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1. INTRODUCTION
Designing networks satisfying certain connectivity requirements has been a rich
source of computational problems since the earliest days of algorithmic graph theory:
for example, the original motivation of Borůvka’s work on finding minimum cost span-
ning trees was designing an efficient electricity network in Moravia [Nesetril et al.
2001]. In many applications, we have stronger requirements than simply achieving
connectivity: one may want to have connections between (certain pairs of) nodes even
after a certain number of node or link failures. Survivable network design problems
deal with such more general requirements.

In the simplest scenario, the task is to achieve k-edge-connectivity or k-node-
connectivity by adding the minimum number of new edges to a given directed or
undirected graph G. This setting already leads to a surprisingly complex theory
and, somewhat unexpectedly, there are exact polynomial-time algorithms for many
of these questions. For example, there is a polynomial-time algorithm for achieving
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A:2 D. Marx and L. A. Végh

k-edge-connectivity in an undirected graph by adding the minimum number of edges
(Watanabe and Nakamura [1987], see also Frank [1992]). For k-node-connectivity, a
polynomial-time algorithm is known only for the special case when the graph is al-
ready (k − 1)-node-connected; the general case is still open [Végh 2011]. We refer the
reader to the recent book by Frank [2011] on more results of similar flavour. One can
observe that increasing connectivity by one already poses significant challenges and
in general the node-connectivity versions of these problems seem to be more difficult
than their edge-connectivity counterparts.

For most applications, minimizing the number of new edges is a very simplified
objective: for example, it might not be possible to realize direct connections between
nodes that are very far from each other. A slightly more realistic setting is to assume
that the input specifies a list of potential new edges (“links”) and the task is to achieve
the required connectivity by using the minimum number of links from this list. Unfor-
tunately, almost all problems of this form turn out to be NP-hard: deciding if the empty
graph on n nodes can be augmented to be 2-edge-connected with n new edges from a
given list is equivalent to finding a Hamiltonian cycle (similar simple arguments can
show the NP-hardness of augmenting to k-edge-connectivity also for larger k). Even
though these problems are already hard, this setting is still unrealistic: it is difficult to
imagine any application where all the potential new links have the same cost. There-
fore, one typically tries to solve a minimum cost version of the problem, where for every
pair u, v of nodes, a (finite or infinite) cost c(u, v) of connecting u and v is given. When
the goal is to achieve k-edge connectivity, we call this problem Minimum Cost Edge-
Connectivity Augmentation to k (see Section 2 for a more formal definition). In the
special case when the input graph is assumed to be (k − 1)-edge-connected (as in, e.g.,
[Jordán 1995; Hsu 2000; Kortsarz and Nutov 2007; Végh 2011]), we call the problem
Minimum Cost Edge-Connectivity Augmentation by One. Alternatively, one can think
of this problem with the edge-connectivity target being the minimum cut value of the
input graph plus one. The same terminology will be used for the node-connectivity ver-
sions and the minimum cardinality variants (where every cost is either 1 or infinite).

Due to the hardness of the more general minimum cost problems, research over the
last two decades has focused mostly on the approximability of the problem. This field
is also known as survivable network design, e.g., [Agrawal et al. 1995; Goemans and
Williamson 1995; Jain 2001; Cheriyan et al. 2003; Kortsarz and Nutov 2003; Cheriyan
and Végh 2014]; for a survey, see [Kortsarz and Nutov 2007]. In this paper, we ap-
proach these problems from the viewpoint of parameterized complexity. We say that a
problem with parameter p is fixed-parameter tractable (FPT) if it can be solved in time
f(p)·nO(1), where f(p) is an arbitrary computable function depending only on p and n is
the size of the input [Downey and Fellows 1999; Flum and Grohe 2006]. The tool box of
fixed-parameter tractability includes many techniques such as bounded search trees,
color coding, bidimensionality, etc. The method that received most attention in recent
years is the technique of kernelization [Lokshtanov et al. 2012; Misra et al. 2011]. A
polynomial kernelization is a polynomial-time algorithm that produces an equivalent
instance of size pO(1), i.e., polynomial in the parameter, but not depending on the size
of the instance. Clearly, polynomial kernelization implies fixed-parameter tractability,
as kernelization in time nO(1) followed by any brute force algorithm on the pO(1)-size
kernel yields a f(p) · nO(1) time algorithm. The conceptual message of polynomial ker-
nelization is that the hard problem can be solved by first applying a preprocessing to
extract a “hard core” and then solving this small hard instance by whatever method
available. An interesting example of fixed-parameter tractability in the context of con-
nectivity augmentation is the result by Jackson and Jordán [2005], showing that for
the problem of making a graph k-node-connected by adding a minimum number of ar-
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Fixed-parameter algorithms for minimum cost edge-connectivity augmentation A:3

bitrary new edges admits a 2O(k) · nO(1) time algorithm (it is still open whether there
is a polynomial-time algorithm for this problem).

As observed above, if the link between arbitrary pair of nodes is not always available
(or if they have different costs for different pairs), then the problem for augmenting a
(k− 1)-edge-connected graph to a k-edge-connected one is NP-hard for any fixed k ≥ 2.
Thus for these problems we cannot expect fixed-parameter tractability when parame-
terizing by k. In this paper, we consider a different parameterization: we assume that
the input contains an integer p, which is a upper bound on the number of new links
that can be added. Assuming that the number p of new links is much smaller than
the size of the graph, exponential dependence on p is still acceptable, as long as the
running time depends only polynomially on the size of the graph. It follows from Nag-
amochi [2003, Lemma 7] that Minimum Cardinality Edge-Connectivity Augmentation
from 1 to 2 is fixed-parameter tractable parameterized by this upper bound p. Guo and
Uhlmann [2010] showed that this problem, as well as its node-connectivity counter-
part, admits a kernel of O(p2) nodes and O(p2) links. Neither of these algorithms seem
to work for the more general minimum cost version of the problem, as the algorithms
rely on discarding links that can be replaced by more useful ones. Arguments of this
form cannot be generalized to the case when the links have different costs, as the more
useful links can have higher costs. Our results go beyond the results of [Nagamochi
2003; Guo and Uhlmann 2010] by considering higher order edge-connectivity and by
allowing arbitrary costs on the links.

We present a kernelization algorithm for the problem Minimum Cost Edge-
Connectivity Augmentation by One for arbitrary k. The algorithm starts by doing the
opposite of the obvious: instead of decreasing the size of the instance by discarding
provably unnecessary links, we add new links to ensure that the instance has a cer-
tain closure property; we call instances satisfying this property metric instances. We
argue that these changes do not affect the value of the optimum solution. Then we
show that a metric instance has a bounded number of important links that are prov-
ably sufficient for the construction of an optimum solution. The natural machinery
for this approach via metric instances is to work with a more general problem. Be-
sides the costs, every link is equipped with a positive integer weight. Parallel links
between pairs of nodes will be therefore allowed. Our task is to find a minimum cost
set of links of total weight at most pwhose addition makes the graph k-edge-connected.
Our main result addresses the corresponding problem, Weighted Minimum Cost Edge-
Connectivity Augmentation.

THEOREM 1.1. Weighted Minimum Cost Edge-Connectivity Augmentation by One
admits a kernel of O(p) nodes, O(p) edges, O(p3) links, with all costs being integers of
O(p6 log p) bits.

Our result hence gives an O(2O(p log p)|V |O(1)) time algorithm for the problem. Very
recently, this was improved by Basavaraju et al. [2014] to 9p|V |O(1), by a reduction to
a Steiner tree problem in a certain auxiliary graph.

The original problem is the special case when all links have weight one. Strictly
speaking, Theorem 1.1 does not give a kernel for the original problem, as the kernel
may contain links of higher weight even if all links in the input had weight one. Our
next theorem, which can be derived from the previous one, shows that we may obtain
a kernel that is an unweighted instance. However, there is a trade-off in the bound on
the kernel size.

THEOREM 1.2. Minimum Cost Edge-Connectivity Augmentation by One admits a
kernel of O(p4) nodes, O(p4) edges and O(p4) links, with all costs being integers of
O(p8 log p) bits.
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Let us now outline the main ideas of the proof of Theorem 1.1. We first show that ev-
ery input can be efficiently reduced to a metric instance, one with the closure property.
We first describe our algorithm in the special case of increasing edge-connectivity from
1 to 2, where connectivity augmentation can be interpreted as covering a tree by paths.
The closure property of the instance allows us to prove that there is an optimum solu-
tion where every new link is incident only to “corner nodes” (leaves and branch nodes).
Either the problem is infeasible, or we can bound the number of corner nodes by O(p).
Hence we can also bound the number of potential links in the resulting small instance.

