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ABSTRACT. We study single-sink network design problems in undirected graphs with vertex con-
nectivity requirements. The input to these problems is an edge-weighted undirected graph G =
(V, E), a sink/root vertex r, a set of terminals T ⊆ V, and integer k. The goal is to connect each
terminal t ∈ T to r via k vertex-disjoint paths. In the connectivity problem, the objective is to find a
min-cost subgraph of G that contains the desired paths. There is a 2-approximation for this prob-
lem when k ≤ 2 [9] but for k ≥ 3, the first non-trivial approximation was obtained in the recent
work of Chakraborty, Chuzhoy and Khanna [4]; they describe and analyze an algorithm with an

approximation ratio ofO(kO(k2) log4 n) where n = |V|.
In this paper, inspired by the results and ideas in [4], we show an O(kO(k) log |T|)-approximation
bound for a simple greedy algorithm. Our analysis is based on the dual of a natural linear pro-
gram and is of independent technical interest. We use the insights from this analysis to obtain an

O(kO(k) log |T|)-approximation for the more general single-sink rent-or-buy network design problem
with vertex connectivity requirements. We further extend the ideas to obtain a poly-logarithmic ap-
proximation for the single-sink buy-at-bulk problem when k = 2 and the number of cable-types is
a fixed constant; we believe that this should extend to any fixed k. We also show that for the non-
uniform buy-at-bulk problem, for each fixed k, a small variant of a simple algorithm suggested by

Charikar and Kargiazova [5] for the case of k = 1 gives an 2O(
√

log |T|) approximation for larger k.
These results show that for each of these problems, simple and natural algorithms that have been
developed for k = 1 have good performance for small k > 1.

1 Introduction

We consider several single-sink network design problems with vertex connectivity require-

ments. Let G = (V, E) be a given undirected graph on n nodes with a specified sink/root

vertex r and a subset of terminals T ⊆ V, with |T| = h. Each terminal t has a demand dt > 0

that needs to be routed to the root along k vertex-disjoint paths (dt is sent on each of the k

paths). In the following discussion, we assume for simplicity that dt = 1 for each terminal

t. The goal in all the problems is to find a routing (a selection of paths) for the terminals

so as to minimize the cost of the routing. We obtain problems of increasing generality and

complexity based on the cost function on the edges. In the basic connectivity problem, each

edge e has a non-negative cost ce, and the objective is to find a minimum-cost subgraph H

∗ Partially supported by NSF grants CCF 0728782 and CNS 0721899, and a US-Israeli BSF grant 2002276.
†Partially supported by NSF grant CCF 0728782.

c© Chekuri, Korula; licensed under Creative Commons License-NC-ND

FSTTCS 2008 
IARCS Annual Conference on  
Foundations of Software Technology and Theoretical Computer Science 
http://drops.dagstuhl.de/opus/volltexte/2008/1747

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/62913724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


132 SINGLE-SINK NETWORK DESIGN WITH VERTEX CONNECTIVITY REQUIREMENTS

of G that contains the desired disjoint paths for each terminal. We then consider general-

izations of the connectivity problem where the cost of an edge depends on the number of

terminals whose paths use it. In the rent-or-buy problem there is a parameter M with the

following interpretation: An edge e can either be bought for a cost of ce · M, in which case

any number of terminals can use it, or e can be rented at the cost of ce per terminal. In other

words, the cost of an edge e is ce ·min{M, |Te|} where Te is the set of terminals whose paths

use e. In the uniform buy-at-bulk problem, the cost of an edge e is ce · f (|Te|) for some given

sub-additive function f : R+ → R+. In the non-uniform buy-at-bulk problem the cost of

an edge e is fe(|Te|) for some edge-dependent sub-additive function fe : R
+ → R+. All of

the above problems are NP-hard and also APX-hard to approximate even for k = 1. Note

that when k = 1 the connectivity problem is the well-known Steiner tree problem. In this

paper we focus on polynomial-time approximation algorithms for the above network de-

sign problem when k > 1. We refer to the above three problems as SS-k-CONNECTIVITY,

SS-k-RENT-OR-BUY and SS-k-BUY-AT-BULK respectively.

Motivation: Our work is motivated by several considerations. First, connectivity and net-

work design problems are of much interest in algorithms and combinatorial optimization.

A very general problem in this context is the survivable network design problem (SNDP).

