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EXECUTIVE SUMMARY 
 

 Autonomous and semi-autonomous control is a key element of space reactor design in 

order to meet the mission requirements of safety, reliability, survivability, and life expectancy.  

In terrestrial nuclear power plants, human operators are available to perform intelligent control 

functions that are necessary for both normal and abnormal operational conditions.  However, for 

a space mission with uncertain environment, rare events, and communication delays, all the 

control functions must be achieved through a sophisticated control system with very limited 

human intervention from the earth.  It should be noted that autonomous control strategies are also 

of importance in reactor systems that are land-based, with remote deployment capabilities. 

The objective of this research project under the U.S. Department of Energy NEER grant 

is to develop an integrated autonomous control system for space fission reactors, incorporating 

control mode selection, self-tuning, automated learning, on-line fault monitoring and failure 

anticipation, fault-tolerant, and supervisory control.  The development and implementation of 

these technologies are illustrated with application to a liquid-metal cooled reactor with static 

power conversion.  The results of this research are generic so that the technology can be easily 

adapted to different space power systems and to next generation reactors.  The project involves 

completion of the following three major tasks during Phases 1, 2, and 3: 

• Development of space reactor simulation models for control design, using static power 
conversion.  This task will integrate the reactor system dynamics and the power 
conversion module, and study the performance of the system under various transients.  

 

• Development of autonomous control strategies for one of the reactor systems.  This will 
address the functional requirements of space reactor control and the implementation 
using advanced control methods, specifically the model-predictive controller (MPC). 

 

• Integration of control, space reactor monitoring system, and interfacing measurement and 
reactor system modules for high reliability operation.  Demonstration of the method using 
a laboratory flow control loop. 

 

Some of the highlights of the project include the following accomplishments: 

• Development and testing of the SP-100 reactor system dynamics and the power 
conversion module (thermo-electric conversion) nodal model as an integrated system. 
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• Development and application of the Model Predictive Control (MPC) algorithm to the 
SP-100 system.  The SP-100 reactor simulation model has been used in this task.  The 
MPC algorithm has been evaluated against traditional controllers, for various transient 
conditions. 

 
• Development of a fault detection and isolation module for monitoring incipient faults in 

various field devices.  This method uses the Principal Component Analysis (PCA) and 
data-driven models for fault monitoring. 

 
• Design and completion of a laboratory multivariate water level control test loop, for 

evaluating the various control strategies and the fault-tolerant control method. 
 

• On-line demonstration of the classical proportional-integral controller and the MPC using 
the laboratory control test loop. 

 
• Development of an autonomous control framework, with control mode reconfiguration 

and hierarchical control strategy. 
 

• Presentation of seven papers in national and international conferences, and publication of 
four manuscripts in refereed journals. 

 
The project Final Report describes the development of the SP-100 space reactor 

simulation model in MATLAB-SIMULINK, development and application of the MPC controller 

and the fault-tolerant control strategy, development of a laboratory multivariate control test loop, 

data acquisition under classical control action, and on-line implementation of the MPC controller 

in the control loop.  A detailed bibliographic reference is given.  A listing of the computer codes 

developed under this project is also provided. 

 
 
 
 
 

DISCLAIMER 

Any opinions, findings, and conclusions or recommendations expressed in this report are those 

of the authors, and do not necessarily reflect the views of the United States Department of 

Energy. 
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1. INTRODUCTION 
 

1.1. Background and Project Objectives 
 

Autonomous or semi-autonomous control is a key element of space reactor design to 

meet the mission requirements in terms of safety, reliability, and life expectancy.  In land-based 

nuclear power plants, human operators are available to perform intelligent control functions 

necessary for both normal operation and during accident situations.  However, for a space 

mission with uncertain environment, rare events, and communication delays, all the control 

functions must be achieved through a sophisticated control system with very limited degrees of 

human intervention from earth.  Autonomous control strategies are also important in reactor 

systems that are land-based. 
 

The objective of the three-phase research is to develop an integrated autonomous control 

system for space fission reactors, incorporating control mode selection, self-tuning, on-line fault 

monitoring and failure anticipation, reconfigurable and hierarchical control.  The development 

and implementation of these technologies are illustrated with application to a liquid-metal cooled 

reactor with a thermo-electric power conversion system.  It is anticipated that the results of this 

research would be generic so that the technology could be easily adapted to different space 

power systems. 

The following three areas have been developed as part of an autonomous control system: 

• Development of space reactor simulation models for transient analysis and control 
design, using a thermo-electric power conversion system.  This task integrates the reactor 
system dynamics and the power conversion module, and studies the performance of the 
system under various system perturbations. 

 
• Development of an autonomous control strategy that incorporates reactor system 

monitoring, fault detection and isolation of sensors and field devices, model-based 
controllers, and communication within a hierarchical control framework.  This will 
address the functional requirements of space reactor control and the implementation 
using advanced control methods. 

 
• Integration of control, space reactor monitoring and diagnostics, and decision-making 

modules.  This includes the interfacing of measurements and reactor system modules for 
high reliability operation.  On-line implementation and demonstration of the control 
strategies in an experimental flow control loop that is developed as part of the project.  
This task was not one of the original tasks defined for the project. 
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The simulation model of the space reactor follows the previously developed model of the 

SP-100 reactor [1, 2].  This model has been further enhanced using the MATLAB-SIMULINK 

platform [3].  Fault detection and isolation (FDI) methods are based on characterizing the 

relationship among a set of state variables using model-based techniques and then tracking the 

patterns of deviations between the actual measurements and their predicted values.  A model-

predictive controller has been developed [4, 5] and demonstrated to perform effectively in 

tracking the system demand.  The autonomous control strategy uses a hierarchical framework to 

communicate the functional nature of the devices and the distributed controllers to a supervisor.  

The control action must be capable of changing the control mode by proper reconfiguration of 

the available information. 

 

1.2. Autonomous Control 
The basic requirement of space reactor control system is to achieve a stable control at 

different operation modes and enable a stable transition between these operation modes.  From 

the viewpoint of a space mission, the major operation modes needed for space reactor control 

include normal operation at different power levels, hot standby mode for system testing, 

scheduled mission task, or transition to long-term shutdown, and cold shutdown mode for 

maintenance purpose.  Correspondingly, the two major transitional modes are start-up and 

shutdown.  During the transitional modes, the reactor systems and equipment must be closely 

monitored and controlled to assure compliance with safety requirements. 

To meet the mission requirements in terms of safety, reliability, survivability, and life 

expectancy, the space reactor control system should incorporate advanced features such as 

economic performance monitoring, fault tolerance, control loop performance monitoring, and 

safety monitoring.  Figure 1.1 shows the advanced control features necessary for the autonomous 

control of space nuclear reactor systems. 

To support a mission with extended period of operation, the space reactor control system 

needs to have the capability of performance monitoring and optimization.  For instance, in  

deep-space missions, the reactor system is expected to have continuous, remote, and unattended 

operation for up to fifteen years.  During such an extended period, many thermal and electric 

components may experience significant level of degradation.  In order to save mission costs, the 

operation parameters should be adjusted to optimize operational performance according to 

current operating conditions and implemented by a supervisory control mechanism. 
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To realize unattended operation and address communication delay, fault tolerant control 

should be an additional important feature of the space reactor control system.  If a fault occurs in 

a control system, a fault diagnosis system should be able to perform reliable and timely fault 

detection and isolation before serious consequences happen.  This fault diagnostic information 

may be further used for both operation planning and controller reconfiguration.  The design 

objective of this fault tolerant control system is to enable a stable control under anticipated 

conditions with such faults as sensors, actuators, and reactor components.  

Because unknown environment and operating conditions may be encountered for a deep 

space mission, the space reactor control system should also have the capability of monitoring the 

control loop performances themselves.  If there is significant degradation in controller 

performance, the operating controller may need to be retuned or an alternative control algorithm 

may be implemented.  The integration of control performance monitoring and automatic tuning 

feature provides the space reactor control system with adaptive capability. 

In order to ensure operational safety of space reactor, the space reactor control system 

needs to continuously monitor safety critical parameters to protect reactor components and 

systems.  If safety critical variables have triggered alarm signals, these alarm signals must be 

processed, prioritized, and converted into a concise representation of the reactor operating status 

before sent back to earth.  In addition, a computerized emergency operation procedure should be 

in place to support automatic decision-making and control during accident conditions. 

The above control functions constitute a highly autonomous control system, which 

assumes the responsibilities for normal control action, abnormal event response, fault tolerance, 

and provide an interface with operators on earth for high-level decision-making.  This 

autonomous control system can be implemented by a hierarchical paradigm, which is shown in 

Figure 1.1.   

In this hierarchical control paradigm, the bottom level has a direct interface with the 

space reactor systems and is responsible for executing fault detection and isolation, fault tolerant 

control, and abnormal event control.  The middle level is mainly to coordinate between the plant 

manager level and the execution level.  The coordination includes the determination of what is 

the performance of current control structure and whether it is necessary to tune the controllers or 

switch the control laws.  Significant uncertainties can be dealt with by designing adaptive control 

laws for unanticipated situations and producing control sequences based on current operating 

conditions.  The top level is a plant manager, which manages plant level performance 
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monitoring, plant condition evaluation, capability assessments, and task planning.  In addition, 

the plant manager can send out space reactor operational data to and receive commands from the 

operators on earth. 

 

 
 

Figure 1.1.  Schematic of the autonomous/hierarchical controller functional architecture. 
 

 References [7-11] describe model-predictive control and fault detection and isolation in 

dynamic systems. 

 

1.3. Summary of Significant Accomplishments 
Several control algorithms, reactor models, and experimental implementation of control 

strategies have been developed during the project.  The following is a summary of significant 

results and the dissemination of research and development. 

• Development and testing of the SP-100 reactor system dynamics and the power 
conversion module (thermo-electric conversion) nodal model as an integrated system. 

 
• Development and application of the Model Predictive Control (MPC) algorithm to the 

SP-100 system.  The SP-100 reactor simulation model has been used in this task.  The 
MPC algorithm has been evaluated against traditional controllers, for various transient 
conditions. 
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• Development of a fault detection and isolation module for monitoring incipient faults in 

various field devices.  This method uses the Principal Component Analysis (PCA) and 
data-driven models for fault monitoring. 

 
• Design and completion of a laboratory multivariate water level control test loop, for 

evaluating the various control strategies and the fault-tolerant control method. 
 

• Development of a multivariate flow control loop and on-line demonstration of the 
classical proportional-integral controller and the model-predictive controller (MPC) using 
the laboratory test loop. 

 
• Development of an autonomous control framework, with control mode reconfiguration 

and hierarchical control strategy. 
 

• Presentation of seven papers in national and international conferences, and publication of 
four manuscripts in refereed journals.  These are listed below: 

 
1. M.G. Na and B.R. Upadhyaya, “Development of a Reconfigurable Control for an SP-100 

Space Reactor,” Nuclear Engineering and Technology, Vol. 39, No. 1, pp. 63-74, 
February 2007. 

 

2. M.G. Na and B.R. Upadhyaya, “Application of Model Predictive Control Strategy Based 
on Fuzzy Identification to an SP-100 Space Reactor,” Annals of Nuclear Energy, Vol. 33, 
pp. 1467-1478, November 2006. 

 

3. M.G. Na, B.R. Upadhyaya, X. Xu, and I.J. Hwang, “Design of a Model Predictive 
Controller for an SP-100 Space Reactor,” Nuclear Science and Engineering, Vol. 154, pp. 
353-366, November 2006. 

 

4. M.G. Na and B.R. Upadhyaya, “Model Predictive Control of an SP-100 Space Reactor 
Using Support Vector Regression and Genetic Optimization,” IEEE Transactions on 
Nuclear Science, Vol. 53, No. 4, pp. 2318-2327, August 2006. 

 
5. B.R. Upadhyaya and X. Xu, “Application of a Reconfigurable Controller to the SP-100 

Space Reactor System,” Proceedings of Space Nuclear Conference, Boston, June 2007. 
 
6. B.R. Upadhyaya, X. Xu, and S.R.P. Perillo, “Development of an Autonomous Control 

Strategy for the SP-100 Space Reactor System,” Transactions of the American Nuclear 
Society, Vol. 96, pp. 823-824, June 2007. 

 
7. M.G. Na and B.R. Upadhyaya, “Design of a Fault-Tolerant Controller for the SP-100 

Space Reactor,” Proceedings of the 5th NPIC&HMIT Topical Meeting, Albuquerque, NM, 
pp. 520-529, November 2006. 

 
8. M.G. Na and B.R. Upadhyaya, “A Fuzzy Identification-Based Model Predictive 
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Controller for an SP-100 Space Nuclear Reactor,” Proceedings of ICAI’06, 2006 
International Conference on Artificial Intelligence, Las Vegas, NV, June 2006. 

 
9. B.R. Upadhyaya, M.G. Na, X Xu, and S.R.P. Perillo, “Autonomous Control and 

Diagnostics of Space Reactor Systems,” Proceedings of ICAPP 2006, Reno, NV, pp. 
2655-2660, June 2006. 

 
10. B.R. Upadhyaya, K. Zhao, and X. Xu, “Model Predictive Control of Space Nuclear 

Reactor Systems,” Transactions of the American Nuclear Society, Vol. 93, pp. 483-484, 
November 2005. 

 
11. B.R. Upadhyaya and K. Zhao, “Dynamic Modeling and Control of Space Nuclear Power 

Systems,” Proceedings of the Space Nuclear Conference, San Diego, June 2005. 
 