Augmenting edge connectivity from 2 to 3 is similar to augmenting from 1 to 2, but
this time the graph we need to work on is no longer a tree, but a cactus graph. Thus
the arguments are slightly more complicated, but generally go along the same lines.
Finally, in the general case of increasing edge-connectivity from k − 1 to k, we use
the uncrossing properties of minimum cuts and a classical result of Dinits, Karzanov,
and Lomonosov [1976] to show that (depending on the parity of k) the problem can be
always reduced to the case k = 2 or k = 3.

In kernels for the weighted problem, a further technical issue has to be overcome:
each finite cost in the produced instance has to be a rational number represented by
pO(1) bits. As we have no assumption on the sizes of the numbers appearing in the
input, this is a nontrivial requirement. It turns out that a technique of Frank and
Tardos [1987] (used earlier in the design of strongly polynomial-time algorithms) can
be straightforwardly applied here: the costs in the input can be preprocessed in a way
that the each number is an integer of O(p6 log p) bits long and the relative costs of the
feasible solutions do not change. We believe that this observation is of independent
interest, as this technique seems to be an essential tool for kernelization of problems
involving costs.

To prove Theorem 1.2 (see Section 3.6), we first obtain a kernel by applying our
weighted result to the unweighted instance; this kernel will however contain links of
weight higher than one. Still, every link f of weight w(f) in the (weighted) kernel can
be replaced by a sequence of w(f) original unweighted edges. This replaces the O(p3)
links by O(p4) original ones.

We try to extend our results in two directions. First, we show that in the case of in-
creasing connectivity from 1 to 2, the node-connectivity version can be directly reduced
to the edge-connectivity version (see Section 3.7).

THEOREM 1.3. Weighted Minimum Cost Node-Connectivity Augmentation from 1
to 2 admits a a kernel of O(p) nodes, O(p) edges, O(p3) links, with all costs being integers
of O(p6 log p) bits.

For higher connectivities, we do not expect such a clean reduction to work.
Polynomial-time exact and approximation algorithms for node-connectivity are typ-
ically much more involved than for edge-connectivity (compare e.g., [Watanabe and
Nakamura 1987] and [Frank 1992] to [Frank and Jordán 1995] and [Végh 2011]), and
it is reasonable to expect that the situation is similar in the case of fixed-parameter
tractability.

A natural goal for future work is trying to remove the assumption of Theorems 1.1
and 1.2 that the input graph is (k − 1)-connected. In the case of 2-edge-connectivity,
we show that the problem is fixed-parameter tractable even if the input graph is not
connected. However, the algorithm uses nontrivial branching and it does not provide a
polynomial kernel.

THEOREM 1.4. Minimum Cost Edge-Connectivity Augmentation to 2 can be solved
in time 2O(p log p) · nO(1).
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The proof is given in Section 4. The additional branching arguments needed in Theo-
rem 1.4 can show a glimpse of the difficulties one can encounter when trying to solve
the problem for larger k, especially with respect to kernelization. For augmentation
by one, the following notion of shadows was crucial to define the metric closure of the
instances: f is a shadow of link e if the weight of e is at most that of f , and e covers
every k-cut covered by f — in other words, substituting link f by link e retains the
same connectivity. When the input graph is not assumed to be connected, we cannot
extend the shadow relation to links connecting different components, only in special,
restricted situations. Therefore, we cannot prove the existence of an optimal solution
with all links incident to corner nodes only. Instead, we prove that there is an opti-
mal solution such that all leaves are adjacent to either corner nodes or certain other
special nodes; this enables the branching in the FPT algorithm. A further difficulty
arises if we want to avoid using two copies of the same link. This was automatically
excluded for augmentation by one, whereas now further efforts are needed to enforce
this requirement.

2. PRELIMINARIES
For a set V , let

(
V
2

)
denote the edge set of the complete graph on V . Let n = |V | denote

the number of nodes. For a node set X ⊆ V and a set of edges (or links) F ⊆
(
V
2

)
, let

dF (X) denote the number of edges (or links) in F with endpoints u ∈ X and v ∈ V \X.
When we are given a graph G = (V,E) and it is clear from the context, d(X) will denote
dE(X). A node set ∅ 6= X ( V will be called a cut, and minimum cut if d(X) takes the
minimum value. For a function z : V → R, and a set X ⊆ V , let z(X) =

∑
v∈X z(v) (we

use the same notation with functions on edges as well). For u, v ∈ V , a set X ⊆ V is
called an uv̄-set if u ∈ X, v ∈ V \X.

Let us be given an undirected graph G = (V,E) (possibly containing parallel edges),
a connectivity target k ∈ Z+, and a cost function c :

(
V
2

)
→ R+ ∪ {∞}. For a given

nonnegative integer p, our aim is to find a minimum cost set of edges F ⊆
(
V
2

)
of

cardinality at most p such that (V,E ∪ F ) is k-edge-connected.
We will work with a more general version of this problem. Let E∗ denote an edge

set on V , possibly containing parallel edges. We call the elements of E edges and the
elements of E∗ links. Besides the cost function c : E∗ → R+ ∪ {∞}, we are also given
a positive integer weight function w : E∗ → Z+. We restrict the total weight of the
augmenting edge set to be at most p instead of restricting its cardinality. Let us define
our main problem.

Weighted Minimum Cost Edge Connectivity Augmentation
Input: Graph G = (V,E), set of links E∗, integers k, p > 0, weight

function w : E∗ → Z+, cost function c : E∗ → R+ ∪ {∞}.
Find: minimum cost link set F ⊆ E∗ such that w(F ) ≤ p and (V,E ∪

F ) is k-edge-connected.

A problem instance is thus given by (V,E,E∗, c, w, k, p). An F ⊆ E∗ for which (V,E ∪
F ) is k-edge-connected is called an augmenting link set. If all weights are equal to one,
we simply refer to the problem as Minimum Cost Edge Connectivity Augmentation.

As defined above, an optimal solution to Weighted Minimum Cost Edge Connectivity
Augmentation does not allow using the same link inE∗ twice. Motivated by the original
(unweighted) problem, a natural further restriction is to forbid using multiple links (of
possibly different weights) between the same two nodes u and v. If the input graph is
already (k − 1)-edge-connected, neither of these restrictions makes a difference, since
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given an augmenting edge set, deleting all but one links from a parallel bundle is
still an augmenting edge set. In Section 4 we investigate the problem of augmenting
an arbitrary (possibly disconnected) graph to 2-edge-connected, where using parallel
links may result in a cheaper solution. We first solve here the problem with allowing
multiple copies of the same link, and in Section 4.3, we show how the problem can be
solved if parallel links are forbidden.

For a set S ⊆ V , by G/S we mean the contraction of S to a single node s. That is,
the node set of the contracted graph is (V − S) ∪ {s}, and every edge uv with u /∈ S,
v ∈ S is replaced by an edge us (possibly creating parallel edges); edges inside S are
removed. Note that S is not assumed to be connected. We also contract the links to
E∗/S accordingly.

We say that two nodes x and y are k-inseparable if there is no xȳ-set X with d(X) <
k. By Menger’s theorem, this is equivalent to the existence of k edge-disjoint paths
between x and y; this property can be tested in polynomial time by a max flow-min
cut computation. Let us say that the node set S ⊆ V is k-inseparable if any two nodes
x, y ∈ S are k-inseparable. It is easy to verify that being k-inseparable is an equivalence
relation.1 The maximal k-inseparable sets hence give a partition of the node set V . The
following proposition provides us with a preprocessing step that can be used to simplify
the instance:

PROPOSITION 2.1. For a problem instance (V,E,E∗, c, w, k, p), let S ⊆ V be a k-
inseparable set of nodes. Let us consider the instance obtained by the contraction of S.
Assume F̄ ⊆ E∗/S is an optimal solution to the contracted problem. Then the pre-image
of F̄ in E∗ is an optimal solution to the original problem.

PROOF. We claim that for a link set F ⊆ E∗, (V,E ∪ F ) is k-edge-connected if and
only if adding the image F̄ of F to the contracted graph is k-edge-connected. It is
straightforward that if F is an augmenting link set, then so is F̄ . Conversely, assume
for a contradiction that F̄ is an augmenting link set but F is not. This means that
there exists a set X ⊆ V with dE(X) + dF (X) < k. Since S is k-inseparable, either
S ⊆ X or S∩X = ∅. This implies that under the contraction the image of X will violate
k-edge-connectivity in the augmented graph, a contradiction.

Note that contracting a k-inseparable set S does not affect whether x, y 6∈ S are k-
inseparable. Thus by Proposition 2.1, we can simplify the instance by contracting each
class of the partition given by the k-inseparable relation. Observe that after such a
contraction, there are no longer any k-inseparable pair of nodes any more. Thus we
may assume in our algorithms that every pair of nodes can be separated by a cut of
size smaller than k.

3. AUGMENTING EDGE CONNECTIVITY BY ONE
Assume that the input graph is already (k − 1)-edge-connected. It is easy to see that
in an augmenting link set, it is sufficient to keep only one link from every bundle
of parallel links. Therefore, we can exclude parallel links of the same weight. This
motivates the following notation.