An instance of SNDP consists of an edge-weighted graph G = (V, E) and an integer con-

nectivity requirement ruv for each pair of nodes uv. The goal is to find a minimum-cost

subgraph H of G such that H contains ruv disjoint paths between u and v for each pair uv.

EC-SNDP refers to the variant in which the paths are required only to be edge-disjoint and

VC-SNDP refers to the variant where the paths are required to be vertex-disjoint. SNDP

captures many connectivity problems as special cases. Jain’s [13] seminal work on iterated

rounding showed a 2-approximation for EC-SNDP, improving previous results [18]. This

was extended to element-connectivity SNDP and to VC-SNDP when ruv ∈ {0, 1, 2} [9]. An

important question is to understand the approximability of VC-SNDP when the connectiv-

ity requirements exceed 2.

Kortsarz, Krauthgamer and Lee [14] showed that VC-SNDP is hard to approximate to

within a factor of 2log
1−ǫ n even when ruv ∈ {0, k} for all uv. However, the hardness requires

k to be nδ for some constant δ > 0; in this same setting they show that SS-k-CONNECTIVITY

is hard to approximate to within Ω(log n) factor. A natural question to ask is whether SS-

k-CONNECTIVITY and more generally VC-SNDP admits a good approximation when k (or

in general, the maximum requirement) is small. This question is quite relevant from a prac-

tical and theoretical perspective. In fact, no counterexample is known to the possibility of

iterated rounding yielding a ratio of maxuv ruv for VC-SNDP (see [9] for more on this). Al-

though there is a 2-approximation for VC-SNDP when maxuv ruv ≤ 2, until very recently

there was no non-trivial (that is, o(|T|)) approximation for SS-k-CONNECTIVITY even when

k = 3! Chakraborty, Chuzhoy and Khanna [4] developed some fundamental new insights in

recent work and showed anO(kO(k2) log4 n)-approximation for SS-k-CONNECTIVITY via the

setpair relaxation; we mention other relevant results from [4] later. Our paper is inspired by

the results and ideas in [4]. We show that a simple greedy algorithm yields an improved ap-

proximation for SS-k-CONNECTIVITY. Perhaps of equal importance is our analysis, which

is based on the dual of the linear programming relaxation. This new dual-based perspective
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allows us to analyze simple algorithms for the more complex problems SS-k-RENT-OR-BUY

and SS-k-BUY-AT-BULK.

Another motivation for these problems comes from the buy-at-bulk network design

problem [17]; this arises naturally in the design of telecommunication networks [17, 1, 6].

Economies of scale imply that bandwidth on a link can be purchased in integer units of dif-

ferent cable-types; that is, there are some b cable-types with capacities u1 < u2 < . . . < ub
and costs w1 < w2 < . . . < wb such that w1/u1 > . . . > wb/ub. Antonakapoulos et al.

[2], motivated by real-world fault-tolerant models in optical network design [6] introduced

the protected buy-at-bulk network design problem. In [2] this problem was reduced to the

corresponding single-sink problem at the expense of a poly-logarithmic ratio in the approx-

imation. An O(1) approximation for the single-sink problem was derived in [2], however,

the techniques in [2] were applicable only to the case of a single-cable. An open question

raised in [2] is whether one can find a good approximation for the single-sink problem even

for the case of two cable-types. In this paper we show that natural and simple algorithms

can be obtained for this problem for any fixed number of cable-types. We also analyze a

simple randomized greedy inflation algorithm (suggested by Charikar and Kargiazova [5]

for k = 1) for the non-uniform buy-at-bulk problem and show that it achieves a non-trivial

approximation for each fixed k. Our starting point for the buy-at-bulk problem is the rent-

or-buy cost function which can be modeled with two cable-types, one with unit capacity

and the other with essentially infinite capacity. This simple cost function, in addition to its

inherent interest, has played an important role in the development of algorithms for several

problems [12].

Results and Technical Contributions: We analyze simple combinatorial algorithms for the

three single-sink vertex-connectivity network design problems that we described. We prove

bounds on the approximation ratio of the algorithms using the dual of natural LP relax-

ations; the LP relaxation is used only for the analysis. This leads to the following results:

• An O(k2k log |T|) approximation for SS-k-CONNECTIVITY.

• An O(k2k log |T|) approximation for SS-k-RENT-OR-BUY.

• AnO((log |T|)O(b)) approximation for the SS-k-BUY-AT-BULKwith b cable-typeswhen

k = 2.