The report is organized in 11 sections that describe the research and development results 

accomplished under this project.  The report also provides a detailed list of bibliographic 

references.  A copy of the recently submitted manuscript to IEEE Transactions on Control 

System Technology is appended to the report. 
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2. FUNCTIONAL ANALYSIS OF SPACE REACTOR CONTROL 

 
The basic requirement of a space reactor control system is to achieve a stable control at 

different operation modes and enable a stable transition between these operation modes.  From 

the viewpoint of a space mission, the major operation modes needed for space reactor control 

include normal operation at different power levels, hot standby mode for system testing, 

scheduled mission task, or transition to long-term shutdown, and cold shutdown mode for 

maintenance purpose.  Correspondingly, the two major transitional modes are start-up and 

shutdown.  During the transitional modes, the reactor systems and equipment must be closely 

monitored and controlled to assure compliance with safety requirements. 

To meet the mission requirements in terms of safety, reliability, survivability, and life 

expectancy, the space reactor control system should incorporate advanced features such as 

economic performance monitoring, fault tolerance, control loop performance monitoring, and 

safety monitoring.  Figure 2.1 shows the advanced control features necessary for the autonomous 

control of space nuclear reactor systems. 

To support a mission with extended period of operation, the space reactor control system 

needs to have the capability of performance monitoring and optimization.  For instance, in deep-

space missions, the reactor system is expected to have continuous, remote, and unattended 

operation for up to fifteen years.  During such an extended period, many thermal and electric 

components may experience significant level of degradation.  In order to save mission costs, the 

operation parameters should be adjusted to optimize operational performance according to 

current operating conditions and implemented by a supervisory control mechanism. 

In order to realize unattended operation and address communication delay, fault tolerant 

control should be an additional important feature of the space reactor control system.  If a fault 

occurs in a control system, a fault diagnosis system should be able to perform reliable and timely 

fault detection and isolation before serious consequences happen.  This fault diagnostic 

information may be further used for both operation planning and controller reconfiguration.  The 

design objective of this fault tolerant control system is to enable a stable control under 

anticipated conditions with such faults as sensors, actuators, and reactor components.  

Because unknown environment and operating conditions may be encountered for a deep 

space mission, the space reactor control system should also have the capability of monitoring the 

control loop performances themselves.  If there is significant degradation in controller 
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performance, the operating controller may need to be retuned or an alternative control algorithm 

may be implemented.  The integration of control performance monitoring and automatic tuning 

feature provides the space reactor control system with adaptive capability. 

In order to ensure operational safety of space reactor, the space reactor control system 

needs to continuously monitor safety critical parameters to protect reactor components and 

systems.  If safety critical variables have triggered alarm signals, these alarm signals must be 

processed, prioritized, and converted into a concise representation of the reactor operating status 

before sent back to earth.  In addition, a computerized emergency operation procedure should be 

in place to support automatic decision-making and control during accident conditions.   

 

Figure 2.1.  Features of autonomous control. 

 

The above control functions constitute a highly autonomous control system, which 

assumes the responsibilities for normal control action, abnormal even response, fault tolerance, 

and provides an interface with operators on earth for high-level decision-making.  This 

autonomous control system can be implemented by a hierarchical paradigm, which is shown in 

Figure 2.2.   

In this hierarchical control paradigm, the bottom level has a direct interface with the 

space reactor systems and is responsible for executing fault detection and isolation, fault tolerant 
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control, and abnormal event control.  The middle level is mainly to coordinate between the plant 

manager level and the execution level.  The coordination includes the determination of what is 

the performance of current control structure and whether it is necessary to tune the controllers or 

switch the control laws.  Significant uncertainties can be dealt with by designing adaptive control 

laws for unanticipated situations and producing control sequences based on current operating 

conditions.  The top level is a plant manager, which manages plant level performance 

monitoring, plant condition evaluation, capability assessments, and task planning.  In addition, 

the plant manager can send out space reactor operational data to and receive commands from the 

operators on earth. 

 

Figure 2.2.  Schematic of the autonomous/hierarchical controller functional architecture. 

 

Although the hierarchical control paradigm defined in Figure 2.2 provides a philosophical 

concept of autonomous control, it is still necessary to define an appropriate technology for 

implementation.  Model Predictive Control (MPC) is such an available technology.  In this 

hierarchical structure, a Model Predictive Controller performs dynamic control to move the 

space reactor system from one constrained steady state to another optimal state demanded by the 

plant manager.  The dynamic model can be derived either from first-principles or from the plant 

test data.  The control coordinator needs to guide the MPC controllers on which models should 

be used and monitor performance of the current MPC control strategy. 

Plant Manager

Control Coordinator 

Fault Diagnosis,  Fault Tolerant Control,
and Abnormal Event Control

Human
Operator

Reactor
System

Plant Manager

Control Coordinator 

Fault Diagnosis,  Fault Tolerant Control,
and Abnormal Event Control

Human
Operator
Human

Operator

Reactor
System

Reactor
System



 

16 
 

Figure 2.3 shows the schematic of a model predictive controller and the interaction 

among model development, fault diagnosis, and fault tolerant control.  Multiple steps are defined 

to fulfill the objectives of fault diagnosis, fault tolerant control, and alarm event control in a 

MPC controller.  The first step is to read current values of process inputs (including manipulated 

variables and disturbance variables) and process outputs as well as the functional status of the 

sensors and actuators.  The second step is to perform an adaptive state estimate using mature 

Kalman filter technique.  The objective of incorporating a step of state estimation preceding 

controller design is to accommodate model uncertainty and unknown disturbance through a 

mechanism of output feedback.  It is during this step that MPC has been endowed with adaptive 

features.  After process state is estimated, at the third step, MPC controller needs to determine 

which manipulated variables should be manipulated and which controller variables should be 

controlled based on the functional status of the sensors and actuators.  The fourth step is to 

perform an online local steady state optimization to drive the steady state inputs and outputs 

toward the targets commanded by the plant manager.  This step is necessary because the control 

problem may be redefined due to disturbances or operating condition changes.  The last step is to 

compute a set of adjustments needed for the manipulated variables to the desired steady states 

without violating constraints on process input and output.   
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Figure 2.3.  Schematic of MPC controller with fault tolerant capability. 

 

The kernel of an MPC controller is the process model updated on-line through state estimation.  

The same model can be used for both fault diagnosis of field devices and model predictive 

control.  During space reactor power operation, the model can be updated every minute and a 

dynamic optimization based MPC can be implemented on the same time scale.  In the meantime, 

the model based fault diagnosis algorithm should be implemented every second based on the 

available model.  If a fault is detected and isolated, a new control design will be immediately 

triggered.  Because dynamic control and fault diagnosis are organically combined, the 

implementation scheme of MPC defined in Figure 2.3 has the capability of fault tolerance. 

In this project, a detailed dynamic model has been developed under the 

MATLAB/Simulink environment to simulate a liquid-metal cooled fast reactor system.  The 

basic algorithm of Model Predictive Control is extended to include the above defined 

autonomous control features such as on-line fault monitoring and failure anticipation, controller 

self-tuning, automated learning, and reconfigurable control.  Data-based fault diagnosis methods 
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have been used to detect and isolate sensor and actuator faults.  The disturbance rejection 

capability of model predictive control has been studied and demonstrated for achieving fault 

tolerant control. 
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3. DEVELOPMENT OF A NODAL MODEL OF THE SP-100 REACTOR 

AND POWER CONVERSION SYSTEM 

 

3.1. Description of the SP-100 System 
 A lumped parameter simulation model is developed for the thermo-electric (TE) SP-100 

system in this research [2] based on the early work of Seo [6].  The simulation model has a 

modular architecture based on the configuration of reactor components.  The individual modules 

considered include a model of reactor control mechanism, a neutron kinetics model, a reactor 

core heat transfer model, a primary heat exchanger model, and a thermoelectric conversion 

model.  In this section, each component model is presented in terms of its mathematical 

formulation of governing equations, the parameters used, and the simulation results.  After all the 

component models are developed, the integrated SP-100 system model is assembled through an 

iterative algorithm.  The developed model involves both nonlinear ordinary differential equations 

and partial differential equations.  The code development is under the MATLAB environment 

without using Simulink.  In a separate application, the MATLAB/Simulink software is used for 

modeling the SP-100 reactor. 

SP-100 is a fast spectrum, Lithium-cooled fuel pin reactor coupled with thermoelectric 

converters (TE) with the waste heat removed through a heat pipe distribution system and space 

radiators. Because the fast spectrum lithium-cooled reactor coupled with thermoelectric (TE) 

converters was finally selected for engineering study in 1980s, this TE based SP-100 system has 

resulted in the most sophisticated engineering development and a well documentation in public 

literature.  For this reason, TE SP-100 system is chosen to study the autonomous control of space 

reactor systems in this research.  This also facilitates the collection of reactor design parameters.   
  

The TE SP-100 system [1] is made up of a nuclear reactor, a heat transport system with 

associated pumps, and a thermoelectric device to convert heat to electricity, and a radiator 

configuration system to reject waste heat into space.  Figure 3.1 shows a schematic of one loop 

of the reactor system.  The liquid metal fast reactor was chosen for the TE SP-100 design 

because of its lightweight and small size.  The reactor core is composed of small disks of highly 

enriched (93%) uranium nitride fuel contained in sealed tubes.  The use of high enrichment 

uranium allows a reactor design of long core lifetime and high power density.  The uranium 

nitride fuel was selected due to the mass savings, chemical stability, and physical robustness [1].  
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The core reflectors are made of beryllium oxide.  Some movable safety rods are in place during 

launch and are withdrawn for operation when the reactor is prepared for start-up in orbit [6]. 

The heat generated by the reactor is transferred by liquid lithium pumped by sealed 

electromagnetic (EM) pumps with no moving parts.  Lithium is used as the heat carrier because 

of its good thermal conductivity and low vapor pressure up to 1,350 K.  The operation of the EM 

pump is based on the principle that a pumping force is produced when lithium flows through a 

plane that is spanned by an electric current vector and a magnetic flux density vector, which are 

normal to each other.  The EM pump is self-actuating since the magnetic field is generated by a 

permanent magnet, and the electric current is generated by the TE cells. 

The interface between the primary heat transport system and the energy conversion 

system is the primary heat exchanger.  The EM pumps pump the primary coolant from the 

reactor core to the hot header of the primary heat exchanger.  In the primary heat exchanger, the 

coolant flow is distributed into the individual flow channels of the heat exchanger.  About 480 

thermoelectric cells are mounted on the surface of each channel.  After the heat is removed from 

the channel surface through the thermoelectric cells, the cold fluid converges in the cold header 

and flows out of the heat exchanger.  In the TE SP-100 design, three reactor loops are equipped 

to transport the heat to the thermoelectric devices.  The thermoelectric cells are installed on 12 

primary heat exchangers.  For each primary heat exchanger, 30 channels are divided to enhance 

the heat transfer from the primary fluid to the thermoelectric cells (Seo [6]).   

The energy conversion system is based on the thermoelectric conversion mechanism.  A 

temperature drop of about 500 K is maintained across the thermoelectric elements by the cooling 

effect of a second liquid lithium loop that transfers the waste heat from the converter to a heat-

pipe radiator.  The thermoelectric elements are semiconductors made of silicon/germanium-

gallium phosphate.  The heat-pipe radiator rejects the waste heat into space.  One of the radiator 

design concepts is to utilize hundreds of high temperature heat pipes attached in parallel rows to 

reject the waste heat to the space environment.   
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Figure 3.1. Schematic of the thermo-electric (TE) SP-100 system. 
 
 

In addition, the TE SP-100 design has an independent auxiliary cooling system that can 

generate about 1,000 Watts of electrical power, which is used to cool the reactor and provide 

power for basic controls even when loss of lithium accident occurs.  In the TE SP-100 design, 

conventional spacecraft techniques are used to distribute, convert, and regulate the electric power 

to meet the user requirements (Demuth, 2003).   

 
3.2. Reactor Core Model 
3.2.1. Neutron Kinetics Model 

 
The point reactor kinetics model with six delayed neutron groups is used to describe the 

dependence of nuclear reactor power on the reactivity change.  This is given by the following 

equations (Seo, 1986): 
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)(tPn = instantaneous nuclear power (W). 

61−β = fractions of the 6 groups of delayed neutrons. 

totβ  = total fraction of delayed neutrons. 

61−λ = decay constants of the precursors of the 6 groups of delayed neutrons. 

Λ  = average neutron generation time (1.55E-7 s). 

)(tρ  = total reactivity at time t. 

)()()( ttt FBCD ρρρ +=  

CDρ  = external reactivity inserted by the control drum. 

FBρ  = feedback reactivity. 

 

The neutronic data used to solve the reactor kinetics equation are listed in Table 3.1 (Berkan, 

Upadhyaya, Kisner, 1990). 

 
Table 3.1. Neutronic Data 

Variable 1 2 3 4 5 6 Average 
Precursor 

decay 
constant(1/s) 

0.0127 0.0317 0.115 0.311 1.4 3.78 0.08259 

Delayed 
neutron 
fraction 

2.52E-4 1.47E-3 1.344E-3 2.941E-3 1.024E-3 2.37E-4 7.178E-3 

Precursor 
mean 

lifetime(s) 

78.74 31.5457 8.6957 3.2154 0.7143 0.2643 12.1077 

 
 
3.2.2. Feedback Reactivity 

The core model takes into account three mechanisms of reactivity feedback.  The reactor 

fuel Doppler feedback reactivity, Dρ , represents the competitive effects of the absorption of 

fertile material such as U-238 and the fission of fissile material such as U-235 when fuel 

temperature changes.  The reactor core expansion feedback reactivity, Eρ , represents the 

reactivity effect due to the expansion of reactor core materials including the reactor fuel, the fuel 
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cladding, and the reflector.  The reactor core coolant expansion coefficient, Cρ , takes into 

account the reactivity effect of neutron leakage when the temperature of reactor core coolant 

changes. 