An edge between x, y ∈ V will be denoted as xy. For a link f , we use f = (x, y) if
it is a link between x and y; note that there might be several links between the same
nodes with different weights. We may ignore all links of weight > p. If for a pair of
nodes u, v ∈ V , there are two links e and f between u and v such that c(e) ≤ c(f) and
w(e) ≤ w(f), then we may also ignore the link f , as discussed above.

1To see transitivity, observe that if x and y are k-inseparable and y and z are k-inseparable, then a cut X
separating x and z would either separate x and y, or y and z, a contradiction.
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Subroutine METRIC-COMPLETION(c)
for t = 1, 2, . . . , p do

for every 3 links e = (u, v), f = (v, z), h = (u, z) with w(h) = t ≥ w(e) + w(f) do
c(h)← min{c(h), c(e) + c(f)}

for every link f with w(f) = t do
c(f)← min{c(e) : f is a shadow of e}.

Fig. 1. The algorithm for computing the metric completion

It is convenient to assume that for every value 1 ≤ t ≤ p and every two nodes
u, v ∈ V , there is exactly one link e between u and v with w(e) = t (if there is no
such link in the input E∗, we can add one of cost ∞). This e will be referred to as the
t-link between u and v. With this convention, in this section we will assume that E∗
consists of exactly p copies of

(
V
2

)
: a t-link between any two nodes u, v ∈ V for every

1 ≤ t ≤ p. However, in the input links of infinite cost should not be listed. (We avoid
the discussion of exactly how the links are represented in the input: as we express the
size of the kernel in terms of the number of nodes/edges/links, the exact representation
does not matter for our results.)

3.1. Metric instances
The following notions will be used for augmenting edge-connectivity from 1 to 2 and
from 2 to 3. We formulate them here in a generic way. Assume the input graph is
(k − 1)-edge-connected. Let D denote the set of all minimum cuts, represented by the
node sets. That is, X ∈ D if and only if d(X) = k − 1. Note that, by the minimality of
the cut, both X and V \X induce connected graphs if X ∈ D. For a link e = (u, v) ∈ E∗,
let us define D(e) ⊆ D as the subset of minimum cuts covered by e. That is, X ∈ D is in
D(e) if and only if X is an uv̄-set or a vū-set. Clearly, augmenting edge-connectivity by
one is equivalent to covering all the minimum cuts of the graph.

PROPOSITION 3.1. Assume (V,E) is (k − 1)-edge-connected. Then (V,E ∪ F ) is k-
edge-connected if and only if ∪e∈FD(e) = D.

The following definition identifies the class of metric instances that plays a key role in
our algorithm.

Definition 3.2. We say that the link f is a shadow of link e, if w(f) ≥ w(e) and
D(f) ⊆ D(e). The instance (V,E,E∗, c, w, k, p) is metric, if

(1) c(f) ≤ c(e) holds whenever the link f is a shadow of link e.
(2) Consider three links e = (u, v), f = (v, z) and h = (u, z) with w(h) ≥ w(e) + w(f).

Then c(h) ≤ c(e) + c(f).

Whereas the input instance may not be metric, we can create its metric comple-
tion with the following simple subroutine. Let us call the inequalities in (i) shadow
inequalities and those in (ii) triangle inequalities. Let us define the rank of the in-
equality c(f) ≤ c(e) to be w(f), and the rank of c(h) ≤ c(e) + c(f) to be w(h). By fixing
the triangle inequality c(h) > c(e) + c(f), we mean decreasing the value of c(h) to
c(e) + c(f).

The subroutine METRIC-COMPLETION(c) (see Figure 1) consists of p iterations, one
for each t = 1, 2, . . . , p. In the t’th iteration, first all triangle inequalities of rank t are
taken in an arbitrary order, and the violated ones are fixed. Then for every t-link f ,
we decrease c(f) to the minimum cost of links e such that f is a shadow of e. Note
that we perform these steps one after the other for every violated inequality: in each
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A:8 D. Marx and L. A. Végh

step, we decrease the cost of a single link f only (this will be important in the analysis
of the algorithm). The first part of iteration 1 is void as there are no rank 1 triangle
inequalities. The subroutine can be implemented in polynomial time: the number of
triangle inequalities is O(p3n3), and they can be efficiently listed; furthermore, every
link is the shadow of O(pn2) other ones.

LEMMA 3.3. Consider a problem instance (V,E,E∗, c, w, k, p) with the graph (V,E)
being (k − 1)-edge-connected. METRIC-COMPLETION(c) returns a metric cost function
c̄ with c̄(e) ≤ c(e) for every link e ∈ E∗. Moreover, if for a link set F̄ ⊆ E∗, the graph
(V,E ∪ F̄ ) is k-edge-connected, then there exists an F ⊆ E∗ such that (V,E ∪ F ) is k-
edge-connected, c(F ) ≤ c̄(F̄ ), and w(F ) ≤ w(F̄ ). Consequently, an optimal solution for c̄
provides an optimal solution for c.

PROOF. Inequality c̄(e) ≤ c(e) clearly holds for all links since the algorithm only
decreases the costs. To verify the metric property, we prove that at the end of iteration
t, all rank t inequalities are satisfied. This implies that the final cost function is metric,
as the costs of the edges participating in rank t inequalities are not modified during
any later iteration.

Consider a triangle inequality with links t = w(h) ≥ w(e) + w(f). As w(e), w(f) <
t, the costs of e and f are not modified in iteration t. After fixing this inequality if
necessary, we have c(h) ≤ c(e) + c(f). In the second part of the iteration, c(h) may only
decrease. Consequently, all triangle inequalities of rank t must be valid at the end of
iteration t.

Let c̃ denote the cost function at the end of the first part of iteration t, after fixing all
triangle inequalities. Using the fact that the shadow relation is transitive, it is easy to
see that the values c(f) after the second part of iteration t equal

c(f) = min{c̃(e) : f is a shadow of e}. (1)

Consider now two links e and f with f being a shadow of e, and let t = w(f) ≥ w(e). We
have to show c(f) ≤ c(e) at the end of iteration t. This is straightforward if w(e) < t: the
new value of c(f) is defined as a minimum value taken over a set containing c(e); c(e)
itself is not modified. Assume now w(e) = t. Let h be the link giving the minimum in (1)
for the link e, that is, the new value is c(e) = c̃(h) with e being the shadow of h. Again
by the transitivity of the shadow relation, f is also a shadow of h, and consequently,
c(f) ≤ c̃(h) = c(e), as required.

For the second part of the lemma, it is enough to verify the statement for the case
when c̄ arises by a single modification step from c (i.e., fixing a triangle inequality or
taking a minimum). First, assume we fixed a triangle inequality c(h) > c(e) + c(f) by
setting c̄(h) = c(e) + c(f) and c̄(g) = c(g) for every g 6= h. Consider an edge set F̄ such
that (V,E ∪ F̄ ) is k-edge-connected. If h /∈ F̄ , then F = F̄ satisfies the conditions. If
h ∈ F̄ , then let us set F = (F̄ \ {h}) ∪ {e, f}. We have c(F ) ≤ c̄(F ), w(F ) ≤ w(F̄ ).
Furthermore, every cut covered by h must be covered by either e or h, implying that
(V,E ∪ F ) is also k-edge-connected.

Next, assume c̄(f) = c(e) was set for a link e such that f is a shadow of e, and
c̄(g) = c(g) for every g 6= f . Now F = (F̄ \ {f}) ∪ {e} clearly satisfies the conditions:
recall that by the definition of shadows, D(f) ⊆ D(e).

The proof also provides an efficient way for transforming an augmenting link set F̄
to another F as in the lemma. For this, in every step of METRIC-COMPLETION(c) we
have to keep track of the inequalities responsible for cost reductions.

By Lemma 3.3, we may restrict our attention to metric instances. In what follows,
we show how to construct a kernel for metric instances for cases k = 2 and k = 3. (The
case k = 2 could be easily reduced to k = 3, but we treat it separately as it is somewhat
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simpler and more intuitive.) Section 3.4 then shows how the case of general k can be
reduced to either of these cases depending on the parity of k.

3.2. Augmentation from 1 to 2
In this section, we assume that the input graph (V,E) is connected. By Proposition 2.1,
we may assume that it is a tree: after contracting all the 2-inseparable sets, there are
no two nodes with two edge-disjoint paths between them, implying that there is no
cycle in the graph.

The minimum cuts are given by the edges, that is, D is in one-to-one correspondence
with E. For a link e between two nodes u, v ∈ V , let P (e) = P (u, v) denote the unique
path between u and v in this tree. Then the link f is a shadow of the link e if P (f) ⊆
P (e) and w(f) ≥ w(e). Now Proposition 3.1 simply amounts to the following.

PROPOSITION 3.4. Graph (V,E ∪ F ) is 2-edge-connected if and only if ∪e∈FP (e) =
E.

