5,315 research outputs found

    Fixed-parameter algorithms for minimum-cost edge-connectivity augmentation

    Get PDF
    We consider connectivity-augmentation problems in a setting where each potential new edge has a non-negative cost associated with it, and the task is to achieve a certain connectivity target with at most p new edges of minimum total cost. The main result is that the minimum cost augmentation of edge-connectivity from k − 1 to k with at most p new edges is fixed-parameter tractable parameterized by p and admits a polynomial kernel. We also prove the fixed-parameter tractability of increasing edge connectivity from 0 to 2 and increasing node connectivity from 1 to 2

    How to Secure Matchings Against Edge Failures

    Get PDF
    Suppose we are given a bipartite graph that admits a perfect matching and an adversary may delete any edge from the graph with the intention of destroying all perfect matchings. We consider the task of adding a minimum cost edge-set to the graph, such that the adversary never wins. We show that this problem is equivalent to covering a digraph with non-trivial strongly connected components at minimal cost. We provide efficient exact and approximation algorithms for this task. In particular, for the unit-cost problem, we give a log_2 n-factor approximation algorithm and a polynomial-time algorithm for chordal-bipartite graphs. Furthermore, we give a fixed parameter algorithm for the problem parameterized by the treewidth of the input graph. For general non-negative weights we give tight upper and lower approximation bounds relative to the Directed Steiner Forest problem. Additionally we prove a dichotomy theorem characterizing minor-closed graph classes which allow for a polynomial-time algorithm. To obtain our results, we exploit a close relation to the classical Strong Connectivity Augmentation problem as well as directed Steiner problems

    On the fixed-parameter tractability of the maximum connectivity improvement problem

    Full text link
    In the Maximum Connectivity Improvement (MCI) problem, we are given a directed graph G=(V,E)G=(V,E) and an integer BB and we are asked to find BB new edges to be added to GG in order to maximize the number of connected pairs of vertices in the resulting graph. The MCI problem has been studied from the approximation point of view. In this paper, we approach it from the parameterized complexity perspective in the case of directed acyclic graphs. We show several hardness and algorithmic results with respect to different natural parameters. Our main result is that the problem is W[2]W[2]-hard for parameter BB and it is FPT for parameters ∣V∣−B|V| - B and ν\nu, the matching number of GG. We further characterize the MCI problem with respect to other complementary parameters.Comment: 15 pages, 1 figur

    Approximating Minimum-Cost k-Node Connected Subgraphs via Independence-Free Graphs

    Full text link
    We present a 6-approximation algorithm for the minimum-cost kk-node connected spanning subgraph problem, assuming that the number of nodes is at least k3(k−1)+kk^3(k-1)+k. We apply a combinatorial preprocessing, based on the Frank-Tardos algorithm for kk-outconnectivity, to transform any input into an instance such that the iterative rounding method gives a 2-approximation guarantee. This is the first constant-factor approximation algorithm even in the asymptotic setting of the problem, that is, the restriction to instances where the number of nodes is lower bounded by a function of kk.Comment: 20 pages, 1 figure, 28 reference

    Non-Uniform Robust Network Design in Planar Graphs

    Get PDF
    Robust optimization is concerned with constructing solutions that remain feasible also when a limited number of resources is removed from the solution. Most studies of robust combinatorial optimization to date made the assumption that every resource is equally vulnerable, and that the set of scenarios is implicitly given by a single budget constraint. This paper studies a robustness model of a different kind. We focus on \textbf{bulk-robustness}, a model recently introduced~\cite{bulk} for addressing the need to model non-uniform failure patterns in systems. We significantly extend the techniques used in~\cite{bulk} to design approximation algorithm for bulk-robust network design problems in planar graphs. Our techniques use an augmentation framework, combined with linear programming (LP) rounding that depends on a planar embedding of the input graph. A connection to cut covering problems and the dominating set problem in circle graphs is established. Our methods use few of the specifics of bulk-robust optimization, hence it is conceivable that they can be adapted to solve other robust network design problems.Comment: 17 pages, 2 figure

    Single-Sink Network Design with Vertex Connectivity Requirements

    Get PDF
    We study single-sink network design problems in undirected graphs with vertex connectivity requirements. The input to these problems is an edge-weighted undirected graph G=(V,E)G=(V,E), a sink/root vertex rr, a set of terminals TsubseteqVT subseteq V, and integer kk. The goal is to connect each terminal tinTt in T to rr via kk emph{vertex-disjoint} paths. In the {em connectivity} problem, the objective is to find a min-cost subgraph of GG that contains the desired paths. There is a 22-approximation for this problem when kle2k le 2 cite{FleischerJW} but for kge3k ge 3, the first non-trivial approximation was obtained in the recent work of Chakraborty, Chuzhoy and Khanna cite{ChakCK08}; they describe and analyze an algorithm with an approximation ratio of O(kO(k2)log4n)O(k^{O(k^2)}log^4 n) where n=∣V∣n=|V|. In this paper, inspired by the results and ideas in cite{ChakCK08}, we show an O(kO(k)log∣T∣)O(k^{O(k)}log |T|)-approximation bound for a simple greedy algorithm. Our analysis is based on the dual of a natural linear program and is of independent technical interest. We use the insights from this analysis to obtain an O(kO(k)log∣T∣)O(k^{O(k)}log |T|)-approximation for the more general single-sink {em rent-or-buy} network design problem with vertex connectivity requirements. We further extend the ideas to obtain a poly-logarithmic approximation for the single-sink {em buy-at-bulk} problem when k=2k=2 and the number of cable-types is a fixed constant; we believe that this should extend to any fixed kk. We also show that for the non-uniform buy-at-bulk problem, for each fixed kk, a small variant of a simple algorithm suggested by Charikar and Kargiazova cite{CharikarK05} for the case of k=1k=1 gives an 2O(sqrtlog∣T∣)2^{O(sqrt{log |T|})} approximation for larger kk. These results show that for each of these problems, simple and natural algorithms that have been developed for k=1k=1 have good performance for small k>1k > 1
    • …
    corecore