 

The total reactivity feedback is calculated as follows (Seo, 1986): 

)()()()( tttt CEDFB ρρρρ ++=         (3.2a) 

where 

)0(
)(

ln)(
f

f
DD T

tT
t αρ =

         (3.2b) 

))0()(())0()(())0()(()( RRRcladcladcladfffE TtTTtTTtTt −+−+−= αααρ
  (3.2c) 

))0()(()( cccc TtTt −=αρ          (3.2d) 

Dα = fuel Doppler temperature coefficient (+2.4E-7) 

fα = fuel expansion feedback coefficient (-1.22E-5/K). 

cladα = fuel cladding expansion feedback coefficient (1.20E-7/K). 

Rα = reactor core reflector expansion feedback coefficient (-4.5E-7/K). 

cα  = reactor core coolant expansion feedback coefficient (-3.25E-6/K). 

fT
 = fuel temperature (K). 

cladT  = fuel cladding temperature (K). 

RT  = reactor core reflector temperature (K). 

cT  = reactor core coolant temperature (K). 

 

3.2.3. Reactivity Control Mechanism 

The external reactivity control in the developed model uses the mechanism of the stepper 

motor control drum system (Shtessel, 1998).  The control drum shaft can be rotated from 0 to 

180 degrees.  The control voltage is transformed into a set of 27 V rectangular impulses with the 

frequency varying from 0 to 1.33 Hz.  These impulses are then converted into discrete 
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movements of the shaft connected to the control drums.  The position of the shaft of the stepper 

motor is given as follows (Shtessel, 1998): 

 

u
dt
d

dt
d 0525.001.12

2

=+
θθ

         (3.3) 

 

where 
u  = the control voltage (V). 

θ  = the shaft angle of the stepper motor. 

 

The external reactivity inserted by the control drum can be fitted as a function of the shaft angle 

of the stepper motor, and is given by (Shtessel, 1998): 

 

θθθθθρ 52639410513 1088.51057.41028.31033.21089.6 −−−−− ×−×+×+×−×=CD  
            (3.4) 

CDρ  = integral reactivity worth due to the control drum corresponding to the positioned angle. 

 

3.2.4. Core Heat Transfer Model 

A simplified reactor core heat transfer model is developed to calculate the fuel 

temperature, the cladding temperature, and the average core coolant temperature.  The fuel 

temperature fT
, the cladding temperature cladT , and the average core coolant temperature cT  are 

described by the following ordinary differential equations (Seo, 1986): 
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where 

fT  = average fuel temperature (1376.0 K). 

inT = core inlet coolant temperature (1254.0 K). 

cladT = average cladding temperature (1288.0 K). 

m  = reactor core coolant flow rate (14.1 kg/s). 

CC = heat capacity of the coolant . 

fC
= heat capacity of the fuel (1.465 E2 J/kg/K *109.0kg). 

cladC = heat capacity of the fuel cladding (0.276 J/kg/K*25.5 kg). 

fUA)(
 = effective heat transfer coefficient between the fuel and the cladding (2.2728E4 J/K). 

cladUA)(  = effective heat transfer coefficient between the fuel cladding and the reactor core 

coolant (9.5757 E4 J/K). 

 

A more accurate representation may be developed using the Mann’s model for fuel-to-

coolant heat transfer.  If it is assumed that the average core coolant temperature is an arithmetic 

average of the core inlet and core outlet temperature, the core exit temperature can be calculated 

as follows: 

 
incex TTT −= 2  

 
3.2.5. Reactor Core Hydraulic Model 

In SP-100 design, the reactor coolant enters the reactor vessel and flows up through the 

annular space between the reactor vessel and the core baffle until it reaches the upper plenum.  

At the upper plenum, the reactor coolant reverses and flows downward through the triangular 

fuel channels into the lower plenum.  The pressure drop in the reactor core is a sum of the 

pressure drop in the annular space, the pressure drop in the triangular fuel channel, the pressure 

drop in the upper plenum, and the pressure drop in the lower plenum.  Because the available 

hydraulic data is limited, the developed simulation model has only explicitly dealt with the 

pressure loss in the annular space and in the triangular fuel channel.  

 



 

26 
 

For the triangular fuel channel in the core region, the Chiu-Rohsenow-Todreas (CRT) 

model is used to calculate the pressure loss 1CPΔ , which is given as follows (Walter, 1981): 
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      (3.6) 
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TC A
mv

ρ
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TA = flow area of the triangular fuel channel. 
v = flow velocity (2.2073 m/s). 

sf = skin friction factor 

C = empirical coefficient in the CRT model (2200.0). 

L = length of the fuel channel (0.454 m). 

H = lead of the wire wrap (0.37 m). 
p  = pitch of the fuel rods (0.007981m). 
s  = diameter of the wire wrap (0.00058100 m). 

d = fuel rod diameter (0.0074m). 

rA  = projected area of one wire over one lead. 

 

The projected area of one wire over one lead is calculated as follows: 

]
4
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4
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1 2

2
r

dsdA ππ
−+=

        (3.7) 

The flow area of the triangular fuel channel without the wire is calculated as follows: 

]
84

3 2
2 dpA π
−=

          (3.8) 

The hydraulic diameter of the triangular fuel channel, eD , is calculated as follows: 
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         (3.9) 
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For the annular space, the pressure loss can be calculated as follows: 

]
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          (3.10) 

aD  = equivalent hydraulic diameter in the annular space. 

 

The hydraulic diameter of the annular space, aD , is calculated as follows: 
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          (3.11) 

1D  = equivalent baffle diameter (0.328m). 

2D  = equivalent reactor vessel inner diameter (0.358m). 

 

The skin friction factor are calculated based on the flow regimes as follows (Seo, 1986): 

If 2100<eR , then Re/64=sf         (3.12a) 

If 30002100 << eR , then Re*5522.100147633.0 −+−= Efs    (3.12b) 

If 60.33000 ERe << , then 
32.0Re/5.00058.0 +=sf      (3.12c) 

 
3.2.6. Results of Reactor Core Model 

The developed reactor core model was tested by examining the transient behavior after 

external reactivity is inserted into the core.  The inserted external reactivity is plotted in Figure 

3.2a.  A positive ramping reactivity is inserted into the core beginning at 1.0 second and ending 

at 9.0 second with a maximum reactivity of 20 cents.  After this reactivity was maintained for 10 

seconds, a negative ramping reactivity is inserted into the core such that the external reactivity 

becomes zero after 10 seconds.  Figure 3.2b shows the reactivity changes after the external 

reactivity was inserted.  It is interesting to notice that the negative feedback reactivity did not 

decrease until the external reactivity began to decrease.  This can be explained by the time delay 

of the temperature responses.  After a new steady state condition is reached at about the 350th 

second, the total reactivity as well as the feedback reactivity becomes zero again. 

Figure 3.3 shows the response of the reactor thermal power after the external reactivity 

was inserted.  The rate of change of reactor thermal power is in agreement with the change rate 
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in the total reactivity.  When the total reactivity increases rapidly at the beginning, the reactor 

thermal power shows a sharp peak. 

Figure 3.4 shows the fuel temperature and the fuel cladding temperature when the 

external reactivity is inserted.  Figure 3.5 shows the core coolant exit temperature as well as the 

core average temperature after the external reactivity is inserted when the core coolant inlet 

temperature is kept constant at 1,250 K.  The reactor fuel temperature follows the reactor thermal 

power changes in a sensitive manner.  During the transient when the peak power reaches 3.0 

MWt, the peak fuel temperature reaches 1,440 K with an increase of temperature up to about 65 

K.  On the contrary, the fuel cladding temperature increases by about 18 K and the core exit 

temperature increases by about 16 K. 

Figure 3.6 shows the pressure drop in the core as a function of mass flow rate.  The figure 

shows that the pressure drop is strongly dependent on the flow regimes.  In the turbulent flow 

regime, the pressure drop varies with the mass flow rate, as is expected according to Equation 

(3.12c). 

 

0 10 20 30 40 50 60 70 80 90 100
-15

-10

-5

0

5

10

15

20

25

re
ac

tiv
ity

 (c
en

ts
)

time (s)

external
internal feedback
total

 
Figure 3.2(a).  Reactivity insertion into the core.   
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Figure 3.2(b).  Reactivity insertion into the core. 
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Figure 3.3.  Reactor thermal power after the reactivity insertion. 
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Figure 3.4.  Fuel and cladding temperature after the reactivity insertion. 
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Figure 3.5.  Reactor core coolant temperature after the reactivity insertion. 
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Figure 3.6.  Reactor core pressure drop as a function of mass flow rate. 

 

 
3.3. Primary Coolant Heat Exchanger Model 
3.3.1. Hydraulic Model 

Figure 3.7 shows a schematic of the primary heat exchanger model.  The primary fluid 

flows into the hot header and is distributed into individual flow channels of the heat exchanger.  

Multiple thermoelectric cells are mounted on the surface of each channel.  After the heat is 

removed from the channel surface through thermoelectric cells, the cold fluid converges in the 

cold header and flows out of the heat exchanger.  In the SP-100 design, three reactor loops are 

configured to transport the heat generated in the core to the thermoelectric devices.  The 

thermoelectric cells are installed on 12 primary heat exchangers.  For each primary heat 

exchanger, 30 channels are used to enhance the heat transfer from the primary fluid to the 

thermoelectric cells. 

The developed hydraulic model is used to calculate the flow distribution inside each 

channel of the heat exchanger, which is an input to the thermoelectric model.  This mass flow 

distribution is determined by the momentum balance equations of the system. 

For the i-th segment of the header or the i-th channel, the mass balance equation is given 

by 
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where 

totM  = total mass flow rate into the heat exchanger (14.1 kg/s). 

iM  = mass flow rate in the i-th header segment. 

jm
 = mass flow rate in the i-th channel. 

 

The pressure drop in the i-th hot header segment, 
H

iPΔ , is given by 

2

2
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i
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           (3.15) 

iD  = the diameter of the i-th header segment (0.0302 m). 
w  = the length of the i-th header segment (0.0254 m). 

 

Therefore, the pressure drop, given in Equation (3.14), can be simplified as follows: 
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Figure 3.7.  Schematic of the primary heat exchanger. 

 

Similarly, the pressure drop in the i-th channel, 
CH

iPΔ , is calculated as follows: 
2
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i mCP =Δ          (3.16) 
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w  = channel width (0.0254 m). 
t = channel height (0.0035 m). 

l = channel length (0.254 m). 

 

If the fluid loop in Figure 3.8 is examined, a pressure balance equation can be derived as follows: 

01 =Δ−Δ−Δ−Δ +
C

i
CH

i
H

i
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i PPPP        (3.18) 

where 
C

iPΔ = pressure drop of the i-th cold header segment. 
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By combining Equation (3.13) and the N equations given in Equation (3.18), the following 2N 

coupled matrix algebraic equations are obtained (Seo, 1986): 
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The 2N equations given in Equation (3.19) can be used to calculate the mass flow distributions in 

the N header segments, },....,,{ 21 NMMM , and the mass flow rate in the N channels, 

},....,,{ 21 Nmmm . 

 
3.3.2. Thermal Model of Primary Heat Exchanger 

The thermal model of primary heat exchanger is fully coupled with the thermoelectric 

model.  The heat removal term in the thermal model of the primary heat exchanger depends on 

the hot shoe temperature of the thermal-electric device, and the heat addition term used in the 

thermoelectric model depends on the fluid temperature of the primary heat exchanger.  In the 

developed component model of the primary heat exchanger, it is assumed that the hot shoe 

temperature of the thermoelectric cell is known.   

Although 480 TE cells are mounted on the surface of one channel of a heat exchanger, 

one node is used to describe the heat removal by TE cells for simplification.  With this 

simplification, the energy balance equation for one channel of the primary heat exchanger model 

is given as follows: 

 

)()()( ,,, hotavghxhxouthxinhxp TTUATTcm −=−
     (3.20) 

where 

inhxT ,  = inlet temperature of the heat exchanger channel of interest. 
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outhxT ,  = outlet temperature of the heat exchanger channel. 

avghxT ,  = average temperature of the heat exchanger channel. 

hotT  = hot shoe temperature of the corresponding TE cells. 

hxUA)(  = overall thermal conductance between the hot shoe material and the bulk fluid in the 

heat exchanger channel. 

 

The overall heat conductance calculated as follows: 
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where 

hxA  = convection heat transfer area, which is assumed to be equal to the heat conduction area of 

the TE padding material. 

it  = thickness of the i-th layer of the TE padding material. 

ik  = heat conductivity of the i-th layer of the TE padding materials. 

hxh  = forced convection heat transfer coefficient. 

The forced convection heat transfer coefficient between the fluid and the channel walls is 

calculated based on the following correlation (Seo, 1986): 

e
hx d

kNuh •
=

          (3.22) 

where 

)02.08.5(1 8.0PeNu +=
γ         (3.23) 

γ = heat transfer coefficient of liquid metals flowing between two parallel plates with one of 

them being adiabatic to that with two plates of equal heat flux. 
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In the developed thermal model of the primary heat exchanger, five layers of padding materials, 

including the channel wall, are considered.  The thickness and the thermal conductivity used are 

listed in Table 3.2. 

 
Table 3.2. The thickness and thermal conductivity of the TE padding materials 

Layer 1 2 3 4 5 
Material name Nb-Zr Al2O3 Tungsten Forsterite Nickel 
t (cm) 0.05 0.0254 0.127 0.0025 0.03 
K (w/cm/K) 41.9 25.0 163.3 8.0 60.7 

 
 
3.3.3. Results of Primary Heat Exchanger Model 

Figure 3.9 shows the pressure distribution in the primary heat exchanger.  The upper 

curve and the lower curve in this figure represent the pressure distribution along the hot headers 

and cold headers, respectively.  The calculated results are based on a mass flow rate of 1.175 

kg/s into the primary heat exchanger.  The total pressure drop is 519.2 Pa. 