Based on Lemma 3.3, it suffices to solve the problem assuming that the instance
(V,E,E∗, c, w, 2, p) is metric. The main observation is that in a metric instance we only
need to use links that connect certain special nodes, whose number we can bound by a
function of p.

Let us refer to the leaves and nodes of degree at least 3 as corner nodes; let R ⊆ V
denote their set. Every leaf in the tree (V,E) requires at least one incident edge in
F . If the number of leaves is greater than 2p, we may conclude that the problem is
infeasible. (Formally, in this case we may return the following kernel: a single edge as
the input graph with an empty link set.) If there are at most 2p leaves, then |R| ≤ 4p−2,
due to the following simple fact.

PROPOSITION 3.5. The number of nodes of degree at least 3 in a tree is at most the
number of leaves minus 2.

Based on the following theorem, we can obtain a kernel on at most 4p − 2 nodes by
deleting all links incident to degree-2 nodes, and then contracting each path of degree-
2 nodes to a single edge. The number of links in the kernel will be O(p3): there are
O(p2) possible edges and p possible weights for each edge.

THEOREM 3.6. For a metric instance (V,E,E∗, c, w, 2, p), there exists an optimal
solution F such that every edge in F is only incident to corner nodes.

PROOF. For every link f , let `(f) = |P (f)| denote the length of the path in the tree
between its endpoints. Consider an optimal solution F such that |F | is minimal, and
subject to this, `(F ) =

∑
f∈F `(f) is minimal. We show that no link in this set F can be

incident to a degree 2 node.
For a contradiction, assume that f = (u, y) ∈ F has an endnode y having degree 2

in E; let x and z denote the two neighbors of y, with xy ∈ P (f). Since (V,E ∪ F ) is
2-edge-connected, there must be a link e ∈ F with yz ∈ P (e). We distinguish two cases,
as illustrated in Figure 2.

Case I. xy ∈ P (e). In this case, we may replace the link f = (u, y) by a link f ′ = (u, x)
with w(f ′) = w(f). By property (i) of metric instances, we have c(f ′) ≤ c(f) as f ′ is a
shadow of f . By Proposition 3.4, (V,E ∪ F ′) is still 2-edge-connected for the resulting
solution F ′, yet |F ′| = |F |, c(F ′) ≤ c(F ) and `(F ′) < `(F ), a contradiction to the choice
of F .

Case II. xy /∈ P (e). This is only possible if e is incident to y, say e = (y, v). For
t = w(f)+w(e), consider the t-link h between u and v. By property (ii), c(h) ≤ c(f)+c(e).
Furthermore, P (h) = P (f) ∪ P (e). For the resulting solution F ′ = F \ {e, f} ∪ {h}, the
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Fig. 2. Illustration of Cases I and II in the proof of Theorem 3.6.

graph (V,E ∪ F ′) is 2-edge-connected, c(F ′) ≤ c(F ) and |F ′| < |F |, a contradiction
again.

3.3. Augmentation from 2 to 3
In this section, we assume that the input graph is 2-edge-connected but not 3-edge-
connected. Let us call a 2-edge-connected graph G = (V,E) a cactus, if every edge
belongs to exactly one circuit. This is equivalent to saying that every block (maximal
induced 2-node-connected subgraph) is a circuit (possibly of length 2, using two parallel
edges). Figure 3 gives an example of a cactus.

By Proposition 2.1, we may assume that every 3-inseparable set in G is a singleton,
that is, there are no two nodes in the graph connected by 3 edge-disjoint paths.

PROPOSITION 3.7. Assume that G = (V,E) is a 2-edge-connected graph such that
every 3-inseparable set is a singleton. Then G is a cactus.

PROOF. By 2-edge-connectivity, every edge must be contained in at least one circuit.
For a contradiction, assume there is an edge e contained in two different circuits C1

and C2. Pick an edge f ∈ C1 \C2, and take the maximal path P in C1 containing f such
that the nodes incident to both P and C2 are precisely the endpoints of P , say x and y.
The edge e ∈ C1 ∩C2 guarantees the existence of such a path, that is, x 6= y. Now there
are three edge-disjoint paths connecting x and y: P and the two x− y paths contained
in C2. This contradicts our assumption.
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Fig. 3. A cactus graph. The shaded nodes are in the set T .

In the rest of the section, we assume that G = (V,E) is a cactus. The set of minimum
cuts D corresponds to arbitrary pairs of 2 edges on the same circuit. We say that the
node b separates the nodes a and c, if every path between a and c must traverse b (we
allow a = b or b = c).

PROPOSITION 3.8. Consider links e = (u, v) and f = (x, y) with w(f) ≥ w(e). Then
f is a shadow of e if and only if both x and y separate u and v.

PROOF. To see sufficiency, assume that both x and y separate u and v, and consider
an xȳ-set X ∈ D(f). We have to show that X ∈ D(e), that is, one of u and v is in X
and the other in V \ X. Indeed, assume for a contradiction that u, v ∈ X. Since X is
connected, it contains a path between u and v avoiding y, a contradiction. The case
u, v ∈ V \X is symmetric.

For necessity, assume w.l.o.g. x does not separate u and v, that is, there exists a path
Q between u and v not containing x. Pick two edges incident to x that are contained in
the same cycle, and such that they separate x and y. They correspond to a minimum
cut X ∈ D(f) (they are the two edges between X and V − X). The path Q is either
entirely contained in X or in V −X (as it cannot traverse the edges incident to x), and
therefore e = (u, v) cannot cover X. This contradicts D(f) ⊆ D(e).

Again by Lemma 3.3, we may restrict our attention to metric instances. Let us call
a circuit of length 2 a 2-circuit (that is, a set of two parallel edges between two nodes).
Let R1 denote the set of nodes of degree 2, or equivalently, the set of nodes incident to
exactly one circuit. Let R2 denote the set of nodes incident to at least 3 circuits, or at
least two circuits not both 2-circuits. Let R = R1 ∪R2 and let T = V \R denote the set
of remaining nodes, that is, the set of nodes that are incident to precisely two circuits,
both 2-circuits (see Figure 3). The elements of R will be again called corner nodes. We
can give the following simple bound:

PROPOSITION 3.9. |R2| ≤ 4|R1| − 8.

PROOF. The proof is by induction on |V |. If all circuits in G are 2-circuits, that is, G
is created by duplicating every edge of a tree, R1 corresponds to the leaves and R2 to
the branching nodes. The claim follows by Proposition 3.5, as |R1| ≥ 2. Assume now G
has at least one circuit C of length r ≥ 3, and has t ≤ r nodes incident to other circuits.
Consider the graph after removing the edges of C and the r−t isolated nodes. We obtain
t cacti; let ai and bi denote the corresponding |R1| and |R2| values for i = 1, . . . , t. By
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induction, bi ≤ 4ai − 8 holds for each of them, giving
t∑

i=1

bi ≤
t∑

i=1

(4ai − 8) = 4

t∑
i=1

(ai − 1)− 4t. (2)

Observe that |R2| ≤
∑t

i=1 bi + t, since the only nodes of R2 that are possibly not ac-
counted for in any of the smaller cacti are the t nodes where these cacti are incident to
C. Also, |R1| ≥

∑t
i=1(ai − 1) + r− t, since we remove at most one node of degree 2 from

each component and add r − t new ones. Adding up the inequalities we obtain

|R2| ≤
t∑

i=1

bi + t ≤ 4

t∑
i=1

(ai − 1)− 3t

≤ 4(|R1|+ t− r)− 3t = 4|R1|+ t− 4r ≤ 4|R1| − 8

The second inequality holds by (2), and the last one uses 8 ≤ 4r − t that is valid since
t ≤ r and r ≥ 3.

Observe that every node in R1 forms a singleton minimum cut. Hence if |R1| > 2p,
we may conclude infeasibility. Otherwise, Proposition 3.9 gives |R| ≤ 10p− 8.

We prove the analogue of Theorem 3.6: we show that it is sufficient to consider only
links incident to R. It follows that we can obtain a kernel on at most 10p − 8 nodes by
replacing every path consisting of 2-circuits by a single 2-circuit. The number of links
in the kernel will again be O(p3).

THEOREM 3.10. For a metric instance (V,E,E∗, c, w, 3, p), there exists an optimal
solution F such that every edge in F is only incident to corner nodes.

PROOF. The proof goes along the same lines as that of Theorem 3.6. For every link
f , let `(f) = |D(f)|. Consider an optimal solution F such that |F | is minimal, and
subject to this, `(F ) =

∑
f∈F `(f) is minimal. We show that no link in this set F can be

incident to a node in T .
For a contradiction, assume f = (u, y) ∈ F has an endnode y ∈ T . Node y is incident

to two 2-circuits; let us denote these by Cx and Cz, with Cx consisting of two parallel
edges between x and y and Cz between y and z. Clearly, f covers exactly one of the
corresponding two cuts. W.l.o.g. assume that the cut corresponding to Cx is in D(f);
note that this implies that x separates u and y. Since (V,E ∪ F ) is 3-edge-connected,
there must be a link e ∈ F such that the cut corresponding to Cz is in D(e). The two
cases whether the cut corresponding to Cx is in D(e) lead to contradictions the same
way as in the proof of Theorem 3.6, using Proposition 3.8.