• A 2O(
√

log h) approximation for the non-uniform SS-k-BUY-AT-BULK for each fixed k.

Our result for SS-k-CONNECTIVITY improves the ratio of O(kO(k2) log4 n) from [4]. For the

SS-k-RENT-OR-BUY problem, ours is the first non-trivial result for any k ≥ 2. For the SS-

k-BUY-AT-BULK problem, an O(1) approximation is known for k = 2 in the single-cable

setting, but no non-trivial algorithmwas known even for the case of k = 2 with two or more

cables. Some other results can be derived from the above. Following the observation in

[4], the SS-k-CONNECTIVITY approximation ratio applies also to the subset-k-connectivity

problem; here the objective is to find a min-cost subgraph such that T is k-connected. It is

also easy to see that the approximation ratio only worsens by a factor of k if the terminals

have different connectivity requirements in {1, 2, . . . , k}. For k = 2, our algorithms for rent-

or-buy and buy-at-bulk can be used to obtain algorithms for the multicommodity setting

using the ideas in [2].

Our algorithms are natural extensions of known combinatorial algorithms for the k = 1

case. For SS-k-CONNECTIVITY a (online) greedy algorithm is to order the terminals arbitrar-
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ily and add terminals one by one while maintaining a feasible solution for the current set

of terminals. This greedy algorithm gives an O(log |T|) approximation for the Steiner tree

problem which is the same as SS-k-CONNECTIVITY when k = 1. However, it can be shown

easily that this same algorithm, and in fact any deterministic online algorithm, can return so-

lutions of value Ω(|T|)OPT even for k = 2. Interestingly, we show that a small variant that

applies the greedy strategy in reverse yields a good approximation ratio! For SS-k-RENT-

OR-BUY, our algorithm is a straightforward generalization of the simple random-marking

algorithm of Gupta et al. [12] for k = 1. Our algorithm for SS-k-BUY-AT-BULK is also based

on a natural clustering strategy previously used for k = 1. We remark that the hardness

results of [14] imply that the approximation ratio has to depend on k in some form. The

exponential dependence on k is an artifact of the analysis. In particular, we extend a combi-

natorial lemma from [4]; we believe that the analysis of this lemma can be tightened to show

a polynomial dependence on k. Some very recent work [8] achieves results in this direction;

see the end of this section for more on this subject.

Although the algorithms are simple and easy extensions of the known algorithms for

k = 1, the analysis requires several new sophisticated ideas even for k = 2. The main

technical difference between k = 1 and k > 1 is the following. For k = 1, metric methods can

be used since the problem remains unchanged even if we take themetric closure of the given

graph G. However this fails for k > 1 in a fundamental way. Chakaraborty, Chuzhoy and

Khanna [4] developed new insights for k > 1. Unfortunately we are unable to elaborate on

their ideas due to space limitations. We do mention that they use a primal approach wherein

they use an optimal fractional solution to argue about the costs of connecting a terminal t

to other terminals via disjoint paths. Our analysis is different and is based on analyzing

the dual of a natural linear programming relaxation. This is inspired by the dual-packing

arguments that have been used earlier for connectivity problems. These prior arguments

were for k = 1, where distance-based arguments via balls grown around terminals can be

used. For k ≥ 2 these arguments do not apply. Nevertheless, we show the effectiveness of

the dual-packing approach by using non-uniform balls.

Due to space limitations we defer discussion of the large literature on network design

and related work to a full version of the paper. We refer the reader to [15] for a recent survey

and to [4, 8]. Chuzhoy and Khanna [8] have independently and concurrently obtained re-

sults for SS-k-CONNECTIVITY; they obtain an O(k log |T|)-approximation with edge-costs,

and an O(k7 log2 n)-approximation with vertex-costs. Their result for SS-k-CONNECTIVITY

has a much better dependence on k than ours. Our dual-based analysis differs from their

analysis, and is crucial to our algorithms for SS-k-RENT-OR-BUY and SS-k-BUY-AT-BULK

which are not considered in [8].

We omit all proofs and many technical details in this extended abstract. The reader can

find a longer version on the websites of the authors.

2 Connectivity

In this section we analyze a simple reverse greedy algorithm for SS-k-CONNECTIVITY. For-

mally, the input to the problem is an edge-weighted graph G = (V, E), an integer k, a

specified root vertex r, and a set of terminals T ⊆ V. The goal is to find a min-cost edge-
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induced subgraph H of G such that H contains k vertex-disjoint paths from each terminal t

to r.