Figure 3.10 shows the mass flow distribution along the channel when the heat exchanger 

inlet flow rate is 1.175 kg/s.  The mass flow rate into the first channel is 0.0555 kg/s and the 

mass flow rate into the last channel is 0.0262 kg/s.  There is significant uneven flow distribution 

among the channels, which will cause significant uneven temperature distribution on the surface 

of the primary heat exchangers. 

Figure 3.11 shows the coolant and hot shoe temperatures along the channels when the 

heat flux to the TE module is fixed at a constant value of 11.5741 W.  As expected, the TE hot 

shoe temperatures vary by about 15 K for different channels.  The temperature difference 

between the coolant and the hot shoe is approximately 25 K; this is needed to maintain the 

specified heat flux flowing from the heat exchanger coolant to the thermoelectric cells.   
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Figure 3.8.  Pressure distribution in the heat exchanger. 
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Figure 3.9.  Mass flow rate in the channel. 
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Figure 3.10.  Coolant and hot shoe temperature distribution in the channel. 

 

 
3.4. Thermal Electric Model 
3.4.1. Thermoelectricity Phenomenon 

 
Seebeck Effect 

When an electrically conductive material is subjected to a temperature gradient, an 

electric voltage is generated.  This effect is called the Seebeck effect of an electrically conductive 

material.  If a P-type semiconductor material and a N-type semiconductor are connected with the 

two junctions at different temperatures, the Seebeck electric potential VΔ  will be induced 

across the unpaired terminal as a result of the difference between the internal potential with the 

two semiconductors.  To characterize this instantaneous thermoelectric phenomenon, the 

Seebeck coefficient is defined as follows: 

T
V

Tnppn Δ
Δ

=−=
→Δ 0

limααα
         (3.24) 

where 

pα
 = absolute Seebeck coefficient of the P-type semiconductor (see Appendix B). 

nα  = absolute Seebeck coefficient of the N-type semiconductor (see Appendix B). 
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The absolute Seebeck coefficient is dependent on the material as well as the temperature.  For a 

pair of P-type and N-type semiconductors, the electric potential difference, as a result of the 

temperature difference TΔ  between the two junctions, may be calculated as follows: 
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      (3.25) 

where 

L  = length of the semiconductor materials. 

 

It should be noticed that both the first and the second terms in Equation (3.25) are positive since 

pα
 is positive and nα  is negative.  For this reason, the Seebeck voltage can be approximately 

doubled, which explains why there is always a pair of semiconductor materials in any 

thermoelectric device. 

If a thermoelectric circuit is configured, the electric current, due to the temperature 

difference induced Seebeck voltage can be calculated as follows: 

R
VΔ

=Ι
           (3.26) 

where 

NPL RRRR ++=           (3.27) 

where 

LR  = electric resistance of the external load. 

PR  = internal electric resistance of the P-type semiconductor. 

NR  = internal electric resistance of the N-type semiconductor. 

 

The internal electric resistances of the P-type and the N-type semiconductors can be calculated as 

follows: 

∫=
L

p
pp A

dxTR
0

)(ρ
          (3.28a) 
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∫=
L

n
nn A

dxTR
0

)(ρ
          (3.28b) 

where pρ  and nρ  are the electric conductance of the P-type and the N-type semiconductors, 

respectively (See Appendix B). 

 

Peltier Effect 

When an electric current crosses an interface between two different electric conductors, 

heat will be absorbed or liberated.  This phenomenon is called Peltier effect of an electric 

conductor.  The reason why Peltier effect occurs is that the entropy of the electric charge carriers 

changes as they cross an interface between two different electric conductors.   

If a circuit of two dissimilar semiconductor materials carries an electric current, one 

junction will absorb heat and the other junction will give off heat.  The absorbed heat or the 

liberated heat is proportional to the electric current, with the proportionality factor given by 

Peltier coefficient, is given by 

 

Ι= pnpeltierQ π
          (3.29) 

where 

Ι= the electric current across the circuit. 

nppn πππ −=
          (3.30) 

pπ
 = absolute Peltier coefficient of the P-type material. 

nπ  = absolute Peltier coefficient of the N-type material. 

 

According to Kelvin’s first law, it can be proved that the absolute Peltier coefficient, 

which is actually the entropy of the electric carrier for a unit current in the circuit, can be related 

to the absolute Seebeck coefficient as follows (Soo, 1968): 

 

Tαπ =            (3.31) 

If the Seebeck coefficient is considered to be temperature dependent, the absorbed heat due to 

Peltier effect at the hot junction can be calculated as follows: 
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)],0()(),0()([ tTTtTTQ nnpppPeltier •−••Ι= αα
     (3.32a) 

where 0>PeltierQ  indicates heat absorption. 

 

The liberated heat due to Peltier effect at the cold junction is calculated as follows: 

)],()(),()([ tLTTtLTTQ nnpppPeltier •−••Ι= αα
     (3.32b) 

 

Thomson Effect 

When an electric current passes a homogeneous conductor over which there is a 

temperature difference, heat is absorbed or liberated.  This phenomenon is called Thomson effect 

of electric conductor.  The Thomson effect can be described by Thomson coefficient, which is 

defined as follows: 

 

T
Q

T Δ
ΙΔ

=
→Δ

/lim
0

τ
          (3.33) 

where the Thomson coefficient τ  satisfies the second Kelvin’s relation, given by 

dT
dT ατ =

          (3.34) 

 

If the physical properties are temperature dependent, the absorbed or liberated heat due to the 

temperature difference TΔ  between the two junctions can be calculated as follows: 

])()([
00
∫∫ ∂

∂
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∂
∂

•Ι−=
L

n
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L
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pT dx
x
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x
T

TQ ττ
     (3.35) 

where 0>TQ  indicates heat generation. 

Joule Effect 

When an electric current passes in a conductor, the electric energy is converted into heat 

by Joule heating.  The Joule heating is given by 

RQJ
2Ι=            (3.36) 

where 



 

42 
 

NP RRR +=           (3.37) 

Fourier Effect 

Heat is conducted from high temperature to low temperature.  According to Fourier law, the heat 

flux is given by: 

dx
dTkq −=

           (3.38) 

where 
q  = heat flux due to heat conduction in the semiconductor materials. 

k  = thermal conductivity of the semiconductor materials. 

 
3.4.2. Thermal Electric Generator Model 

In the SP-100 design, the electricity is generated by 3 loops × 12 primary heat exchangers 

× 30 channels × 480 TE cells.  Each TE cell consists of two semiconductors, one P-type 

semiconductor and one N-type semiconductor.  The hot shoes of TE cells are mounted on the 

two surface plates of the 12 primary heat exchangers.  The cold shoes of TE cells are connected 

to radiators through heat pipes.  In the current version of the simulation model, the transient heat 

transfer from the cold shoes of TE cells to the radiators is ignored.  Because there is a 

temperature gradient between the hot shoes and the cold shoes of TE cells, when heat is 

conducted from the hot shoe of a TE cell to its cold shoe, electric power will be generated due to 

the Seebeck effect.   

The governing equations to describe the temperature distribution in the P-type 

semiconductor and the N-type semiconductor are given as follows (Soo, 1968): 
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     (3.39b) 

 

where J  always takes positive sign such that the Thomson effect is positive to the heat storage 

of P-type material and negative to the heat storage of N-type material. 
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Equations (3.39a) and (3.39b) are the energy balance equations for P-type semiconductor 

and N-type semiconductor, respectively.  On the left side of the two equations, the first term 

corresponds to the heat addition due to thermal conduction, the second term corresponds to Joule 

heat, and the third term corresponds to Thomson effect.  The term on the right side of the two 

equations corresponds to the heat storage.  Obviously, only volumetric effects appear in the 

governing equations to describe the temperature distribution. 

The boundary condition on the hot shoe of a pair of semiconductor elements is explicitly 

stated in this research as follows: 

phpnnpp
p

pp AtqJAtTtT
x

tT
Ak )()),0(),0((5.0

),0(
=−+
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− αα
   (3.40a) 
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− αα
   (3.40b) 

where 

)(tqh  = heat flux flowing into the hot shoe of TE cells. 

 

The boundary condition on the cold shoe of a pair of semiconductor elements is stated as 

follows: 

ppcpnnpp
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   (3.40c) 
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− αα
   (3.40d) 

where 

)(tqc  = heat flux flowing out of the cold shoe of TE cells due to radiation. 

)),(()( 44
, appc TtLTFtq −= σε

 

)),(()( 44
, annc TtLTFtq −= σε  

ε  = emissivity (0.85). 

F  = ratio of the surface area of the radiator to that of the TE cell cross section (15).  
σ = Stephan-Boltzman constant (5.67E-8 Wm-2 K-4). 

aT = ambient temperature in space (253 K). 
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In order to close the equations given by Equations (3.39a) and (3.39b), the Seebeck voltage and 

the electric current are calculated using Equations (3.25) and (3.26), respectively. 

 
3.4.3. Energy Balance Analysis 

The generalized relationship between the thermal power flow and the electric power 

output has been derived in this research for the developed model of the thermoelectric converter.  

For the operating temperature of TE converters for SP-100 design, the temperature difference 

between the hot shoe and the cold shoe is as great as 500 K.  Therefore, it is necessary to take 

into account the temperature dependence of the thermal properties and the electric properties for 

the semiconductors.  Because the energy balance analysis in most research is based on constant 

hot shoe temperature and constant cold shoe temperature, as well as on physical properties, we 

examined the energy balance to verify the results of our developed thermoelectric model when 

temperature dependent physical properties are considered.   

During both steady state and transient conditions, for a pair of TE cells, the total heat 

flowing into the junction of the hot shoe HQ  can be written as follows: 

LhpeltierH QTQQ += )(
         (3.41) 

where 

)( hpeltier TQ
 = the absorbed heat due to Peltier effect at the hot junction.  

LQ  = heat flowing into the semiconductors through heat conduction. 

x
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       (3.42) 

 

The heat flowing out of the junction of the cold shoe CQ  is as follows: 

RcpeltierC QTQQ += )(
         (3.43) 

where 

)( cpeltier TQ
 = liberated heat due to Peltier effect at the cold junction.  

RQ  = heat flowing out of the semiconductors through heat conduction. 
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      (3.44) 

 

If the governing equations (3.39a) and (3.39b) are integrated, the following steady state balance 

equation can be derived for the heat conduction in the semiconductors: 

 

TNPLR QRRIQQ ++=− )(2

       (3.45) 

 

where the first term on the right side is the volumetric Joule heat generation and the second term 

is the volumetric Thomson heat generation. 

If the TE generator system is considered as a whole, the energy balance equation can be 

derived as follows: 

eCH QQQ +=           (3.46) 

where  

eQ  = the electric power. 

 

Equation (3.46) provides a universal representation of the energy balance for thermoelectric 

conversion devices whether the physical properties of the semiconductors are temperature 

dependent or not.  In order to verify that our model is correct, a detailed proof of the energy 

balance equation is given in this section. 

 

Proof:  The difference between the absorbed Peltier heat on the hot shoe and the liberated Peltier 

heat on the cold shoe is given as follows: 
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            (3.47a) 
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According to Seebeck law, the Seebeck voltage is rewritten as follows: 
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     (3.47b) 

 

Therefore, according to Ohm’s law, the term inside the first brackets on the right side of 

Equation (3.47a) can be written as follows: 

 

)(2
npL RRRV ++•Ι=Ι•Δ

       (3.47c) 

 

The term inside the second brackets on the right hand side of Equation (47a) is related to the 

Thomson heat, which is written as follows: 
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since 

dT
dT ατ =

. 

 

According to the steady state governing equations of TE generators, the following relationship 

exists: 

TNPLR QRRIQQ ++=− )(2

        (3.47e) 

 

If we add Equations (3.47a) and (3.47e), then we have 

 

ecpeltierRhpeltierL QTQQTQQ ++=+ )()(
      (3.47f) 

 

This completes the proof of Equation (46). 

 

The energy efficiency eη  of the TE system is defined as follows: 
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In the case that the physical properties are independent of the temperature, the Thomson effect 

may be ignored.  If we further assume that the P-type semiconductor and the N-type 

semiconductor have the same physical properties and the hot shoe temperature and the cold shoe 

temperature are constant, the resulting temperature distribution based on the governing equation 

with the specified boundary conditions will have the following solutions (Soo, 1968): 
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     (3.49) 

 

We can verify that the following relationships exist: 

)(2
npLR RRQQ +Ι=−

        (3.50) 

 

In the meanwhile, the load voltage is given by: 
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−
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where LR  is the electric resistance of the load. 

The electric current is given by: 
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       (3.52) 

 

The heat absorption and the heat liberation at the two junctions due to the Peltier effect are as 

follows: 

2
)( nhph

pnhp

TT
TQ

+
Ι=α

        (3.53a) 

h

e
e Q

Q
=η



 

48 
 

2
)( ncpc

pncp

TT
TQ

+
Ι=α

        (53b) 

 

It is easy to verify that the following energy conservation relationship does exist. 

 

LcpRhpL RTQQTQQ 2)()( Ι++=+
      (3.54) 

 

In Seo’s report, there is a misunderstanding about the energy balance for TE cells, where the heat 

conduction into and out of the TE semiconductors are related as follows: 

 

)(5.0 TJKL QQQQ ++=         (3.55a) 

)(5.0 TJKR QQQQ ++=         (3.55b) 

where 

KQ = steady state heat flux due to the heat conduction in the semiconductor materials. 