3.4. Augmenting edge-connectivity for higher values
In this section, we assume that the input graph G = (V,E) is already (k−1)-connected,
where k is the connectivity target. We show that for even or odd k, the problem can be
reduced to the k = 2 or the k = 3 case, respectively.

Assume first that k is even. We use the following simple structure theorem, which
is based on the observation that if the minimum cut value in a graph is odd, then the
family of minimum cuts is cross-free. (A set system on V is cross-free if it does contain
two elements A and B such that A ∩B 6= ∅, A \B 6= ∅, B \A 6= ∅, and V \ (A ∪B) 6= ∅.)

THEOREM 3.11 ([FRANK 2011, THM 7.1.2]). Assume that the minimum cut value
k − 1 in the graph G = (V,E) is odd. Then there exists a tree H = (U,L) along with
a map ϕ : V → U such that the min-cuts of G and the edges of H are in one-to-one
correspondence: for every edge e ∈ L, the pre-images of the two components of H − e are
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Fig. 4. Illustration of Theorem 3.11 for k = 4. The above graph is mapped to the path below with a bijection
between the nodes.

the sides of the corresponding min-cut, and every minimum cut can be obtained this
way.

Note that Theorem 3.11 does not say that G is somehow a tree with duplicated edges:
it is possible x and y are adjacent in G even if φ(x) and φ(y) are not adjacent in the
tree H (see Figure 4).

For even k − 1, the following theorem shows that the minimum cuts can be repre-
sented by a cactus. Note that the theorem also holds for odd k − 1; however, in this
case it is easy to see that the cactus arises from a tree by doubling all edges and hence
obtaining Theorem 3.11.

THEOREM 3.12 ([DINITS ET AL. 1976], [FRANK 2011, THM 7.1.8]). Consider a
loopless graph G = (V,E) with minimum cut value k − 1. Then there exists a cactus
H = (U,L) along with a map ϕ : V → U such that the min-cuts of G and the edges of H
are in one-to-one correspondence. That is, for every minimum cut X ⊆ U of H, ϕ−1(X)
is a minimum cut in G, and every minimum cut in G can be obtained in this form.

Observe that if G does not contain k-inseparable pairs (e.g., it was obtained by con-
tracting all the maximal k-inseparable sets), then ϕ in Theorems 3.11 and 3.12 is one-
to-one: ϕ(x) = ϕ(y) would mean that there is no minimum cut separating x and y.
Therefore, in this case Theorems 3.11 and 3.12 imply that we can replace the graph
with a tree or cactus graph H in a way that the minimum cuts are preserved. Note
that the value of the minimum cut does change: it becomes 1 (if H is a tree) or 2 (if H
is a cactus), but X ⊆ V is a minimum cut in G if and only if it is a minimum cut in H.
The proofs of the above theorems also give rise to polynomial time algorithms that find
the tree or cactus representations efficiently. Let us summarize the above arguments.

LEMMA 3.13. Let G = (V,E) be a (k − 1)-edge-connected graph containing no k-
inseparable pairs. Then in polynomial time, one can construct a graph H = (V,L) on
the same node set having exactly the same set of minimum cuts such that

(1) if k is even, then H is a tree (hence the minimum cuts are of size 1), and
(2) if k is odd, then H is a cactus (hence the minimum cuts are of size 2).

Now we are ready to show that if G is (k− 1)-edge-connected, then a kernel contain-
ing O(p) nodes, O(p) edges, and O(p3) links is possible for every k. First, we contract
every maximal k-inseparable set; if multiple links are created between two nodes with
the same weight, let us only keep one with minimum cost. By Proposition 2.1, this does
not change the problem. Then we can apply Lemma 3.13 to obtain an equivalent prob-
lem on graph H having a specific structure. If k is even, then covering the (k − 1)-cuts
of G is equivalent to covering the 1-cuts of the tree H, that is, augmenting the con-
nectivity of G to k is equivalent to augmenting the connectivity of H to 2. Therefore,
we can use the algorithm described in Section 3.2 to obtain a kernel. If k is odd, then
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covering the (k − 1)-cuts of G is equivalent to covering the 2-cuts of the cactus H, that
is, augmenting the connectivity of G to k is equivalent to augmenting the connectivity
of H to 3. In this case, Section 3.3 gives a kernel.

3.5. Decreasing the size of the cost
We have shown that for arbitrary instance (V,E,E∗, c, w, k, p), if (V,E) is (k − 1)-edge-
connected, then there exists a kernel on O(p) nodes and O(p3) links. However, the
costs of the links in this kernel can be arbitrary rational numbers (assuming the input
contained rational entries).

We show that the technique of Frank and Tardos [1987] is applicable to replace the
cost by integers whose size is polynomial in p and the instance remains equivalent to
the original one.

THEOREM 3.14 ([FRANK AND TARDOS 1987]). Let us be given a rational vector
c = (c1, . . . , cn) and an integer N . Then there exists an integral vector c̄ = (c̄1, . . . , c̄n)

such that ||c̄||∞ ≤ 24n
3

Nn(n+2) and sign(c ·b) = sign(c̄ ·b), where b is an arbitrary integer
vector with ||b||1 ≤ N − 1. Such a vector c̄ can be constructed in polynomial time.

In our setting, n = O(p3) is the length of the vector. We want to modify the cost func-
tion c to obtain a new cost function c̄ with the following property: for arbitrary two sets
of links F, F ′ with |F |, |F ′| ≤ p, we have c(F ) < c(F ′) if and only if c̄(F ) < c̄(F ′). This
can be guaranteed by requiring that sign(c · b) = sign(c̄ · b) for every vector b containing
at most 2p nonzero coordinates, all of them being 1 or −1. Thus it is sufficient to con-
sider vectors b with ||b||1 ≤ 2p, giving N = 2p + 1. Therefore Theorem 3.14 provides a
guarantee ||c̄||∞ ≤ 2O(p6)(2p+ 1)O(p6), meaning that each entry of c̄ can be described by
O(p6 log p) bits. An optimal solution for the cost vector c̄ will be optimal for the original
cost c. This completes the proof of Theorem 1.1.

Remark 3.15. The above construction works for Weighted Minimum Cost Edge Con-
nectivity Augmentation defined as an optimization problem. However, parametrized
complexity theory traditionally addresses decision problems. The corresponding de-
cision problem further includes a value α ∈ R in the input, and requires to decide
whether there exists an augmenting edge set of weight at most p and cost at most α.
For this setting, we can apply the Frank-Tardos algorithm for the vector (c, α) instead
of c; this gives the same complexity bound O(p6 log p).

3.6. Unweighted problems (Proof of Theorem 1.2)
In this section we show how Theorem 1.2 for unweighted instances can be deduced
from Theorem 1.1.

Consider an instance of Minimum Cost Edge-Connectivity Augmentation by One: let
G = (V,E) be a (k− 1)-edge-connected graph, and let E∗0 be a set of (unweighted) links
with cost vector c. We may take it as an instance of Weighted Minimum Cost Edge-
Connectivity Augmentation by One, setting the weights of all links to 1. Theorem 1.1
then returns a kernel with O(p) nodes and O(p3) links.

The first step in constructing the kernel was Lemma 3.13, which obtained an equiv-
alent problem instance with the input G = (V,E) being a tree or a cactus, and the
connectivity target k = 2 or k = 3, respectively. Let R ⊆ V denote the set of corner
nodes as in Sections 3.2 and 3.3, respectively; let T = V \ R. The kernel graph is ob-
tained fromG by contracting all paths of degree 2 nodes to single edges in trees, and all
paths of 2-circuits to single 2-circuits in cacti. This was possible because in the metric
closure, we can always find an optimal solution using links between corner nodes only
(Theorems 3.6 and 3.10).

ACM Transactions on Algorithms, Vol. V, No. N, Article A, Publication date: January YYYY.



Fixed-parameter algorithms for minimum cost edge-connectivity augmentation A:15

v

V1

V2

V3

v

V1

V2

V3

v2 v3

v1

Fig. 5. The node splitting operation.

Let c denote the original cost function and c̄ the one obtained by Metric-Closure(c).
Consider now a link in the kernel; it corresponds to a link f in the metric closure in
G. Let us say that a set of (unweighted) links A ⊆ E∗0 emulates a link f in the metric
closure, if

— |A| ≤ w(f),
—
∑

e∈A(f) c(f) ≤ c̄(f), and
— ∪e∈A(f)D(e) ⊇ D(f).

