1,209 research outputs found

    The application of a new PID autotuning method for the steam/water loop in large scale ships

    Get PDF
    In large scale ships, the most used controllers for the steam/water loop are still the proportional-integral-derivative (PID) controllers. However, the tuning rules for the PID parameters are based on empirical knowledge and the performance for the loops is not satisfying. In order to improve the control performance of the steam/water loop, the application of a recently developed PID autotuning method is studied. Firstly, a 'forbidden region' on the Nyquist plane can be obtained based on user-defined performance requirements such as robustness or gain margin and phase margin. Secondly, the dynamic of the system can be obtained with a sine test around the operation point. Finally, the PID controller's parameters can be obtained by locating the frequency response of the controlled system at the edge of the 'forbidden region'. To verify the effectiveness of the new PID autotuning method, comparisons are presented with other PID autotuning methods, as well as the model predictive control. The results show the superiority of the new PID autotuning method

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Robust fault tolerant control of induction motor system

    Get PDF
    Research into fault tolerant control (FTC, a set of techniques that are developed to increase plant availability and reduce the risk of safety hazards) for induction motors is motivated by practical concerns including the need for enhanced reliability, improved maintenance operations and reduced cost. Its aim is to prevent that simple faults develop into serious failure. Although, the subject of induction motor control is well known, the main topics in the literature are concerned with scalar and vector control and structural stability. However, induction machines experience various fault scenarios and to meet the above requirements FTC strategies based on existing or more advanced control methods become desirable. Some earlier studies on FTC have addressed particular problems of 3-phase sensor current/voltage FTC, torque FTC, etc. However, the development of these methods lacks a more general understanding of the overall problem of FTC for an induction motor based on a true fault classification of possible fault types.In order to develop a more general approach to FTC for induction motors, i.e. not just designing specific control approaches for individual induction motor fault scenarios, this thesis has carried out a systematic research on induction motor systems considering the various faults that can typically be present, having either “additive” fault or “multiplicative” effects on the system dynamics, according to whether the faults are sensor or actuator (additive fault) types or component or motor faults (multiplicative fault) types.To achieve the required objectives, an active approach to FTC is used, making use of fault estimation (FE, an approach that determine the magnitude of a fault signal online) and fault compensation. This approach of FTC/FE considers an integration of the electrical and mechanical dynamics, initially using adaptive and/or sliding mode observers, Linear Parameter Varying (LPV, in which nonlinear systems are locally decomposed into several linear systems scheduled by varying parameters) and then using back-stepping control combined with observer/estimation methods for handling certain forms of nonlinearity.In conclusion, the thesis proposed an integrated research of induction motor FTC/FE with the consideration of different types of faults and different types of uncertainties, and validated the approaches through simulations and experiments

    Multi-Modular Integral Pressurized Water Reactor Control and Operational Reconfiguration for a Flow Control Loop

    Get PDF
    This dissertation focused on the IRIS design since this will likely be one of the designs of choice for future deployment in the U.S and developing countries. With a net 335 MWe output IRIS novel design falls in the “medium” size category and it is a potential candidate for the so called modular reactors, which may be appropriate for base load electricity generation, especially in regions with smaller electricity grids, but especially well suited for more specialized non-electrical energy applications such as district heating and process steam for desalination. The first objective of this dissertation is to evaluate and quantify the performance of a Nuclear Power Plant (NPP) comprised of two IRIS reactor modules operating simultaneously with a common steam header, which in turn is connected to a single turbine, resulting in a steam-mixing control problem with respect to “load-following” scenarios, such as varying load during the day or reduced consumption during the weekend. To solve this problem a single-module IRIS SIMULINK model previously developed by another researcher is modified to include a second module and was used to quantify the responses from both modules. In order to develop research related to instrumentation and control, and equipment and sensor monitoring, the second objective is to build a two-tank multivariate loop in the Nuclear Engineering Department at the University of Tennessee. This loop provides the framework necessary to investigate and test control strategies and fault detection in sensors, equipment and actuators. The third objective is to experimentally develop and demonstrate a fault-tolerant control strategy using this loop. Using six correlated variables in a single-tank configuration, five inferential models and one Auto-Associative Kernel Regression (AAKR) model were developed to detect faults in process sensors. Once detected the faulty measurements were successfully substituted with prediction values, which would provide the necessary flexibility and time to find the source of discrepancy and resolve it, such as in an operating power plant. Finally, using the same empirical models, an actuator failure was simulated and once detected the control was automatically transferred and reconfigured from one tank to another, providing survivability to the system

    Applications of Power Electronics:Volume 1

    Get PDF

    Use, Operation and Maintenance of Renewable Energy Systems:Experiences and Future Approaches

    Get PDF
    The aim of this book is to put the reader in contact with real experiences, current and future trends in the context of the use, exploitation and maintenance of renewable energy systems around the world. Today the constant increase of production plants of renewable energy is guided by important social, economical, environmental and technical considerations. The substitution of traditional methods of energy production is a challenge in the current context. New strategies of exploitation, new uses of energy and new maintenance procedures are emerging naturally as isolated actions for solving the integration of these new aspects in the current systems of energy production. This book puts together different experiences in order to be a valuable instrument of reference to take into account when a system of renewable energy production is in operation

    Gas Turbines

    Get PDF
    This book is intended to provide valuable information for the analysis and design of various gas turbine engines for different applications. The target audience for this book is design, maintenance, materials, aerospace and mechanical engineers. The design and maintenance engineers in the gas turbine and aircraft industry will benefit immensely from the integration and system discussions in the book. The chapters are of high relevance and interest to manufacturers, researchers and academicians as well

    Autonomous Control of Space Reactor Systems

    Full text link

    Modelling, Monitoring, Control and Optimization for Complex Industrial Processes

    Get PDF
    This reprint includes 22 research papers and an editorial, collected from the Special Issue "Modelling, Monitoring, Control and Optimization for Complex Industrial Processes", highlighting recent research advances and emerging research directions in complex industrial processes. This reprint aims to promote the research field and benefit the readers from both academic communities and industrial sectors
    corecore