If we examine the derivation described in this section, it can be found that Equations 

(3.55a) and (3.55b) are correct only if Equations (3.49a) and (3.49b) hold.  In general, when the 

physical properties are dependent on temperature, the heat flux into and out of the semiconductor 

materials will be a complicated function of the heat flux flowing inside the semiconductor 

materials.  However, the energy balance equation given by Equation (3.46) is always true and the 

calculation of the TE efficiency does not need the information about where the Joule heat and the 

Thomson heat are distributed. 

 
3.4.4. Results of TE Model 

Figures 3.11 and 3.12 show the steady state responses of a single TE cell as a function of 

the external load based on the developed TE model.  Figure 3.11 shows that the electric power 

generated by the TE cell is able to follow the power demand only up to a certain external load 

value.  In other words, the electric power output does not increase as the electric load increases 

after the electric load is greater than a certain critical value.  In Figure 3.11, this critical value is 

about 0.017 Ohms.  It can be theoretically proved that the critical value occurs when the external 

load is equal to the total resistance of the P and N elements.  The reason why the electric power 
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output has a peak value is that there are two competitive mechanisms to control the electric 

output.  The positive mechanism is that the electric power increases due to the increase in 

Seebeck voltage as external load increases.  The negative mechanism is that the thermal input to 

the TE generators decreases due to the decrease in the Peltier’s heat absorption when the electric 

current decreases as the external load increases. 

In Figure 3.12, the calculated results show that the efficiency of TE generators has a peak 

value, which is almost independent of the external load but is dependent on the TE hot shoe 

temperature.  As the hot shoe temperature increases, the TE input power, the Seebeck voltage, 

and the TE current all increase.  After the external load reaches the critical value for a given TE 

hot shoe temperature, which is not sensitive to the TE hot shoe temperature, the decrease in the 

input thermal power and the increase in the Seebeck voltage approach asymptotic values.  

Therefore, the thermal efficiency will continue to decrease because of the continuing decrease in 

the electric current as the external load increases. 

Figure 3.13 shows a 3-D plot of the electric power output as a function of the external 

load and the TE hot shot temperature.  This figure clearly shows that the TE hot shoe 

temperature has a strong influence on the thermal efficiency but has almost no effect on the 

critical load.  The figure also shows that the electric power is able to follow the power demand 

only up to a critical load value.  Figure 3.14 shows a 3-D plot of the electric power output as a 

function of the external load and the TE hot shoe temperature.  This shows that the thermal 

efficiency increases as the TE hot shoe temperature increases.  However, the rate of increase 

starts decreasing as the TE hot shoe temperature becomes greater. 
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Figure 3.11.  Electric power versus external load. 
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Figure 3.12.  Steady state response of TE generator as a function of external load. 
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Figure 3.13.  Electric power output versus external load and TE hot shoe temperature. 

 
Figure 3.14.  TE efficiency versus external load and TE hot shoe temperature. 
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3.5. Review of the SP-100 Electromagnetic Pump 
The Electromagnetic Pump (EMP) is a critical component of the SP-100 system.  The 

function of the EM pump is to pump lithium coolant from the reactor core to the energy 

conversion system and overcome the hydraulic resistance of the primary fluid in the primary heat 

transport system.  In the SP-100 system, three EM pumps are used to constitute three reactor 

loops and transport thermal energy from the core to the power conversion assemblies.  

The EM pumps of SP-100 system are self-actuated.  The electric current is generated 

using thermoelectric elements positioned between the high temperature primary coolant and low 

temperature secondary coolant.  The pumping force is created by making the electric current 

cross a magnetic field.  Therefore, as long as there is a temperature difference between the 

primary and secondary coolant, the pump will continue to operate as designed. 

 

The SP-100 system uses a rectangular design, a schematic of which is shown in Figure 

3.15.  The electric current generated by the SiGe/Ga thermoelectric generators forms a loop in 

the plane of the paper.  The direction of the magnetic field created by Hiperco-27 permanent 

magnet is from the East to the West.  The lithium coolant in the two coolant ducts between the 

magnetic structures is subjected to a magnetic force and flows in the coolant ducts along the 

directions indicated in the figure. 

The EM pumps of SP-100 systems can be designed to operate in controllable mode or 

uncontrollable mode.  In the uncontrollable mode design, the pressure rise of the pumps is 

determined by the electric current provided by the TE generators and the magnetic flux density 

created by the Hiperco-27 permanent magnet.  In the uncontrollable mode design, the magnetic 

flux created by the magnet should be adjustable. 
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Figure 3.15. A schematic of rectangular EM pump design. 

 
A simplified EM pump model can be developed by assuming the coolant duct is 

rectangular with constant area, and the magnetic flux is constant.  The input parameters of the 

EM pump model include the electric current, the magnetic field, and the geometric data of the 

coolant ducts. 

Figure 3.16 shows the diagram of principle used for the EM pump simplification.  The 

subjected force on the coolant in the pump duct, F , is given as follows: 

410
aBIF e=

 
where 

B = magnetic flux density, Gauss. 

eI  = effective electric current flowing through the coolant inside the coolant duct, amp. 
a  = effective width of the coolant duct, m. 

The coolant pressure rise PΔ  due to the pumping force is then given as follows: 

b
BI

ab
FP e

410
==Δ
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As the electrically conductive coolant in the coolant duct moves in the magnetic field, an induced 

voltage, iE , will be generated, which is given by: 

b
BQEi 410

=
 

where 

Q = the volumetric flow rate of the coolant in the coolant duct. 

 

Suppose that the total electric current traversing the coolant duct is I .  This should be equal to 

the sum of the effective current passing through the coolant inside the coolant duct, eI , and the 

current passing through the duct wall, wI , if the current passing through the coolant outside the 

magnetic field boundary can be ignored.  This is given by 

 

we III +=  
 

Therefore, the total voltage drop across the coolant duct is given by 

wweei RIRIEE =+=  
where 

eR  = electric resistance of liquid metal in the coolant duct. 

wR  = electric resistance of wall material of the coolant duct. 

 

Therefore, the effective current passing through the coolant inside the coolant duct, eI , can be 

calculated as follows: 
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Furthermore, the relationship between the pump pressure rise and the volumetric flow rate can be 

written as follows: 

 



 

55 
 

)
10

(1
10 44 b

BQRI
RRb

BP w
we

−•
+

=Δ
 

 

 

Figure 3.16.  A simple model of the EM pump. 
 

 
3.6. Integration of the SP-100 System Model 

The developed simulation model must be able to reproduce the SP-100 main design 

parameters at the nominal operation condition before it can be used for transient analysis and 

control study.  In this section, the initialization of the individual component models and the 

integration of the SP-100 system model are presented.  A schematic of the integrated model is 

shown in Figure 3.17 
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Figure 3.17. The Integrated model of SP-100 system. 

Table 3.3 shows a comparison between simulation results and design parameters at full 

operation condition.  Most of the simulation results are in good agreement with the SNPSAM 

design parameters.  The big differences are in TE hot side and cold side temperatures.  The 

reason for the differences is that a secondary lithium loop is added to the developed simulation 

model while TE cold shoes are directly connected to radiators in SNPSAM design.  However, 

the calculated electric conversion efficiency is close to the value of SNPSAM.  Therefore, the 

developed simulation model can still be used to provide a credible control design for SNPSAM 

space reactor system.   

Table 3.3.  Comparison between simulation results and design parameters 

Parameters SNPSAM Design Simulation  

Nominal thermal power (kW) 2000.0 2000.3 

Electric power output (kW) 112.0 112.6 

System efficiency (%) 5.59 5.63 

Core inlet temperature (K) 1254.0 1254.0 

Core outlet temperature (K) 1284.0 1284.0 

Fuel average temperature (K) 1376.0 1376.0 

Cladding average temperature (K) 1288.0 1288.0 

TE hot side temperature (K) 1237.0 1228.5 

TE cold side temperature (K) 857.0 841.8 
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The developed model was used to simulate the step responses of the increase in the 

control drum angle, which is shown in Figure 3.18.  The control drum angle has a step increase 

of 10 degrees at the 10th second.  Correspondingly, a step increase in reactivity is inserted into 

the core with a maximum value of 13.95 cents.  Due to the feedback arising from Doppler effects 

and reactor coolant expansion, the total reactivity becomes zero at the150.0th second.  This 

indicates that the space reactor is a self-regulated process. 

Figure 3.18 also shows the transients of reactor thermal power and the TE electric power 

output.  The reactor thermal power follows the total reactivity and a power peak can be observed 

because the reactor thermal power change rate rather than reactor thermal power is proportional 

to the total reactivity.  The electric power output follows the reactor core outlet temperature.  A 

time lag can be observed between the electric power output and the reactor thermal power. 
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Figure 3.18.  Step response of the increase in control drum angle. 

 
Figure 3.19 also shows the step response of step increase in external load.  When the external 

load changes by 0.01 Ohms for one TE element, TE electric power output has a quick response.  

As compared with the disturbance on control drum angle, changing external load may have a 

load following capability without disturbing the reactor thermal power as well as the reactor inlet 
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and outlet temperature significantly.  In addition, the TE electric power output responds to the 

change in external load in a much faster speed than the change in control drum angle. 
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Figure 3.19.  Step response of the increase in external load. 

 

3.7. Summary of Model Equations for Control  
Neutron Kinetics Model 

Point reactor kinetics model with six delayed neutron groups is used to describe the 

dependence of nuclear reactor power on reactivity change, and is given by: 

 

(t)Cλ(t)P
Λ
β

dt
(t)dC

(t)Cλ(t)P
Λ
βρ(t)

dt
(t)dP

iin
ii

6

1i
iin

totn

−=

+
−

= ∑
=

 
 

where 
(t)Pn  = instantaneous nuclear power (MWt). 
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61β −  = fractions of the 6 groups of delayed neutrons. 

totβ  = total fraction of delayed neutrons. 

61λ −  = decay constants of 6 groups of delayed neutrons. 
(t)Ci = concentration of the precursors of delayed neutrons. 

Λ  = average neutron generation time (s). 
ρ(t)  = total reactivity at time t. 

)(tρ(t)ρρ(t) FBCD +=  
CDρ  = external reactivity inserted by the control drum. 

FBρ  = feedback reactivity. 

 

The neutronic data used to solve the reactor kinetics equation are obtained from [8]. 

Feedback Reactivity 

The core model takes into account three mechanisms of reactivity feedback.  The reactor 

fuel Doppler feedback reactivity, Dρ , represents the competitive effects of the absorption of 

fertile material such as U-238 and the fission of fissile material such as U-235 when fuel 

temperature changes.  The reactor core expansion feedback reactivity, Eρ , represents the 

reactivity effect due to the expansion of reactor core materials including fuel, fuel cladding, and 

reflector.  The reactor core coolant expansion coefficient, Cρ , takes into account the reactivity 

effect of neutron leakage when the temperature of reactor core coolant changes. 

 

The total reactivity feedback is calculated as follows: 

(t)ρ(t)ρ(t)ρ(t)ρ CEDFB ++=  
where 

(0)T
(t)T

lnα(t)ρ
f

f
DD =

 
(0))T(t)(Tα(0))T(t)(Tα(t)ρ cladcladcladfffE −+−=  

(0))T(t)(Tα(t)ρ cccc −=  
where 

Dα = fuel Doppler temperature coefficient 

fα = fuel expansion feedback coefficient. 
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cladα = fuel cladding expansion feedback coefficient. 

cα  = reactor core coolant expansion feedback coefficient. 

fT  = fuel temperature (K). 

cladT  = fuel cladding temperature (K). 

cT = reactor core coolant temperature (K). 

 

Reactivity Control Mechanism 

The external reactivity control in the developed model uses the mechanism of the stepper 

motor control drum system.  The control drum shaft can be rotated from 0 to 180 degrees.  The 

control voltage is transformed into a set of 27V rectangular pulses, with the frequency varying 

from 0 to 1.33 Hz.  These pulses are then converted into discrete movements of the shaft 

connected to the control drums.  The position of the shaft of the stepper motor is given as 

follows: 

 

0.0525u
dt
dθ1.01

dt
θd
2

2

=+
 

where 

 
u  = the control voltage (V). 
θ  = the shaft angle of the stepper motor. 

 

The external reactivity inserted by the control drum can be fitted as a function of the shaft angle 

of the stepper motor, and is given by 

 

θ105.88θ104.57θ103.28θ102.33θ106.89ρ 52639410513
CD

−−−−− ×−×+×+×−×=  
where 

CDρ  = integral reactivity worth due to the control drum corresponding to the positioned angle. 

Core Heat Transfer Model 

A simplified reactor core heat transfer model is developed to calculate fuel temperature, 

fuel cladding temperature, and average core coolant temperature.  The fuel temperature fT , the 
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fuel cladding temperature cladT , and the average core coolant temperature cT  are described as 

follows. 

 

fcladfn
f

f (UA))T(T(t)P
dt

(t)dTC ⋅−−=
 

cladccladfcladf
clad

clad (UA))T(T(UA))T(T
dt

(t)dTC ⋅−−⋅−=
 

)T(Tcm(UA))T0.5(T
dt

(t)dT
0.5C poutcpccladcclad

c
c −−⋅−=

 

)T(Tcm(UA))T0.5(T
dt

(t)dT
0.5C cpinppcladpinclad

pin
c −−⋅−=

 
where 

fT  = average fuel temperature ( K). 

poutT = core inlet coolant temperature ( K). 

pinT = core outlet temperature ( K). 

cladT = average cladding temperature ( K). 
m  = reactor core coolant flow rate (kg/s). 

cC = heat capacity of the coolant (J/K). 

fC = heat capacity of the fuel (J/K). 

cladC = heat capacity of the fuel cladding (J/K). 

f(UA)  = overall thermal transfer between the fuel and the cladding ( J/K). 

clad(UA)  = overall thermal transfer between the fuel cladding and the reactor core coolant (J/K). 