We show that for every link f in the metric closure, there exists a set A(f) emulating
it. Indeed, we follow the steps of algorithm Metric-Closure(c), and maintain a set A(f)
emulating every link f . This is initialized as A(f) = {f} for every link. If c(h) is re-
placed by c(e) + c(f), then replace A(h) by A(e) ∪A(f). If f is a shadow of e and c(f) is
replaced by c(e), then replace A(f) by A(e). By induction it is easy to see that A(f) will
be a set emulating f in every step. In every optimal solution, we may replace f by the
set of links A(f) maintaining optimality. Then |A(f)| ≤ p follows from w(f) ≤ p.

We have shown that the O(p3) links in the weighted kernel may be replaced by O(p4)
original links. This also increases the number of nodes and edges in the kernel, as we
must keep all nodes in T incident to these links. The bound O(p8 log p) on the bit sizes
easily follows as in Section 3.5.

3.7. Node-connectivity augmentation
Consider an instance (V,E,E∗, c, w, 2, p) of Weighted Minimum Cost Node-Connectivity
Augmentation from 1 to 2. We reduce it to an instance of Weighted Minimum Cost
Edge-Connectivity Augmentation from 1 to 2 via a simple and standard construction.

Let N ⊆ V denote the set of cut nodes in G = (V,E). Let us perform the following
operation for every v ∈ N (illustrated on Figure 5). Let V1, . . . , Vr denote the node sets
of the connected components of G − v; r ≥ 2 as v is a cut node. Let us add r new
nodes v1, v2, . . . , vr, connected to v. Replace every edge uv ∈ E with u ∈ Vi by uvi and
similarly every link (u, v) with u ∈ Vi by a link (u, vi) of the same cost and weight. Note
that there are exactly r edges and no links incident to v after this operation. Let us
call the vvi edges special edges.

Let G′ = (V ′, E′) denote the resulting graph after performing this for every v ∈ N .
For a link set F , let ϕ(F ) denote its image after these operations. The following lemma
shows the reduction to the Weighted Minimum Cost Edge-Connectivity Augmentation
from 1 to 2 problem.
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LEMMA 3.16. Graph (V,E ∪ F ) is 2-node-connected if and only if (V ′, E′ ∪ ϕ(F )) is
2-edge-connected.

PROOF. Consider first a link set F such that (V,E∪F ) is 2-node-connected. Assume
that there is a cut edge in (V ′, E′ ∪ ϕ(F )). If it is an edge e ∈ E′ that is an image of an
original edge from E, then it is easy to verify that emust also be a cut edge in (V,E∪F ).
If the cut edge is some edge vvi added in the construction, then Vi is disconnected from
the rest of the graph in (V,E ∪ F ) − v. The converse direction follows by the same
argument.

It is left to prove that a kernel (V ′′, E′′) for the edge-connectivity augmentation prob-
lem can be transformed to a kernel of the node-connectivity augmentation problem.
Graph (V ′′, E′′) was obtained by first contracting the maximal 2-inseparable sets, then
contracting all paths of degree 2 nodes in the resulting tree. In the first step, no special
edges can be contracted, since v and vi are not 2-inseparable. Also, if v was an original
cut node, then, after the transformation, no link is incident to v. Is is not difficult to
see that contracting all special edges in (V ′′, E′′) gives an equivalent node-connectivity
augmentation problem.

4. AUGMENTING ARBITRARY GRAPHS TO 2-EDGE-CONNECTIVITY
In this section, we allow an arbitrary input graph; by Proposition 2.1, we may as-
sume that G = (V,E) is a forest with r > 1 components, denoted by (V1, E1),
(V2, E2), . . . , (Vr, Er) (we also consider the isolated nodes as separate components,
hence V = ∪ri=1Vi). There are two types of links in E∗: e = (u, v) is an internal link
if u and v are in the same component and external link otherwise.

In the following, we allow adding multiple copies of the same link. Doing this can
make sense if the link connects two different components: then the two copies of the
same link provides 2-edge-connectivity between the two components. However, the
problem was originally defined such that multiple copies of the same link cannot be
taken into the solution. In Section 4.3, we describe a clean reduction how to enforce
that there can be only one copy of each link in the solution.

On a high level, we follow the same strategy as in Section 3.2: we define an appro-
priate notion of metric instances, and show that every input instance can be reduced
efficiently to an equivalent metric one. However, this reduction is more involved than
the reduction for connected inputs. We are only able to establish a fixed-parameter
algorithm for metric instances, but we are unable to construct a polynomial kernel. In
Section 4.1, we will show how to reduce the problem from arbitrary instances to met-
ric ones. Then in Section 4.2, we exhibit the FPT algorithm for metric instances. The
following propositions and definitions are needed for the definition of metric instances.

PROPOSITION 4.1. Graph (V,E∪F ) is 2-edge-connected if and only if it is connected
and for every edge e ∈ E ∪ F , there is a circuit in E ∪ F containing it.

As before, if f is an internal link connecting two nodes in Vi, let P (f) denote the
unique path between the endpoints of f in Ei. We also say that the node y lies between
the nodes x and z if x, y and z are in the same component, and y is contained in the
unique path between x and z in this component (y = x or y = z is possible). Further-
more, the edge uv ∈ E is between x and z, if it lies on the unique path between x and
y in E (equivalently, both u and v are between x and z). We will use the following fun-
damental property of circuits in a graph, the so-called strong circuit axiom in matroid
theory.

PROPOSITION 4.2. Let C and C ′ be two circuits in a graph with f ∈ C ∩ C ′ and
g ∈ C \ C ′. Then there exists a circuit C ′′ with C ′′ ⊆ C ∪ C ′, g ∈ C ′′ and f /∈ C ′′.
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Assume that the graph (V,E ∪ F ) is 2-edge-connected. By Proposition 4.1, for every
e ∈ E ∪ F there exists a circuit in E ∪ F containing e. Let C(e) denote such a circuit
containing e with |C(e) ∩ F | minimum (that is, C(e) contains a minimum number of
links); if there are more than one, pick such a circuit arbitrarily.

PROPOSITION 4.3. For every e ∈ E ∪ F , consider the circuit C(e). Then for every
1 ≤ i ≤ r, if C(e) intersects (Vi, Ei), then the intersection is a path (possibly a single
node), and C(e) contains either a single internal link between two nodes in Vi or exactly
two external links incident to Vi.

PROOF. First, assume C(e) contains an internal link f incident to Vi. If e = f is
itself this internal link, then C(e) must consist of e and the unique path P (e) in Ei

connecting the two endpoints of e. Indeed, this circuit contains the minimum number of
links (one), and furthermore there is no other circuit in E ∪{e}; hence C(e) is uniquely
defined in this case.

Assume therefore e 6= f , and consider the circuit C(f). The previous argument shows
that C(f) consists of f and a path in Ei. If e ∈ C(f)∩Ei, then either C(e) = C(f), or by
the minimal choice, C(e) is another circuit containing only one link. This is only pos-
sible if C(e) also comprises an internal link and the path in Ei between its endpoints,
proving the claim. If e /∈ C(f), then we can apply Proposition 4.2 to C(e) and C(f). This
gives a circuit C ⊆ C(e)∪C(f), e ∈ C, f /∈ C, contradicting the fact that C(e) contained
the minimum number of links.

Hence we may assume that C(e) contains no internal links; assume it has some
external links incident to Vi. Let C(e) be of the form P1 − f1 − P2 − f2 − . . . − Pt − ft,
where f1, . . . , ft are the external links incident to Vi, and P1, . . . , Pj are the paths on
C(e) between two subsequent fj ’s. If t = 2, then the intersection between C(e) and
(Vi, Ei) must clearly be a path and hence the claim follows. Assume now t > 2, and
that e ∈ P1∪{f1}. Let Q denote the path in Ei between the endpoints of f1 and ft. Now
f1 − Q − ft − P1 gives a circuit in E ∪ F containing e, a contradiction to the choice of
C(e).

To define the notion of shadows in this setting, we first need the analogues of P (f)
for external links. This motivates our next definition. Consider a leaf u in a tree (Vi, Ei)
and let (Vj , Ej) be a different component. For some 1 ≤ t ≤ p, let St(u, Vj) denote the
endpoint of a cheapest link between u and a node in Vj of weight at most t, that is

St(u, Vj) = argminz{c(f) : f is an (u, z) link, z ∈ Vj , w(f) ≤ t}.

If no such (u, z) link exists, then St(u, Vj) will not be defined. If there are multiple
possible choices, pick one arbitrarily. We say that the external link f = (u, v) is foliate
if one of its endpoints, say u, is a leaf in one of the components. Shadows will be de-
fined for internal links and foliate external links only. All other external links are only
shadows of themselves.

Definition 4.4. Consider two links e and f , with w(f) ≥ w(e). We say that f is a
shadow of e in either of the following cases.

— e = f ;
— e and f are both internal links in the same component and P (f) ⊆ P (e);
— e = (u, x), f = (u, y) are two foliate external links for a leaf u, and y is between x

and St(u, Vj), where t = w(e), and x, y ∈ Vj .