The key concept is that of augmentation. Let T′ ⊆ T be a subset of terminals and let H′

be a subgraph of G that is feasible for T′. For a terminal t ∈ T \ T′, a set of k paths p1, . . . , pk
is said to be an augmentation for twith respect to T′ if (i) pi is a path from t to some vertex in

T′ ∪ {r} (ii) the paths are internally vertex disjoint and (iii) a terminal t′ ∈ T′ is the endpoint
of at most one of the k paths. Note that the root is allowed to be the endpoint of more than

one path. The following proposition is easy to show via a simple min-cut argument.

PROPOSITION 1. If p1, p2, . . . , pk is an augmentation for t with respect to T′ and H′ is a
feasible solution for T′ then H ∪ (

⋃

i pi) is a feasible solution for T′ ∪ {t}.

Given T′ and t, the augmentation cost of t with respect to T′ is the cost of a min-cost

set of paths that augment t w.r.t. to T′. If T′ is not mentioned, we implicitly assume that

T′ = T \ {t}. With this terminology and Proposition 1, it is easy to see that the algorithm

below finds a feasible solution.

REVERSE-GREEDY:
Let t ∈ T be a terminal of minimum augmentation cost.
Recursively solve the instsance of SS-k-CONNECTIVITY on G, with terminal set T′ = T − {t}.
Augment t with respect to T′, paying (at most) its augmentation cost.

The rest of the section is devoted to showing that REVERSE-GREEDY achieves a good

approximation. As we mentioned already, there is an Ω(|T|) lower bound on the perfor-

mance of any online algorithm. Thus, the order of terminals is of considerable importance

in the performance of the greedy algorithm. Note that for k = 1, namely the Steiner tree

problem, the greedy online algorithm does have a performance ratio of O(log |T|).

The key step in the analysis of the algorithm is to bound the augmentation cost of ter-

minals. We do this by constructing a natural linear program for the problem and using a

dual-based argument. The primal and its dual linear programs for SS-k-CONNECTIVITY are

shown below. We remark that our linear program is based on a path-formulation unlike the

standard cut-based (setpair) formulation for VC-SNDP [10, 9]. However, the optimal solu-

tion values of the two relaxations are the same. The path-formulation is more appropriate

for our analysis.

In the primal linear program below, and throughout the paper, we let P k
t denote the

collection of all sets of k vertex-disjoint paths from t to the root r. We use the notation ~P to

abbreviate {p1, p2, . . . pk}, an unordered set of k disjoint paths in P k
t . Finally, we say that

an edge e ∈ ~P if there is some pj ∈ ~P such that e ∈ pj. In the LP, the variable xe indicates

whether or not the edge e is in the solution. For each ~P ∈ P k
t , the variable f~P is 1 if terminal

t selects the k paths of ~P to connect to the root, and 0 otherwise.
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Primal-Conn min ∑
e∈E

cexe

∑
~P∈P k

t

f~P ≥ 1 (∀t ∈ T)

∑
~P∈P k

t |e∈~P

f~P ≤ xe (∀t ∈ T, e ∈ E)

xe, f~P ∈ [0, 1]

Dual-Conn max ∑
t∈T

αt

∑
t

βt
e ≤ ce (∀e ∈ E)

αt ≤ ∑
e∈~P

βt
e

(

∀~P ∈ P k
t

)

αt, βe
t ≥ 0

The value f~P can be thought of as the amount of “flow” sent from t to the root along

the set of paths in ~P. The first constraint requires that for each terminal, a total flow of at

least 1 unit must be sent along various sets of k disjoint paths. Our analysis of the algorithm

REVERSE-GREEDY is based on the following technical lemma.

LEMMA 2. Given an instance of SS-k-CONNECTIVITY with h terminals, let OPT be the cost
of an optimal fractional solution to Primal-Conn. For each terminal t, let Cost(t) denote the
augmentation cost of t. Then mint Cost(t) ≤ f (k)k2 · OPT

h where f (k) = 3kk!. It also follows
that ∑t Costt ≤ 2 f (k)k2 log h ·OPT.

Lemma 2 and a simple inductive proof give the following theorem.

THEOREM 3. REVERSE-GREEDY is anO( f (k)k2 log h)-approximation for SS-k-CONNECTIVITY.