 

Thermal Model of Primary Heat Exchanger 

The thermal model of the primary heat exchanger is fully coupled with the thermoelectric 

model.  The heat removal term in the thermal model of the primary heat exchanger depends on 

the hot shoe temperature of the thermal-electric device, and the heat addition term used in the 

thermoelectric model depends on the fluid temperature of the primary heat exchanger.   

Although there are 30 channels, each of which has 480 TE cells mounted on the channel 

surface, only one node is used to describe the heat removal for simplification.  With this 

simplification, the energy balance equation for the primary heat exchanger is given as follows: 
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)T(T

(UA)N)T(Tcm
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1
dt

(t)dT
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pTETEpinpoutpP
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(UA)N)T(Tcm
N

1
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(t)dT
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+−=

 
 

where 

poutT  = outlet temperature of the heat exchanger on the primary side (K). 

soutT  = outlet temperature of the heat exchanger on the secondary side (K). 

HshoeT  = hot shoe temperature of a representative TE cell (K). 

CshoeT  = cold shoe temperature of a representative TE cell (K). 

pHxC  = heat capacity of the primary heat exchanger on the primary side (J/K). 

sHxC  = heat capacity of the primary heat exchanger on the secondary side (J/K). 

TEN  = number of TE cells of each heat exchanger. 

HxN  = number of heat exchangers. 

pm  = primary flow rate of each heat exchanger (kg/s). 

sm  = secondary flow rate of each heat exchanger (kg/s). 

pTE(UA)  = overall thermal transfer of a TE cell between the hot shoe material and the bulk fluid on 

the primary side (J/K). 

sTE(UA)  = overall thermal transfer of a TE cell between the cold shoe material and the bulk fluid 

on the secondary side (J/K). 

 

The overall heat transfer is calculated as follows: 

TE
hx

N

1i i

iTE )A
h
1

k
t

(

1
(UA)

1

+
=

∑
=  

where 

TEA  = area of a TE cell for convective heat transfer. 

it  = thickness of the i-th layer of the TE padding material. 

ik  = heat conductivity of the i-th layer of the TE padding materials. 
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hxh  = forced convection heat transfer coefficient. 

 

The forced convection heat transfer coefficient between the fluid and the channel walls is 

calculated based on the following correlation: 

 

e
hx d

kNuh •
=

 
where 

 

)0.02Pe(5.8
γ
1Nu 0.8+=

 
γ  = the ratio of heat transfer coefficient of liquid metals flowing between two parallel plates with 

one of them being adiabatic to that with two plates of equal heat flux. 

 

Thermal-Electric Model 

In the SP-100 design, electric power is generated by 3 loops × 12 primary heat 

exchangers × 30 channels × 480 TE cells.  Each TE cell consists of two semiconductors, one P-

type semiconductor and one N-type semiconductor.  The hot shoes of TE cells are mounted on 

the two surface plates of the 12 primary heat exchangers.  The cold shoes of TE cells are 

maintained at a lower temperature by cooling effects of the secondary lithium loop, which is 

connected to radiators through heat pipes.  Because there is a temperature gradient between the 

hot shoes and the cold shoes of TE cells, when heat is conducted from the hot shoe of a TE cell 

to its cold shoe, electric power will be generated due to the Seebeck effect. 

In the case that physical properties are independent of the temperature, Thomson’s effect 

can be ignored.  If it is further assumed that the P-type semiconductors and the N-type 

semiconductors have the same physical properties and the hot shoe temperature and the cold 

shoe temperature are constant, the resulting temperature distribution based on the governing 

equation with the specified boundary conditions has the following solution. 

 

)T(T(UA))R(R0.5IITα)T(TK HshoepoutpTENP
2

HshoepnCshoeHshoeTE −=+−+−  

)T(T(UA))R(R0.5IITα)T(TK soutCshoesTENP
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CshoepnCshoeHshoeTE  - =+++−  
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LPN

CshoeHshoepn

RRR
)T-(T

Ι
++

=
α

 
where 

TEK = effective thermal conductance of a TE element (J/K). 

pnα  = relative Seebeck coefficient (V/K). 
I  = electric current (amp). 

LR  = electric resistance of the shunt resistor (Ohm). 

PR = internal electric resistance of the P-type semiconductor (Ohm). 

NR  = internal electric resistance of the N-type semiconductor (Ohm). 

 

The electric power output, eP , is given as follows: 

 

L
2

e RΙP =  
 

The thermal power flowing into the TE generator, TEq , is given as follows: 

 

)T(T(UA)q HshoepoutpTETE −=
  

 

The efficiency of thermal electric conversion, η , is defined by 

TE

e

q
P

=η  

 

Radiator Model 

A single node is used to describe the heat removal by the radiators.  It is assumed that the 

characteristic temperature of the coolant in the radiator is equal to the outlet temperature.  The 

time dependent temperature of radiator, sinT , is given by: 

 

)T(TAεσF)T(Tcm
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1
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(t)dT
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where 
ε  = the emissivity. 

radF  = the ratio of the surface area of the radiator to that of the TE cell cross section.  
σ  = the Stephan-Boltzman constant (Wm-2 K-4). 

aT = the ambient temperature in space (K). 

 

Figure 3.20 shows the step response of the increase in control drum angle and Figure 3.21 shows 

the step response of the increase in external load. 
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Figure 3.20.  Step response of the increase in control drum angle. 
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Figure 3.21.  Step response of the increase in external load. 
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3.8. Coordinated Control of the SP-100 Space Reactor 
 

The basic control objective of SP-100 system is to follow the power demand with the best 

TE thermal-electric conversion efficiency without violating the physical constraints of the 

system.  Based on the results of transient modeling, electric power output can be regulated either 

by manipulating the external load or by manipulating the reactivity.  However, the two control 

strategies have their own limitations.   

Figure 3.22 shows the performance of the proportional-integral (PI) control of the TE 

electric power by manipulating the external load only.  When the electric power demand 

decreases from 100% full power to 50% full power, the PI controller is able to follow the power 

demand almost immediately by reducing the external load.  However, at the 300th second when 

power demand increases by 60% full power, increasing the external load cannot follow the 

power demand.  When external load increases to a certain value, the produced electric power 

cannot increase any longer.  For this reason, the system becomes unstable. 

Figure 3.23 shows the TE electric power output as a function of the TE hot shoe 

temperature and external load.  It is clear from the figure that the TE electric power increases 

while the reactor power as well as the primary heat exchanger inlet temperature increase.  

However, as external load increases, the electric power output would decrease rather than 

increase if the external load exceeds a certain value. 
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Figure 3.22.  Proportional-integral control of electric power based on manipulating the 

external load. 
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Figure 3.23.  TE electric power versus external load and TE hot shoe temperature. 
 
Figure 3.24 shows the performance of PI controller of the TE electric power by 

manipulating the reactivity.  When the electric power demand decreases from 100% full power 

to 50% full power, the PI controller introduces negative reactivity by manipulating the control 

drum angle.  As compared with Figure 3.3, it is observed that the electric power responds at a 

slower speed.  This is because the thermal inertia of reactor coolant system results in a time lag 

for the response of electric power output.  As the power demand increases by 60% full power 

once again, the electric power demand can be followed, though at a slower speed, in this case. 

According to the above analysis, an optimal controller of electric power is to have a coordinated 

control on the external load and the reactivity.  Figure 3.25 shows the results of the coordinated 

PI control.  In this control strategy, when the error signal of electric power is small, external load 

is manipulated to follow the power demand.  If the error signal is large, the reactivity is 

manipulated to follow the power demand.  Because the two control modes are coordinated, both 

the optimal speed of load following and system stability can be ensured.  Figure 3.25 clearly 

shows the expected results.  The coordinated control can ensure stability when the power 

demand increases up to 110% full power and has a quick response to changes in power demand. 
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Figure 3.24.  Proportional-Integral (PI) control of electric power based on manipulating the 

reactivity. 
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Figure 3.25.  Coordinated control of electric power. 
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4. MODEL PREDICTIVE CONTROL (MPC) 
 

4.1. Introduction 
In order to optimize the reactor power control performance, techniques for the optimal 

power control of nuclear reactors have been studied extensively in the past two decades (Cho and 

Grossman, 1983, Niar and Gopal, 1987, Lin et al., 1986, Park and Cho, 1993, Shtessel, 1998).  

But it is very difficult to design optimized controllers for nuclear systems because of variations 

in nuclear system parameters and modeling uncertainties, and in particular, for the long-term 

operation of the SP-100 reactor. 

The model predictive control methodology has received increased attention as a powerful 

tool for the control of industrial process systems (Kwon and Pearson, 1977, Richalet et al., 1978, 

Garcia et al., 1989, Clarke and Scattolini, 1991, Kothare at al., 1996, Lee at al., 1997, Lee et al., 

1998).  The basic concept of the model predictive control is to solve an optimization problem for 

a finite future at current time.  Once a future input trajectory has been chosen, only the first 

element of that trajectory is applied as the input to the plant and the calculation is repeated at 

each subsequent instant.  This method has many advantages over the conventional infinite 

horizon control because it is possible to handle input and state (or output) constraints in a 

systematic manner during the design and implementation of the control.  In particular, it is a 

suitable control strategy for nonlinear time varying systems because of the model predictive 

concept and recently, the problem of controlling uncertain dynamical systems has been of 

considerable interest to control engineers.  The model predictive control method has been applied 

to a nuclear engineering problem (Na, 2001, Na et al., 2003). 

In this work, a model predictive control (MPC) method is applied to design an automatic 

controller for thermoelectric (TE) generator power level for an SP-100 space reactor.  The SP-

100 reactor core dynamics is identified online by a recursive least squares method.  Based on this 

identified reactor model, consisting of the control drum angle and the TE generator power, the 

future TE generator power is predicted.  The objective function for the model predictive control 

is minimized by a genetic algorithm that is widely used for optimization problems.  A lumped 

parameter simulation model of the SP-100 space reactor is used to verify the proposed controller 

for a space nuclear reactor. 

 

 



 

70 
 

4.2. The Model-Predictive Control (MPC) Method 
4.2.1. The MPC Concept 

Figure 4.1 shows the basic concept of the model predictive control method.  For any 

assumed set of present and future control moves, the future behavior of the process outputs can 

be predicted over a prediction horizon N , and the M  present and future control moves ( NM ≤ ) 

are computed to minimize a quadratic objective function.  Although M  control moves are 

calculated, only the first control move is implemented.  At the next time step, new values of the 

measured output are obtained, the control horizon is shifted forward by one step, and the same 

calculations are repeated. The purpose of taking new measurements at each time step is to 

compensate for unmeasured disturbances and model inaccuracies, both of which cause the 

measured system output to be different from the one predicted by the model.  At every time 

instant, the model predictive control requires the on-line solution of an optimization problem to 

compute optimal control inputs over a fixed number of future time instants, known as the time 

horizon. The basic idea of model predictive control is to calculate a sequence of future control 

signals in such a way that it minimizes a multistage cost function defined over a prediction 

horizon.  

t 1t + t M+ t N+

ˆ( | )y t i t+

( | )u t i t+

w

 
 

Figure 4.1. Basic concept of a model predictive control method (Garcia et al., 1989). 
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Also, in order to achieve fast responses and prevent excessive control effort, the 

associated performance index for deriving an optimal control input is represented by the 

following quadratic objective function: 

[ ] [ ]∑∑
==

−+Δ++−+=
M

j
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j
jtuRjtwtjtyQJ

1

2

1

2 )1(
2
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subject to constraints min max

max

( 1) 0  for  ,
( ) ,
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u u t u

u t u

⎧Δ + − = >
⎪ ≤ ≤⎨
⎪ Δ ≤ Δ⎩

 

where Q  and R  weight the TE generator power (system output) error and control drum angle 

(control input) change between time steps at certain future time intervals, respectively, and w  is 

a set point (desired TE generator power). The estimate )|(ˆ tjty +  is an optimum j -step-ahead 

prediction of the system output (TE generator power) based on data up to time t ; that is, the 

expected value of the output at time t  if the past input and output and the future control sequence 

are known.  N  and M  are called the prediction horizon and the control horizon, respectively.  

The prediction horizon represents the limit of the instant in which it is desired for the output to 

follow the reference sequence.  In order to obtain control inputs, the predicted outputs have to be 

first calculated as a function of past values of inputs and outputs and of future control signals.  

The constraint, Mjjtu >=−+Δ for0)1( , means that there is no variation in the control 

signals after a certain interval NM < , which is the control horizon concept.  minu  and maxu  are 

the minimum and maximum values of input, respectively, and maxuΔ  is a maximum allowable 

control move per time step. 

 

4.2.2. Output Prediction 

The process to be controlled is described by the following Controlled Auto-Regressive 

and Integrated Moving Average (CARIMA) model, which is widely used as a mathematical 

model for controller design:  

 
1 1 1( ) ( ) ( ) ( 1) ( ) ( )A q y t B q u t C q tξ− − −= Δ − + , (4.2) 

where y  is an output (TE generator power), u  is a control input (control drum angle to regulate 

external reactivity), ξ  is a stochastic random noise sequence with zero mean value and finite 
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variance, 1−q  is the backward shift operator, e.g., )1()(1 −=− tytyq , and Δ  is defined as 
11 −−=Δ q .  In Equation (4.2), )( 1−qA  and )( 1−qC  are monic polynomials as a function of the 

backward shift operator 1−q , and )( 1−qB  is a polynomial of order nB .  