The definition is illustrated in Figure 6. Given this notion, the definition of metric
instances is identical as in Section 3.1. We say that the instance is metric, if

(1) c(f) ≤ c(e) holds whenever the link f is a shadow of link e.
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Vi Vj

Fig. 6. The external link f is a shadow of the external link e, and the internal link f ′ is a shadow of the
internal link e′.

(2) Consider three links e = (u, v), f = (v, z) and h = (u, z) with w(h) ≥ w(e) + w(f).
Then c(h) ≤ c(e) + c(f).

4.1. Computing the metric completion
We use the algorithm Metric-Completion(c) identical to the one in Figure 1, with the
meaning of shadows modified. A technical difficulty is that the definition of shadow for
external links involve the nodes St(u, Vj), whose definition depends on the cost func-
tion, hence can change during the computation of the metric completion. Moreover, the
definition of St(u, Vj) might involve an arbitrary choice if there are multiple cheapest
t-links. We use the following convention: while modifying the cost function c, we mod-
ify the nodes z = St(u, Vj) only if necessary. That is, only if after the modification, link
(u, z) is not among the cheapest t-links between u and Vj anymore. We next prove that
Lemma 3.3 is still valid. The algorithm Metric-Completion(c) will again run in poly-
nomial time, since the number of triangle inequalities will be O(p3n3) and every link
may be a shadow of at most O(pn2) other ones.

LEMMA 4.5. Consider a problem instance (V,E,E∗, c, w, 2, p). The algorithm
Metric-Completion(c) returns a metric cost function c̄ with c̄(e) ≤ c(e) for every link
e ∈ E∗. Moreover, if for a link set F̄ ⊆ E∗, (V,E ∪ F̄ ) is 2-edge-connected, then there ex-
ists an F ⊆ E∗ such that (V,E ∪ F ) is 2-edge-connected, c(F ) ≤ c̄(F̄ ) and w(F ) ≤ w(F̄ ).
Consequently, and optimal solution for c̄ provides an optimal solution for c.

PROOF. The proof of the metric property of c̄ is almost identical to that in
Lemma 3.3. We need only one additional observation: after fixing the triangle in-
equalities in iteration t, the nodes St(u, Vj) cannot change anymore. This is because
all shadows of links between u and Vj are also links between u and Vj , hence we can-
not decrease the cost of the cheapest such link in the second part of phase t. Therefore,
it follows that the shadow relations for links of weight ≤ t are unchanged during and
after the second part of iteration t and this relation is transitive.

For the second part, it is again enough to verify the claim for the case when c̄ arises
by a single modification from c. First, assume the modification is fixing a triangle in-
equality c(h) > c(e) + c(f) by setting c̄(h) = c(e) + c(f) and c̄(g) = c(g) for every g 6= h.
We again set F = F̄ if h /∈ F̄ and F = (F̄ \ {h})∪̇{e, f} otherwise. The only difference
is that F is a multiset (as in this section we assume that a link can be selected into
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the solution twice) and ∪̇ denotes disjoint union, i.e. if e or f was already present in F ,
then we keep the old copies as well; but the same analysis carries over.

Next, assume c̄(f) = c(e) was set in the second part of iteration t, and c̄(g) = c(g) for
every g 6= f . If f is an internal link, it is easy to verify that replacing f by e retains
2-edge-connectivity.

Let us now focus on the case when f is a foliate external link, and f ∈ F̄ . Let e =
(u, x), f = (u, y), t = w(f), with u being a leaf, and x, y ∈ Vj for a component not
containing u; let z = St(u, Vj). Let h = (u, z) denote a cheapest t-link between u and Vj .
As f is a shadow of e, the node y appears on the path between x and z in Ej .

Let Fe = (F̄ ∪̇{e}) \ {f} and Fh = (F̄ ∪̇{h}) \ {f}. We aim to prove that either E ∪ Fe

or E ∪ Fh is 2-edge-connected. Let us say that an edge in (E ∪ F̄ ) \ {f} is e-critical or
h-critical, if it is a cut edge in E ∪ Fe or in E ∪ Fh, respectively. We call an edge critical
if it is either of the two.

CLAIM 4.6. If g is e-critical, then it must lie on the path in Ej between x and y. If g
is h-critical, then it must lie on the path in Ej between y and z.

PROOF. We prove for the e-critical case; the same argument works when e is h-
critical. Consider the circuit C(g) containing a minimum number of links as in Propo-
sition 4.3. For g to become a cut edge in E ∪ Fe, we must have f ∈ C(g). Let C ′ denote
the circuit consisting of the links e = (u, x), f = (u, y) and the x − y path on Ej . If the
latter does not contain g, then we may use Proposition 4.2 for C(g) and C ′ to obtain a
circuit C ′′ ⊆ C(g) ∪ C ′ with g ∈ C ′′, f /∈ C ′′. The existence of such a C ′′ contradicts our
assumption that g is a cut edge in E ∪ Fe.

CLAIM 4.7. Either there exist no e-critical edges or there exist no h-critical edges.

PROOF. For a contradiction, assume that there exists an e-critical edge ge and an
h-critical gh. Consider the circuits C(ge) and C(gh) containing the minimum number
of links as in Proposition 4.3; for the critical property, both of them must contain f . By
Claim 4.6, both ge, gh ∈ Ej ; ge lies on the x− y path, and gh lies on the y− z path. Then
Proposition 4.3 implies that circuit C(ge) must be disjoint from the y−z path in Ej and
C(gh) must be disjoint from the x − y path. Hence gh /∈ C(ge) and ge /∈ C(gh). Using
Proposition 4.2, we get a circuit C ⊆ (C(ge) ∪ C(gh)) \ {f} and ge ∈ C. This circuit is
contained in E ∪ Fe, a contradiction to the fact that ge is e-critical.

This claim completes the proof, showing that f can be exchanged to either e or h. (It is
easy to check that e or h itself cannot become a cut edge, as it would imply that f was
a cut edge in E ∪ F ).

4.2. FPT algorithm for metric instances
In this section, we assume that problem instance (V,E,E∗, c, w, 2, p) is metric. Let R
again denote the set of corner nodes, that is, nodes of degree not equal to 2. Again, if
there are more than 2p leaves, then the problem is infeasible; otherwise, |R| ≤ 4p − 2.
For a leaf u in the tree (V1, E1), let

Su = {v ∈ V : v = St(u, Vj) for some 1 ≤ t ≤ p, 2 ≤ j ≤ r}.

Note that |Su| < p2, since r ≤ p (every component contains at least two leaves). The
following theorem gives rise to a straightforward FPT algorithm.

THEOREM 4.8. Consider a metric instance (V,E,E∗, c, w, 2, p), and let u be a leaf
in the tree (V1, E1). There exists an optimal solution solution F such that for every link
f = (u, v) ∈ F , it holds that v ∈ R ∪ Su.
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Fig. 7. Illustration of the proof of Theorem 4.8.

Given this theorem, the FPT algorithm is as follows. If the number of leaves is more
than 2p, we terminate by concluding infeasibility. Otherwise, we pick an arbitrary leaf
u in the first tree. We branch according to all possible incident links connecting it to
one of the corner nodes or to the elements of Su. This is altogether O(p) nodes with
p possible links connecting them to u, giving O(p2) branches. This gives an algorithm
with running time (p2)p = 2O(p log p), proving Theorem 1.4.

PROOF OF THEOREM 4.8. For an internal link f = (u, v) incident to u, let `(f) =
|P (f)|. For a foliate link f = (u, v) incident to u, let (Vj , Ej) be the component contain-
ing v. Let `(f) denote the length of the unique path in Ej between v and St(u, Vj). For
all other external links, let `(f) = 0. Consider an optimal solution F such that |F | is
minimal, and subject to this, `(F ) =

∑
f=(u,v)∈F `(f) is minimal.

For a contradiction, consider a link f = (u, y) with y /∈ R ∪ Su. Let t = w(f). If f is
an internal link, let x be the neighbour of y between u and y. If f is external, w.l.o.g.
assume y ∈ V2; in this case, let x be the neighbour of y closer to St(u, V2). In both cases,
let z be the other neighbour of y in E1 or in E2, which is uniquely defined since y has
degree 2. Note that `(f) is the length of the path between u and y in E1 or between
St(u, V2) and y in E2. The external case is illustrated in Figure 7; for the internal case,
see Figure 2 in Section 3.2.

CLAIM 4.9. For any circuit C ⊆ E ∪ F with xy ∈ C, we must have f ∈ C.