2.1 Overview of the Dual-Packing Analysis

We prove Lemma 2 based on a dual-packing argument. In order to do this we first interpret

the variables and constraints in Dual-Conn. There is a dual variable αt for each t ∈ T. We

interpret αt as the total cost that t is willing to pay to connect to the root. In addition there

is a variable βt
e which is the amount that t is willing to pay on edge e. The dual constraint

∑t βt
e ≤ ce requires that the total payment on an edge from all terminals is at most ce. In

addition, for each terminal t, the total payment αt should not exceed the min-cost k-disjoint

paths to the root with costs given by the βt
e payments of t on the edges.

Let α = mint Cost(t). To prove Lemma 2 it is sufficient to exhibit a feasible setting for

the dual variables in which αt ≥ α/( f (k)k2). How do we do this? To understand the overall

plan and intuition, we first consider the Steiner tree problem (the case of k = 1). In this case,

α = mint Cost(t) is the shortest distance between any two terminals. For each t consider the

ball of radius α/2 centered around t; these balls are disjoint. Hence, setting αt = α/2 and

βt
e = ce for each e in t’s ball (and βt

e = 0 for other edges) yields a feasible dual solution. This

interpretation is well-known and underlies the O(log |T|) bound on the competitiveness of

the greedy algorithm for the online Steiner tree problem. Extending the above intuition to

k > 1 is substantially more complicated. We again to wish to define balls of radius Ω(α)
that are disjoint. As we remarked earlier, for k = 1 one can work with distances in the graph

and the ball of radius α/2 is well defined.
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t v
e

P

e′

For k > 1, there may be multiple terminals at close distance d from

a terminal t, but nevertheless Cost(t) could be much larger than d. The

reason for this is that t needs to reach k terminals via vertex disjoint paths

and theremay be a vertex vwhose removal disconnects t from all the nearby

terminals. Consider the example in the figure, where filled circles denote

other terminals: The terminal t is willing to pay for e and edges on P but

not e′. There does not appear to be a natural notion of a ball; however, we

show that one can define some auxiliary costs on the edges (that vary based on t) which can

then be used to define a ball for t. The complexity of the analysis comes from the fact that

the balls for different t are defined by different auxiliary edge costs. Now we show how the

auxiliary costs can be defined.

We can obtain the augmentation cost of a terminal t via a min-cost flow computation

in an associated directed graph Gt(Vt, Et) constructed from G in the following standard way:

make 2 copies v+ and v− of each vertex v 6= t, with a single edge/arc between them, and

for each undirected edge uv in G, edges from u+ to v− and v+ to u−. Further, we add a new

vertex rt as sink, and for each terminal t̂ other than t, add a 0-cost edge from t̂+ to rt. Recall

that an augmentation for t is a set of k disjoint paths from t that end at distinct terminals in

T \ {t}, or the root. While constructing Gt, then, the root is also considered a terminal, and

wemake k copies of it to account for the fact that multiple paths in the augmentation can end

at the root; each such copy is also connected to the sink rt. We now ask for a minimum cost

set of k disjoint paths from t to rt
‡; these correspond to a minimum-cost augmentation for t.

It is useful to use a linear programming formulation for the min-cost flow computation. The

linear program for computing the augmentation cost of t, and its dual are shown below. We

refer to these as Primal-Aug(t) andDual-Aug(t) respectively.

min ∑
e∈Et

ce fe

∑e∈δ−(rt) fe ≥ k

∑e∈δ−(v) fe = ∑e=δ+(v) fe (∀v 6= t, rt)

fe ≤ 1 (∀e ∈ Et)

fe ≥ 0 (∀e ∈ Et)

max k · Π − ∑
e

zte

Π − πt(u) ≤ ce + zte (∀e = (u, rt))

πt(v) − πt(u) ≤ ce + zte (∀e = (u, v),

u 6= t, v 6= rt)

πt(v) ≤ ce + zte (∀e = (t, v) ∈ Et)

zte ≥ 0 (e ∈ Et)

Note that the cost of an optimal solution to Primal-Aug(t) is equal to Cost(t). The

interesting aspect is the interpretation of the dual variables. The variables zte are auxiliary

costs on the edges. One can then interpret the dual Dual-Aug(t) as setting zte values such

that the distance from t, with modified cost of each edge e set to ce + zte, is equal to Π for

every other terminal t′. Thus the modified costs create a ball around t in which all terminals

are at equal distance!