In order to optimize the objective function, the output must be predicted first.  The 

process output at time jt +  can be predicted from the measurement values of the output and 

input up to time step t .  The optimal prediction is derived by solving a Diophantine equation 

whose solution can be found by an efficient recursive algorithm.  In this derivation, the most 

usual case of 1)( 1 =−qC  will be considered.  By multiplying Equation (4.2) by )( 1−Δ qE j  from 

the left and applying the Diophantine Equation (4.4) to the CARIMA model of Equation (4.2), 

the j -step-ahead output prediction of a process has the following form. 

 

)1()()()()()()()( 1111 −+Δ+=+−+ −−−− jtuqBqEtyqFjtqEjty jjj ξ , (4.3) 

where )( 1−qE j  and )( 1−qFj  are polynomials satisfying 

1 1 11 ( ) ( ) ( )j
j jE q A q q F q− − − −= + , (4.4) 

1 1
,0 ,1 ,( ) j

j j j j jE q e e q e q− − −= + + + , (4.5) 

nA
nAjjjjj qfqfqffqF −−−− ++++= ,

2
2,

1
1,0,

1 )( , (4.6) 

 

There exist unique polynomials )( 1−qE j  and )( 1−qFj  of orders j  and nA , respectively, 

such that 10, =je .  By taking the expectation operator and considering that { } 0)( =tE ξ , the 

optimal j -step-ahead prediction of )|(ˆ tjty + satisfies  

)1()()()()|(ˆ 11 −+Δ+=+ −− jtuqGtyqFtjty jj , (4.7) 

where  

)()()( 111 −−− = qBqEqG jj , 

{ } { }1ˆ( | ) ( ) ( ) ( ) ( )jy t j t E y t j E q t j t E y t j tξ−+ = + − + = + . 
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)|(ˆ tjty +  denotes an estimated value of the output at time step jt +  based on all the 

data up to time step t .  The output prediction can be easily extended to the nonzero mean noise 

case by adding a term { })()( 1 tEqj ξ−Ε  to the output prediction )|(ˆ tjty + .  

 

By dividing the matrix polynomial, 1( )jG q− , into two terms as in the following equation 

( )1 1 1 1( ) ( ) ( ) with deg ( )j
j j j jG q G q q G q G q j− − − − −= + < , 

the prediction equation, Equation (3.7), can now be rewritten as 

,)()()1()(~)1()()|(ˆ 111 tyqFtuqGjtuqGtjty jjj
−−− +−Δ+−+Δ=+  (4.8) 

where ( )deg ⋅  denotes the order of a polynomial.  The last two terms of the right hand side of 

Equation (4.8) consist of past values of the process input and output variables and correspond to 

the response of the process if the control input signals are kept constant.  On the other hand, the 

first term of the right hand side consists of future values of the control input signal and 

corresponds to the response obtained when the initial conditions are zero, that is, ( ) 0y t j− =   

and ( 1) 0u t jΔ − − =  for 0>j  (Camacho and Bordons, 1999).   

A set of jN -step-ahead output predictions can be expressed as 

 

fuGy +Δ=ˆ , (4.9) 

where 

[ ] TtNtytjtyttytty )|(ˆ)|(ˆ)|2(ˆ)|1(ˆˆ ++++=y , 

[ ] TNtujtututu )1()()1()( −+Δ+Δ+ΔΔ=Δu , 

[ ]T
Nj ffff 21=f , 

)()()1()(~ 11 tyqFtuqGf jjj
−− +−Δ= , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−−

−−

021

021

01

0

0

00
000

ggg

ggg

gg
g

NN

jj

G , 



 

74 
 

∑
−

=

−− =
1

0

1 )(
j

i

i
ij qgqG .  

If all initial conditions are zero, the response f  is zero.  If a unit step is applied to the first input 

at time t , that is, T]001[=Δu , the expected output sequence TNtytyty )](ˆ)2(ˆ)1(ˆ[ +++  is 

equal to the first column of the matrix G .  That is, the first column of the matrix G  can be 

calculated as the step response of the plant when a unit step is applied to the first control signal.  

Since the control signal is kept constant after the first M  control moves (that is, 

0)1( =−+Δ jtu  for Mj > ) due to the model predictive control concept, the set of predictions 

affecting the objective function can be expressed as  

 

fuGy +Δ= ssˆ , (4.10) 

where 
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[ ] T
s Mtututu )1()1()( −+Δ+ΔΔ=Δu . 

 

The objective function of Equation (3.1), including the summation form (Σ ), can be rewritten in 

the following matrix-vector form: 

( ) ( ) s
T
s

TJ uRuwyQwy ΔΔ+−−= ~
2
1ˆ~ˆ

2
1 , (4.11) 

subject to constraints min max

max

( 1) 0  for  ,
( ) ,

( ) .

u t j j M
u u t u

u t u

⎧Δ + − = >
⎪ ≤ ≤⎨
⎪ Δ ≤ Δ⎩

 (4.12) 

where ( ), ,diag Q Q=Q  is a diagonal matrix consisting of N  diagonal elements, Q , which 

usually has a value of 1 ( 1Q = ) and ( ), ,diag R R=R  is a diagonal matrix consisting of M  

diagonal elements, R , which is called an input-weighting factor. 
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4.2.3. Recursive Parameter Estimation 

The process model is estimated recursively at every time step to reflect time-varying 

conditions of the plant including fuel burn-up, parameter changes due to long-term operation, 

and others.  Equation (4.7) can be expressed as the following inner product of the parameter 

vector )(ˆ tθ  and the measurement vector )(tφ : 

)()(ˆ)()()()()1(ˆ 1
1

1
1 tttuqGtyqFty T φθ ⋅=Δ+=+ −− , (4.13) 

where 

[ ])(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ)(ˆ
1021 tbtbtbtatatat nBnA

T =θ , 

[ ])()1()()1()1()()( nBtututunAtytytytT −Δ−ΔΔ+−−−−−=φ . 

 

The parameter vector )(ˆ tθ  is estimated using a recursive least-squares method as follows: 

[ ])1()1(ˆ)()1()()1(ˆ)(ˆ −⋅−−−+−= tttytttt T φθφΣθθ , (4.14) 

⎥
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⎤
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⎣

⎡
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)1()1()1()(
)1()1()1()1(

)1(
)(

1)(
tttt
tttt

t
t

t
T

T

φΣφ
ΣφφΣ

ΣΣ
λλ

, (4.15) 

where the covariance matrix 0)0( >Σ  and 1)(0 ≤< tλ . A forgetting factor )(tλ  is usually used 

to account for an exponential decay of the past data in tracking a slow drift in parameters and is 

calculated from the following equation: 

1)0(and1with)1()1()( 000 ≤≤−+−= λλλλλλ tt . (4.16) 

 

4.3. Optimization of the Objective Function by a Genetic Algorithm (GA) 
The objective function of Equation (3.11) can be solved by linear matrix inequality (LMI) 

techniques.  In this work, a genetic algorithm is used to minimize the objective function with 

some constraints. The genetic algorithm has been known to be proper in solving multiple 

objective functions.  Compared to the conventional optimization methods that move from one 

point to another, genetic algorithms start from many points simultaneously climbing many peaks 

in parallel. Accordingly, genetic algorithms are less susceptible to being stuck at local minima 

compared to conventional search methods (Goldberg, 1989; Mitchell, 1996).  
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In the genetic algorithm, the term chromosome refers to a candidate solution that 

minimizes an objective function. As the generation proceeds, populations of chromosomes are 

iteratively altered by biological mechanisms inspired by natural evolution such as selection, 

crossover, and mutation.  The genetic algorithms require a fitness function that assigns a score to 

each chromosome (candidate solution) in the current population, and maximize the fitness 

function value.  The fitness function evaluates the extent to which each candidate solution is 

suitable for specified objectives.  The genetic algorithm starts with an initial population of 

chromosomes, which represent possible solutions of the optimization problem.  The fitness 

function is computed for each chromosome.  New generations are produced by the genetic 

operators that are known as selection, crossover, and mutation. The algorithm stops after the 

maximum allowed time has elapsed. 

In this research, the optimization problem is to solve M  present and future control 

signals to minimize the objective function. Therefore, a chromosome is represented by ls  whose 

elements consist of present and future control inputs and has the following structure: 

[ ]( ) ( 1) ( 1)l l l ls u t u t u t M= + + − . (4.17) 

The subscript l  indicates that it is related to the l -th chromosome ( 1, ,l L=  where L  is the 

number of chromosomes). Chromosomes will constitute the initial population, the crossover 

probability cP , and the mutation probability mP . The genetic algorithm proceeds according to the 

following steps (Sarimveis and Bafas, 2003): 

 

Step 1 (initial population): Set the number of iterations 1iter = .  Generate an initial population 

consisting of L  chromosomes of Equation (4.17).  The values are allocated randomly, but they 

should satisfy both input and input move constraints of Equation (4.12).  For this purpose, we 

use a simple procedure as follows: 

(a) Read the measured value of the input variable at the previous time point -1t , which has 

already been implemented. 

(b) Select the current input value using the following equations: 

1 max( ) ( 1)lu t u t r u= − + ⋅Δ . (4.18) 

max maxIf ( ) , set ( )l lu t u u t u≥ = . (4.19) 

min minIf ( ) , set ( )l lu t u u t u≤ = . (4.20) 
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(c) Select the rest of the input moves using the following equations: 

1 max( ) ( 1) , 1 1l lu t i u t i r u i M+ = + − + ⋅Δ ≤ ≤ − . (4.21) 

max maxIf ( ) , set ( ) , 1 1l lu t i u u t i u i M+ ≥ + = ≤ ≤ − . (4.22) 

min minIf ( ) , set ( ) , 1 1l lu t i u u t i u i M+ ≤ + = ≤ ≤ − . (4.23) 

In the above equations, 1r  is a random number in the range of [-1,1].  A new random number 1r  

is generated whenever Equation (4.18) or Equation (4.21) is used. 

 

Step 2 (fitness function evaluation): Evaluate the objective function of Equation (4.11) for all the 

chosen chromosomes. Then invert the objective function values and find the total fitness of the 

population as follows: 

1

1
( )

L

l l

F
J t=

= ∑ , (4.24) 

where ( )lJ t  is the objective function value for the l -th chromosome and the inversion of ( )lJ t  is 

a fitness value of the l -th chromosome.  Then, calculate the normalized fitness value of each 

chromosome, meaning that the selection of probability lp  calculated by 

(1/ ( )) , 1l
l

J tp l L
F

= ≤ ≤ . (4.25) 

 

Step 3 (selection operation): Calculate the cumulative probability lq  for each chromosome using 

the following equation: 

Llpq
l

n
nl ≤≤=∑

=

1,
1

. (4.26) 

For 1, ,l L= , generate a random number 2r  between 0 and 1.  Select the chromosome for 

which 1 2l lq r q− ≤ ≤ . At this point of the algorithm a new population of chromosomes has been 

generated.  The chromosomes with high fitness value have more chance to be selected.  

 

Step 4 (crossover operation): For each chromosome ls , generate a random number 3r  between 0 

and 1.  If 3r  is lower than cp , this particular chromosome will undergo the process of crossover, 

otherwise it will remain unchanged. Mate the selected chromosomes and for each selected pair 
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generate a random integer number z  between 0 and 1M − . The crossing point is the position 

indicated by the random number.  Two new chromosomes are produced by interchanging all the 

members of the parents following the crossing point.  Graphically, the crossover operation can be 

represented as shown below, assuming that the crossover operation is applied to the parent 

chromosomes ls  and 1ls + : 

1 1 1 1 1 1

( ) ( 1) ( 1) ( ) ( 1)

( ) ( 1) ( 1) ( ) ( 1)

                                                           crossover operation

( ) ( 1

l l l l l l

l l l l l l

new
l l l

s u t u t u t z u t z u t M

s u t u t u t z u t z u t M

s u t u t

+ + + + + +

⎡ ⎤= + + − + + −⎣ ⎦
⎡ ⎤= + + − + + −⎣ ⎦

⇓

= + 1 1

1 1 1 1

) ( 1) ( ) ( 1)

( ) ( 1) ( 1) ( ) ( 1)
l l l

new
l l l l l l

u t z u t z u t M

s u t u t u t z u t z u t M
+ +

+ + + +

⎡ ⎤+ − + + −⎣ ⎦
⎡ ⎤= + + − + + −⎣ ⎦

 

 

The above operation might produce an infeasible offspring if the input values at the cross point 

do not satisfy the input move constraints.  This situation is avoided by the following correction 

mechanism for an input variable, which modifies the values of the input parameters after the 

cross position so that the input move constraints are satisfied.  At first, for one of the produced 

chromosomes new
ls , 

If     1 max( ) ( 1) ,l lu t z u t z u+ + − + − > Δ  (4.27) 

then 

1 max( ) ( 1) ,l lu t z u t z u+Δ = + − + − −Δ  (4.28) 

1 1( ) ( ) , 0 1 .l lu t z i u t z i i M z+ ++ + = + + −Δ ≤ ≤ − −  (4.29) 

If 

1 max( ) ( 1)l lu t z u t z u+ + − + − < −Δ ,  (4.30) 

then 

1 max( 1) ( ) ,l lu t z u t z u+Δ = + − − + −Δ  (4.31) 

1 1( ) ( ) , 0 1 .l lu t z i u t z i i M z+ ++ + = + + + Δ ≤ ≤ − −  (4.32) 

A similar set can be written for the chromosome 1
new
ls + . 
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Step 5 (mutation operation): For every member of each chromosome ls , ( )lu t i+ , generate a 

random number 4r  between 0 and 1.  If 4r  is lower than mp , this particular member of the 

chromosome will undergo the process of mutation, otherwise it will remain unchanged.  For the 

selected members define upper and lower bounds as follows: 

max max max

max max min

min( ( 1), ( 1), )
max( ( 1), ( 1), )

u l

l l

b u u t u u t i u
b u u t u u t i u
= Δ + − Δ + + +
= −Δ + − −Δ + + +

   if i = 0,  (4.33) 

max max max

max max min

min( ( 1), ( 1), )
max( ( 1), ( 1), )

u l l

l l l

b u u t i u u t i u
b u u t i u u t i u
= Δ + + − Δ + + +
= −Δ + + − −Δ + + +

   if 0 1i M< < − ,  (3.34) 

max max

max min

min( ( 1), )
max( ( 1), )

u l

l l

b u u t i u
b u u t i u
= Δ + + −
= −Δ + + −

   if 1i M= − .  (4.35) 

The above bounds define the region of values of ( )lu t i+  which will produce a feasible solution.  