PROOF. For a contradiction, assume there exists a circuit C with xy ∈ C, f /∈ C. Let
f ′ = (u, x) be a t-link, and consider F ′ = (F \ {f}) ∪ {f ′}. Link f ′ is a shadow of f and
hence c(f ′) ≤ c(f), that is, c(F ) ≤ c(F ′); further, `(f ′) = `(f)− 1. We claim that E ∪ F ′
is also 2-edge-connected, thereby contradicting the minimal choice of `(F ). The edge
xy is not a cut edge, as witnessed by the circuit C not containing f . For any other edge
e ∈ (E ∪ F ) \ {f}, we know that there is a circuit C(e) ⊆ E ∪ F containg e. If f /∈ C(e),
then C(e) ⊆ E ∪ F ′ as well. In the sequel, assume f ∈ C(e). If xy ∈ C(e), then f and
xy can be replaced in C(e) by f ′, giving a circuit in E ∪ F ′ containing e. On the other
hand, if xy /∈ C(e), then we can replace f by f ′ and xy. We can show in a similar way
that f ′ cannot be a cut edge either: given a circuit of E ∪F containing f , we can either
replace f by f ′ and xy, or replace f and xy by f ′ to obtain a circuit in E ∪F ′ containing
f ′.
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Consider now the edge yz ∈ E, and let C(yz) be a circuit in E ∪ F containing yz
and having a minimal number of links. Let C(xy) be the analogous circuit for xy; the
previous claim implies f ∈ C(xy).

CLAIM 4.10. We have xy, f /∈ C(yz), and there is a link h = (y, v) ∈ C(yz) ∩ F .

PROOF. By Proposition 4.3, C(yz) intersects the component of yz (E1 or E2) in a
single path P and there are at most two incident links. If xy ∈ P , then by the previous
claim, f ∈ C(yz). Then y has degree 3 in the circuit C(yz), a contradiction. Conse-
quently, the path P must end in y, and hence C(yz) must contain a link h incident
to y. The proof is complete by showing h 6= f . Indeed, if h = f , then we can apply
Proposition 4.2 for C(xy) and C(yz) to obtain a circuit C ′ with xy ∈ C ′ and f /∈ C ′, a
contradiction to the previous claim.

The rest of the proof is dedicated to showing that 2-edge-connectivity is maintained if
we replace f and h by a (u, v)-link g of weight w(f)+w(h). Since the instance is metric,
we must have c(g) ≤ c(f)+c(h). Let F ′ = (F∪{g})\{f, h}. Showing that E∪F ′ is 2-edge-
connected yields a contradiction to the minimal choice of |F |. By Proposition 4.1, we
have to show that E ∪F ′ is connected and for each edge there is a circuit containing it.
Connectivity follows easily: if E ∪F ′ became disconnected by removing links f = (u, y)
and h = (y, v), and adding (u, v), then node y must lie in a different component than u
and v. However, as f ∈ C(xy) by Claim 4.9, the path C(xy) \ {f} still appears in E ∪F ′
and connects the endpoints u and y of f . To verify the existence of a circuit for each
edge, we need the following.

CLAIM 4.11. The only common node of the circuits C(xy) and C(yz) is y.

PROOF. For a contradiction, assume the two circuits intersect in nodes other than
y. Let us start moving on the path P0 = C(xy)\{f} from y until we hit the first node on
C(yz); let a be this intersection point and let P1 be the part of P0 between y and a. Let
P2 be one of the two parts of C(yz) between a and y. Now P1 ∪P2 is a circuit containing
xy but not f , a contradiction to Claim 4.9.

Consequently, Ĉ = (C(xy)∪C(yz)∪{g})\{f, h} is a circuit in E∪F ′ containing g. For
an arbitrary e ∈ (E ∪ F ′) \ {g}, consider the circuit C(e) in E ∪ F . We are done if C(e)
contains neither of f and h. If C(e) contains both f and h, then we can replace these two
edges in the circuit with g. Assume C(e) contains exactly one of them, say f ∈ C(e) (the
case h ∈ C(e) can be proved similarly). If e ∈ C(xy), then Ĉ does contain e. Otherwise, if
e /∈ C(xy), then we may use Proposition 4.2 to obtain a circuit C ′ ⊆ C(e)∪C(xy), f /∈ C ′,
e ∈ C ′. Also, h /∈ C ′ as it was contained in neither C(e) nor C(xy). Now e ∈ C ′ ⊆ E ∪F ′,
completing the proof.

4.3. Forbidding using links twice
The algorithm presented in the previous section solves the version of the problem
where we allow taking the same link twice in a solution. Here we show how to solve
the original version of the problem, where this is not allowed. We present a solution for
the restriction when we do not even allow adding parallel links of different weights be-
tween two nodes. The argument can be easily modified to the weaker restriction when
we may allow parallel links with different weight.

As before, let (V1, E1), . . . , (Vr, Er) be the components of the input graph. Note that
the components can contain cycles and hence they are not necessarily trees; however,
this will not cause any complications for the arguments presented in this section. Let
us construct the set S the following way. Start with S = ∅, and for every 1 ≤ i < j ≤ r
and 1 ≤ t ≤ p, consider the t-links between Vi and Vj ; if there is a unique t-link of
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minimum cost between these components, then add this link into the set S. If r > p,
then there exists no feasible solution (as we would need more than p links to connect
the components). If r ≤ p, we have |S| ≤ p3.

As a first step of the algorithm, we branch on which subset of S appears in the
solution. That is, for every subset S′ ⊆ S with w(S′) ≤ p and not containing any parallel
links, we obtain a new graph G′ by adding the links in S′ to the graph G. Note that
adding the set S′ can decrease the number of components and can create further cycles.
We define a new parameter p′ = p−w(S′) and define a new cost function c′, whose only
difference from c is that the cost of every link in S \ S′ and of every link parallel to a
link in S′ is∞. We solve the modified instance for the graph G′ = (V ′, E′) = (V,E∪S′),
parameter p′, and cost function c′ using the algorithm of the previous section. If F ′ is
the solution obtained this way, then we return the solution F = S′ ∪F ′. The branching
step adds a factor of O((p3)p) = 2O(p log p)) to the running time of the algorithm.

It is clear that if the original instance has a solution not containing duplicated links,
then no matter which subset of the links S it uses, our algorithm returns a solution
with not larger cost. More importantly, we claim that if our algorithm returns a so-
lution using some links twice, then it can be modified such that it does not use any
link twice and the cost does not increase. These two statements prove that this algo-
rithm indeed finds an optimum solution for the problem where duplicated links are
not allowed. We observe first the following simple lemma:

LEMMA 4.12. Let G = (V,E ∪ F ) be a 2-edge-connected graph. (i) If F contains two
parallel edges with the same endpoints x and y in the same component of (V,E), we may
remove one of them without destroying 2-edge-connectivity. (ii) Suppose that e1, e2 ∈ F
are two parallel links with endpoints x and y in different components of (V,E). Suppose
that F contains another link e∗ (different from e1, e2) whose endpoints are in the same
connected components of (V,E) as x and y, respectively. Then G∗ = (V,E ∪ (F \ e1)) is
also 2-edge-connected.

PROOF. The first statement is straightforward. For the second, observe that the
edge e2 is not a cut edge in G∗: there is a circuit containing xy formed by e∗, a path in
the component of x, a path in the component of y, and e2 itself. Moreover, if G∗ has a
cut edge other than e2, then it is a cut edge of G as well, a contradiction.

Note that F ′ cannot contain links parallel to S′ (as the cost of every such link is ∞
in c′), hence parallel links can appear only in F ′ itself. Suppose that the algorithm
finds a multiset F ′ of links, containing parallel pairs. Consider two links e1, e2 ∈ F ′

between x and y; let t = w(e1). If x and y are in the same component of Vi of G, then
Lemma 4.12(i) implies that e1 can be safely removed. Assume therefore that x and y
are in two different connected components Vi and Vj of G, respectively. As e1 /∈ S, link
e1 is not the unique minimum cost t-link between Vi and Vj in the original instance.
Therefore, there is a t-link e∗ between Vi and Vj with c(e∗) ≤ c(e1) (note that possibly
e∗ ∈ S \S′). Link e∗ connects the same two connected components of G as e1. Therefore,
if e∗ is already in S′ ∪ F ′ or there is a link parallel to it in S′ ∪ F ′, then Lemma 4.12(ii)
implies that removing e1 from S′ ∪ F ′ does not destroy 2-edge-connectivity. Otherwise,
we replace e1 with e∗; the cost of the new solution S′ ∪ (F ′ \ e1) ∪ e∗ obtained this
way is not larger than the cost of S′ ∪ F ′. Again by Lemma 4.12(ii), removing e1 from
(V,E ∪S′ ∪ (F ′ ∪ e∗)) does not destroy 2-edge-connectivity, i.e., (V,E ∪S′ ∪ (F ′ \ e1)∪ e∗)
is 2-edge-connected. We repeat this replacement for every duplicated link. Note that
this process does not create new duplicated links: we add e∗ only if there is no link in
F = S′ ∪ F ′ with the same endpoints as e∗. Therefore, we obtain a solution having not
larger cost and containing no duplicated links.
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