Thus, the overall game plan of the proof is the following. For each t solve Primal-

Aug(t) and find an appropriate solution to Dual-Aug(t) (this requires some care). Use

‡Note that we do not make two copies of t, as we will never use an incoming edge to t in a min-cost set of
paths. All edges are directed out of the unique copy of t.
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these dual variables to define a non-uniform ball around t in the original graph G. This

leads to a feasible setting of variables in Dual-Conn (with the balls being approximately

disjoint). Although the scheme at a high level is fairly natural, the technical details are non-

trivial and somewhat long. In particular, one requires an important combinatorial lemma

on intersecting path systems that was formulated in [4] — here we give an improved proof

of a slight variant that we need. The use of this lemma leads to the exponential dependence

on k. A certain natural conjecture regarding the non-uniform balls, if true, would lead to a

polynomial dependence on k. We refer the reader to the full version for the details.

3 Rent-or-Buy

In this section we describe and analyze a simple algorithm for the SS-k-RENT-OR-BUY prob-

lem. Recall that the input to this problem is the same as that for SS-k-CONNECTIVITY with

an additional parameter M. The goal is to find for each terminal t ∈ T, k vertex-disjoint

paths ~P ∈ P k
t to the root r. The objective is to minimize the total cost of the chosen paths

where the cost of an edge e is ce ·min{M, |Te|} where Te is the set of terminals whose paths

contain e. In other words an edge can either be bought at a price of Mce in which case any

number of terminals can use it or an edge can be rented at a cost of ce per terminal. Our

algorithm given below is essentially the same as the random marking algorithm that has

been shown to give an O(1) approximation for the case of k = 1 [12].

RENT-OR-BUY-SAMPLE:
1. Sample each terminal independently with probability 1/M.
2.1 Find a subgraph H in which every sampled terminal is k-connected to the root.
2.2 Buy the edges of H, paying Mce for each edge e ∈ H.
3. For each non-sampled terminal, greedily rent disjoint paths to k distinct sampled terminals.

It is easy to see that the algorithm is correct. Note that a non-sampled terminal can

always find feasible paths since the root can be the endpoint of all k paths. The algorithm

and analysis easily generalize to the case where each terminal t has a demand dt to be routed

to the root. The algorithm can be analyzed using the strict cost-shares framework of Gupta et

al. [12] for sampling algorithms for rent-or-buy and related problems. It is not hard to show

that the REVERSE-GREEDY algorithm directly implies the desired strict-cost shares needed

for the framework. This allows us to conclude that the approximation ratio of RENT-OR-

BUY-SAMPLE is no more than two times that of REVERSE-GREEDY.

THEOREM 4. There is aO( f (k)k2 log h)-approximation for the SS-k-RENT-OR-BUY problem.

We omit the formal proof of the above theorem in this version. In fact we give a direct

and somewhat complex analysis that proves a slightly weaker bound than the above for

reasons that we discuss now. One of our motivations to understand SS-k-RENT-OR-BUY is

for its use in obtaining algorithms for the SS-k-BUY-AT-BULK problem. For k = 1, previous

algorithms for SS-k-BUY-AT-BULK [11, 12] could use an algorithm for SS-k-RENT-OR-BUY

essentially as a black box. However, for k ≥ 2 there are important technical differences

and challenges that we outline in Section 4. We cannot, therefore, use an algorithm for

SS-k-RENT-OR-BUY as a black box. In a nutshell, the extra property that we need is the

following. In the sampling algorithm RENT-OR-BUY-SAMPLE, there is no bound on the
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number of unsampled terminals that may route to any specific sampled terminal. In the

buy-at-bulk application we need an extra balance condition which ensures that unsampled

terminals route to sampled terminals in such a way that no sampled terminal receives more

than βM demand where β ≥ 1 is not too large. We prove the following technical lemma

that shows that β can be chosen to be O( f (k)k log2 h).

LEMMA 5. Consider an instance of RENT-OR-BUY and let OPT be the value of an opti-
mal fractional solution to the given instance. Then for each terminal t we can find paths
Pt
1, P

t
2, . . . , P

t
o with the following properties: (i) o ≥ (k− 1/2)M and (ii) the paths originate

at t and end at distinct terminals or the root and (iii) no edge e is contained in more than M

paths for any terminal t. Moreover the total rental cost of the paths isO( f (k)eO(k2) · k5 log h) ·
M ·OPT and no terminal is the end point of more than O( f (k)k log2 h · M) paths.

