W of height h/k that contains no terminals. If we have k
vertex-disjoint S-cycles, we are done. Hence, we may assume that we obtain a subset Z ⊆ V with
|Z | � 8k log2(k + 10) − 2 such that G − Z contains no S-paths with respect to T = V (per(W )).

By replacing Z with Z ∪ X , we use the same argument as the previous subsection. Then, there
exists a vertex set U such that removal of Z ∪ U ∪ X separates S and W . Then, by observation (1),
the intersection of k vertex-disjoint S-cycles and G[V 0 ∪ Z ∪ X ∪ U ] consists of at most 2|Z ∪ X | paths
whose end vertices are in Z ∪ X ∪ U , where V 0 ⊆ V is defined in the same way as Section 4.1. Thus, it
suffices to find a vertex in W that is irrelevant to the existence of such 2|Z ∪ X | paths. By executing
the same reductions as the previous subsection, we may assume that |Z ∪ U ∪ X | is bounded by a
function of k, say f2(k). That is, it suffices to consider the case when there is a separation (A, B) of
bounded order such that A contains all vertices in S and B − A contains W . Then if follows from
Theorem 2.5 that if we have a wall of size h2( f2(k), |X |) in B − A, then removing some vertex of
the wall does not affect the folio of B relative to V (A) ∩ V (B), where h2 is as in Theorem 2.5. Since
B − A contains a wall of height h − |Z ∪ U |, if we set h � k · h2( f2(k), |X |) + f2(k), then we can find
an irrelevant vertex in O (m) time. Thus, the total time to find an irrelevant vertex is O (n2).

4.3. Algorithm

Finally in this subsection, we describe our algorithm for the S-cycle Packing. Assume that p and h
are given as in Sections 4.1 and 4.2.

Algorithm for the S-cycle packing.
Input. A graph G = (V , E), a terminal set S ⊆ V , and a fixed integer k.
Output. Find k vertex-disjoint S-cycles in G , or conclude that such cycles do not exist.

Step 1. Determine whether the tree-width of G is at most g1(p,h) or not. If it is at most g1(p,h),
then solve the problem by Theorem 2.7. Otherwise, go to Step 2.

Step 2. Apply Theorem 2.3 to G and obtain either a K p-minor or a pair (X, W ) satisfying (C1)–(C3). If
we have a K p-minor, then find an irrelevant vertex as in Section 4.1. Otherwise, we find an irrelevant
vertex as in Section 4.2. Then, remove the irrelevant vertex and go to Step 1.

Since we can find an irrelevant vertex in O (n2) time when k is fixed, this algorithm runs in O (n3)

time. This completes the proof of Theorem 1.3. �
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