The proof of the above lemma is non-trivial. We are able to prove it by first analyzing

the sampling based algorithm directly via the natural LP relaxation for SS-k-RENT-OR-BUY.

Although the underlying ideas are inspired by the ones for SS-k-CONNECTIVITY, the proof

itself is fairly technical.

4 Buy-at-Bulk Network Design

In this section we consider the SS-k-BUY-AT-BULK problem. We first consider the uniform

version; Section 4.1 discusses the non-uniform version.

Each terminal t ∈ T wishes to route one unit of demand to the root along k vertex

disjoint paths. More generally, terminals may have different demands, but we focus on the

unit-demand case for ease of exposition. There are b cable-types; the ith cable has capacity

ui and cost wi per unit length. Let f : R+ → R+ be a sub-additive function§ where f (x)
is the minimum-cost set of cables whose total capacity is at least x. The goal is to find a

routing for the terminals so that ∑e ce · f (xe) is minimized where xe is the total flow on edge

e. One can assume that the cables exhibit economy of scale; that is, wi/ui > wi+1/ui+1 for

each i. Therefore, there is some parameter gi+1, with ui < gi+1 < ui+1, such that if the flow

on an edge is at least gi+1, it is more cost-effective to use a single cable of type i + 1 than

gi+1/ui cables of type i. Consistent with this notation, we set g1 = 1; since all our cables

have capacity at least u1, if an edge has non-zero flow, it must use a cable of type at least 1.

Our overall algorithm follows the same high-level approach as that of the previous

single-sink algorithms for the k = 1 problem [11, 12]. The basic idea is as follows: Given

an instance in which the demand at each terminal is of value at least gi, it is clear that

cable types 1 to i− 1 can be effectively ignored. The goal is now to aggregate or cluster the

demand from the terminals to some cluster centers such that the aggregated demand at the

cluster centers is at least gi+1. Suppose we can argue the following two properties of the

aggregation process: (i) the cost of sending the demand from the current terminals to the

cluster centers is comparable to that of OPT and (ii) there exists a solution on the cluster

centers of cost not much more than OPT. Then we have effectively reduced the problem

to one with fewer cables, since the demand at the cluster centers is at least gi+1. We can

thus recurse on this problem. For k = 1 this outline can be effectively used to obtain an

§Any sub-additive f can conversely be approximated by a collection of cable-types.
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O(1) approximation independent of the number of cable types. There are several obstacles

to using this approach for k > 1. The most significant of these is that it is difficult to argue

that there is a solution on the new cluster centers of cost not much more than OPT. In the

case of k = 1, this is fairly easy, as the new cluster centers can pretend to randomly send

the demand back to the original terminals; for higher k, since centers need to send demand

along k disjoint paths, this is no longer straightforward.

To deal with these issues, we perform a 2-stage aggregation process that is more com-

plex than previous methods: First, given centers with demand gi, we cluster demand to

produce a new set of centers with demand ui, using a result of [2]. Second, given centers

with demand ui, we use some ideas from Section 3 for RENT-OR-BUY to produce a new set

of centers with demand gi+1. The algorithm of [2] that we use in the first stage applies only

for k = 2; our ideas can be extended to arbitrary k. We describe the two-stage aggregation

process to go from a set of centers with demand gi to a new set of centers with demand gi+1

below; we can then recurse.

Given an instance of SS-k-BUY-AT-BULK with center set T in which all demands are at

least gi, we can effectively assume that an optimal solution only uses cables of type i to b;

let OPTi denote the cost of an optimal solution to this instance. Let H denote an optimal

solution to the SS-k-CONNECTIVITY instance with terminal set T, where the cost of edge e

is wice; the cost of H is a lower bound on OPTi. (Consider an optimal solution to the SS-k-

BUY-AT-BULK instance; the set of edges with installed cables k-connects T to the root, and

the cost on each edge is at least wice.) It follows from a clustering algorithm of [2] that for

k = 2, we can find a new set of centers T′ in polynomial time such that: (i) every t ∈ T

can route flow to 2 centers in T′ via disjoint paths in H; (ii) the total flow on any edge in H

is O(1)ui; (iii) the demand at each t′ ∈ T′ is at least ui and at most 7ui; and (iv) There is a

solution to the new buy-at-bulk instance on T′ of expected cost at most O(1)OPTi.
¶ This

completes the first aggregation stage.

We now have an instance of SS-k-BUY-AT-BULK with center set T in which each center

has demand≈ ui, andwith an optimal solution of cost at most OPT′
i = O(1)OPTi. Consider

a modified instance in which all demands are set equal to ui, the cable capacity ui+1 is set to

infinity and the cable-types i + 2 to ℓ are eliminated. Clearly, the cost of an optimal solution

to this modified instance is no more than OPT′
i; simply replace each cable of higher capacity

with a single cable of type i + 1. However, we now have an instance of RENT-OR-BUY with

M = gi+1/ui. We can now perform our second stage of aggregation; the key idea here is to

use Lemma 5 from Section 3 which guarantees a desired balance condition. This is sufficient

for the above described scheme to go through and yield the following result. Unlike the

k = 1 case, each aggregation step loses a logarithmic factor in the approximation and hence

the approximation we can guarantee is exponential in the number of cables.

THEOREM 6. There is an (O(log h))3b-approximation for SS-2-BUY-AT-BULK with b cable-
types.

¶The algorithm as described in [2] enforces a weaker version of condition (iii); the demand at each t′ ∈ T′ is
at least ui, and at many centers, the demand is at most 7ui. The centers of so-called star-like jumbo clusters may
have higher demand, but the algorithm can be extended so that such high demand centers have their demand
split into smaller units.
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4.1 Non-uniform Buy-at-Bulk

We now consider the non-uniform version of SS-k-BUY-AT-BULK. In this version, for each

edge e of the graph G there is a given sub-additive cost function fe and routing x units of

demand on e results in a cost of fe(x). The uniform version is a special case where fe = ce · f
for a single sub-additive function f . The non-uniform buy-at-bulk problem is considerably

harder than its uniform variant andwe refer the reader to [16, 5, 7] for prior work and related

pointers. We have already mentioned that prior to this work, for k ≥ 2 the SS-k-BUY-AT-

BULK problem did not admit a non-trivial approximation even for the (uniform) 2-cable

problem. For the non-uniform single-sink problem there are essentially two approximation

algorithms known for k = 1, one from [16] and the other from [5]. The algorithm of Charikar

and Kargiazova [5] admits a natural generalization for k ≥ 2 that we analyze using our

result for SS-k-CONNECTIVITY. We obtain a ratio of 2O(
√

log h) which is essentially the same

as the one shown in [5] for the multi-commodity problem (due to a similar recurrence in the

analysis). We remark that the [5] proves a bound of O(log2 h) for the single-sink problem.

However, for k ≥ 2 the analysis of the recurrence changes dramatically from that for k = 1.

Although the bound we show is not impressive, the randomized inflated greedy algorithm

of [5] is extremely simple and elegant. It is easy to implement and amenable to heuristic

improvement and has shown to be effective in some empirical evaluation [3]. We now

describe the algorithm of [5] adapted to SS-k-BUY-AT-BULK. We assume that each terminal

has unit demand to begin with.

RANDOM-INFLATED-GREEDY:
1. Pick a random permutation π of the terminals in T.
2. For i = 1 to h in that order, greedily route h/i units of demand from ti to the root r along k
disjoint paths using the cheapest cost paths in the network built by the previous i− 1 terminals.

Note that the algorithm routes h/i units of demand for ti although only one unit of

demand is required to be routed. We refer the reader to [5] for the background and intuition

behind the design of the above algorithm. Each terminal is routed greedily but the cost of

routing on an edge depends on the routing of the previous terminals. More precisely, if xi−1
e

is the amount of demand routed on an edge e by the first i − 1 terminals then the cost of

routing an additional h/i units for terminal i on e is given by cie = fe(xi−1
e + h/i)− fe(xi−1

e ).
One can use a min-cost flow computation with costs cie to find the cheapest k disjoint paths

from ti to r. It is easy to see that the algorithm is correct; in the case of k = 1, it is known to

have an approximation ratio of O(log2 h) for k = 1 [5]. However, for k ≥ 2 we are able to

establish the following theorem.

THEOREM 7. For any fixed k, RANDOM-INFLATED-GREEDY is a 2O(
√

log h)-approximation
for the non-uniform version of SS-k-BUY-AT-BULK with unit-demands. For arbitrary de-

mands there is a logD · 2O(
√

log h) approximation algorithm where D is the ratio of the max-
imum to minimum demands.
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