This definition is followed by the generation of a random binary number b .  Based on the value 

of b , ( )lu t i+  is modified by the following equations: 

( ) ( )( )max1 /
5( ) ( ) ( ) 1 if 0iter iter

l l u lu t i u t i b u t i r b−+ = + + − + − = , (4.36) 

( ) ( )( )max1 /
5( ) ( ) ( ) 1 if 1iter iter

l l l lu t i u t i u t i b r b−+ = + − + − − = . (4.37) 

where 5r  is a random number between 0 and 1, iter  is the number of iterations performed so far, 

and maxiter  is the expected final number of iterations. 

Step 6 (repeat or stop): If the maximum allowed time has not expired, set 1 iter iter= +  and 

return Step 2.  Otherwise, stop the algorithm and select the chromosome that produced the lowest 

value of the objective function throughout the entire procedure. 

4.4. Application of the MPC Method to the SP-100 Space Reactor 
Figure 4.2 shows the schematic block diagram of the model predictive controller 

combined with a parameter estimation algorithm.  In this work, the MPC power controller was 

applied to the SP-100 reactor model.  The lumped parameter model for a SP-100 space reactor 

and the proposed control algorithm are written in MATLAB.  
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Figure 4.2. Schematic block diagram of a proposed model predictive controller. 

 

At first, a SP-100 space reactor power controller was designed by using the model predictive 

control optimized by a genetic algorithm.  

The model predictive controller for the power level control is subject to constraints as 

follows: 

( 1) 0 foru t j j MΔ + − = > ,  

0 ( ) 180o ou t≤ ≤ , 

( ) 1.4 ou t TΔ ≤ , 

where T  is a sampling time. The external reactivity control uses the mechanism of the stepper 

motor control drum system (Shtessel, 1998).  The control drum angle of the stepper motor shaft 

can be rotated from 0 to 180 degrees.  The maximum angular velocity of the drums is 1.4 / seco .  

The optimal control input could be obtained by solving the minimization objective function of 

Equation (4.11) using a genetic algorithm.  

Most of the computation time is involved in the calculation of the reactor dynamics, and 

that of the controller is insignificant.  The sampling time is 1 second.   One-step calculation time 

of the controller is about 0.08 sec on a 3.0 GHz PC.  Therefore, it is possible to accomplish real 

time performance even under low computing environments. 
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Figure 4.3 shows the simulation results of the proposed controller according to the input-

weighting factor. The desired power is 100% initially and decreases to 50% by ramp from 

100sec and increases to 100% by ramp from 300sec.  Also, it decreases from 100% to 50% by 

step at 500sec and increases from 50% to 100% by step at 700sec.  It is shown that the TE 

generator power and the nuclear reactor power level follow their desired value very well 

although their response speed depends on the input weighting factor which is a tuning variable.  

The input-weighting factor is expressed by the following equation:  
2

o

o

yR
u

ω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

where oy  is a rated value of the TE generator power and ou  is a rated value of  control drum 

angle. 

Figure 4.4 shows the performance of the proposed model predictive controller.  Figures 

4.4(g) and 4.4(h) show some parameters related to 1( )A q−  and 1( )B q−  that are estimated 

recursively at every time step.  It is assumed that all the parameters of the polynomials 1( )A q−  

and 1( )B q−  are 0.1 at the beginning of simulation.  In this work, these assumed values are 

estimated by the parameter estimation algorithm for initial 50 sec; this means 50 time steps since 

the sampling period is 1 second.  This is done by exciting the core dynamics with initial small 

random movements of the stepper motor shaft that changes the control drum angle.  Subsequently, the 

parameters are continuously adapted according to the changing operating conditions of the drum 

angle and the reactor power.  Figures 4.4(g) and 4.4(h) show that the reactor dynamics changes 

according to the power level, the control drum angle, and other effects.  Figure 4.4(i) shows the 

trend of the best fitness function value, which is affected by the magnitudes of the estimated 

output error and the control input move.  
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Figure 4.3. Performance of an MPC controller according to an input weighting factor. 
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(a) TE power and thermal reactor power (b) control drum angle 
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(e) TE efficiency (f) temperatures 
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Figure 4.4. Performance of the proposed MPC controller ( 300ω = ). 

 

In addition, a conventional proportional-integral (PI) controller was designed to compare 

the performance of the power level response with the proposed model predictive controller 

optimized by the genetic algorithm.  Figure 4.5 shows the performance of a well-tuned PI 

controller.  Its response is a little slow.  As shown in Figure 4.5, the PI controller performs less 

effectively than the proposed model predictive controller.  Also, if nonlinear characteristics are 

strong because of nuclear fuel burn-up and other effects, that are not considered in this work, it is 

expected that the proposed model predictive controller will have much better performance than 

the PI controller, because the MPC is optimized at each time step.  

Figure 4.6 shows the performance of a proposed MPC controller according to a parameter 

change. It is assumed that the fuel expansion feedback coefficient changes as shown in Figure 

4.6(d). The proposed controller well controls the nuclear reactor even under the significant 

change of the parameter. 

 A constrained minimization version of the model-predictive control and its application to 

the SP-100 reactor control is given in Appendix A. 
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(a) TE power and thermal reactor power (b) control drum angle 
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Figure 4.5. Performance of a well-tuned proportional-integral (PI) controller. 
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(c) temperatures (d) parameter change  
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Figure 4.6. Performance of the proposed MPC controller ( 300ω = ) under the condition of 

changes in the fuel expansion feedback coefficient, as shown in Fig. 4.6(d). 
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5. FAULT DETECTION AND ISOLATION (FDI) OF SENSORS AND 

FIELD DEVICES 

5.1. Introduction 

A successful implementation of hierarchical control with control mode reconfiguration 

depends on the reliability of sensor measurements and functional readiness of devices such as 

control actuators, pumps, and other process units.  The University of Tennessee [9-11] has 

developed efficient data-based techniques for validating sensors and devices, and to distinguish 

between changes in the devices and in the process itself. 

The characterization of the physical relationship among a set of process variables can be 

established using data-driven modeling techniques.  These include linear principal component 

analysis [10], nonlinear group method of data handling [11], and others.  In order to be effective 

for anomaly tracking, it is necessary to have a complete set of operational data.  In the absence of 

such data, physics simulation may be combined with available plant data for building these 

predictive models.  During the monitoring phase the models are used to predict the process 

variables of interest and establish the space of residuals or model errors.  The time behavior, 

patterns, and other signatures derived from the model and the measurements are used to detect 

and isolate sensor and device anomalies. 

In the hierarchical control scheme, this information is then fed to the supervisor and used 

to make decisions about the adequacy of the control actions and the need to reconfigure the 

control mode.  This is the essence of autonomous control design.  Principle Component Analysis 

(PCA) based approach is proposed as the baseline algorithm for steady state fault diagnosis 

because of its explicit representation of fault detectability and identifiability.  It was applied to 

fault diagnosis of steam generators (Lu, 2002) and the a typical pressurized water reactor 

(Kaistha, 2001).  In this project, the Principal Component Analysis (PCA) has been applied to 

monitor the steady state performance of the SP-100 reactor, using the MATLAB-Simulink model 

developed in Section 3. 

 



 

88 
 

5.2. Principal Component Analysis (PCA) for Measurement Modeling 

The Principal Component Analysis (PCA) was originally developed by Pearson, 1901, as 

a statistical method of dimensional reduction while preserving the variation of data.  The original 

data can be represented in a lower dimensional space without significant loss of the variability. 

From the modeling point of view, PCA transforms correlated variables into uncorrelated ones 

and determines the linear combinations with large and low variability (Flury, 1988).  

Before the original data are transformed into a lower dimensional space, they are mean 

centered because only the variability of the data is of interest. The data are standardized with unit 

variance so that equal weights are given to all the variables as far as their variability is concerned.  

For a measurement vector nx R∈ , in general, it can be represented in n-dimensional 

space as follows: 

1

n

i i
i

x t p
=

= ∑          (5.1) 

where  

ip  = the basis vectors of the n-dimensional space, which are orthonormal; it  = the component of 

the vector x when projected onto the basis vector ip .  Since the basis vector are orthonormal, it  

may be written as 

T
i it x p=          (5.2) 

If the true dimensionality of the measurement vector is l, where l < n, then the projection can be 

separated into two parts: 

1 1

l n

i i j j
i j l

x t p t p
= = +

= +∑ ∑          (5.3) 

where the second term represents the random vectors obtained by projecting the vector x onto the 

remaining (n-l) dimensional space.  
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The objective of the PCA algorithm is to determine the true number of components 

directly from the measured data such that the second part of Equation (5.3) behaves purely 

random.  This is equivalent to determining l principal components such that the squared error of 

the approximation, given by Equation (4.4) is minimized. 

2 [ ]TEε ε ε=           (5.4) 

where ε  is the measurement error. 
1 1

l n

i i j j
i j l

x t p t pε
= = +

= − =∑ ∑ . 

Given a data matrix X associated with n measured variables and m measurements when the mean 

values are removed, the first principal component is obtained by finding a basis vector 1p  such 

that the score vector 1t  of the original data along this direction has maximized variance, which is 

given by: 

1 1

1 1
1)

1 1

max{ [var( ]} max
T

Tp p

p pE t
p p
Σ

=                      (5.5) 

with the constraints 1 1 1Tp p = , where TX XΣ = . 

This solution of Equation (5.5) is the eigenvector of Σ  corresponding to its maximum eigenvalue, 

that is, 1 1 1p pλΣ = , where 

1λ  = the largest eigenvalue of the covariance matrix. 

Using the same method, we can obtain the other thj  principal component by solving the 

eigenvalue problem of the scatter matrix Σ , which is given by: 

1 1, 2,j jp p j lλΣ = =  

This PCA algorithm has chosen the eigenvectors of the covariance matrix of the measured data 

as the basis vectors for projection.  The implication of the projection in this manner is that the 

variation of the measured data can be separated into the variation in the principal component 
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subspace and the variation remaining in the residual space.  The PCA decomposition of the 

original measurement data is given by 

T TX TP TP= +          (5.6) 

where 

11 12 1

21 22 2

1 2

l

l

n n nl

p p p
p p p

P

p p p

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

  

11 12 1

21 2 2

1 2

l

l

m m ml

t t t
t t t

T

t t t

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

P = the loading matrix whose columns span the principal component space (PCS) and consist of 

the eigenvectors corresponding to the larger l eigenvalues of the matrix Σ . 

P = the loading matrix whose columns spans the residual space (RS) and consist of the 

eigenvectors corresponding to the smaller n-l eigenvalues of matrix Σ . 

For measurement vector x, the PCA algorithm estimates the true value by a projection onto the 

PCS and subtract out the random component, which is given by 

ˆ Tx PP x=           (5.7) 

The estimation error of the approximation is given by 

ˆ Tx x PP xε = − =         (5.8) 

The expectation of the squared error is given by 

2

1
[ ] [ ] [ ]

n
T T T T T

k
k l

E E x PP PP x E T Tε ε ε λ
= +

= = = = ∑       (5.9) 
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The above equation shows that the mean-squared error is equal to the sum of the least significant 

eigenvalues of the covariance matrix. This also indicates that the choice of the number of 

principal components is to neglect the eigenvectors as the basis vectors for expansion that 

correspond to the least significant eigenvalues of the covariance matrix of the original measured 

data. 

5.3. Selection of Number of Principal Components 

Many approaches have been proposed to determine the number of principal components 

for different applications. Cumulative Percent Variance, Scree Plot, Average Eigenvalue, and 

Cross Validation are discussed by several earlier investigators.  The cumulative percent variance 

method selects the number of principal components by setting a threshold of cumulative percent 

variance.  The Scree plot method is based on the plot of the fraction of variance explained by 

each principal component.  The plot orders the principal components from the one that explains 

the largest amount of variation to the one that explains the least amount of variation. This 

method considers the beginning point of the Scree as the most reasonable number of principal 

components.  The average eigenvalue method assumes that all the components whose 

corresponding eigenvalues are less than the average value should be discarded.  When cross 

validation method is used to determine the number of principal components, the original data are 

randomly divided into N-blocks, the cross validation error is computed as the residual sum of 

squares (RSS) for one block of data with the PCA model built using the other blocks of data.  

The number of principal components is chosen to be the one beyond which the TSS begins to 

increase.  In this project, the Scree plot method is used to determine the number of principal 

components. 

5.4. Fault Detection of Sensors and Field Devices 

Fault detection can be performed by monitoring the change of the correlation structure of 

the measured data.  Because the variation of data is separated in the principal component space 

and the residual space, two statistics are defined to measure the variation in the two spaces, 

respectively. If a new observation exceeds the effective region in the PC space defined by the 

normal operation data, a change in operation regime can be detected.  If a significant residual is 

observed in the residual space, a special event, either due to disturbance changes or due to 

changes in the relationship between variables, can be detected. 
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The Q-statistic is the measurement of distance from an observation to the PCA model or 

new vector space formed by the selected PCs. 

TQ ε ε=          (5.19) 

where TPP xε = . 

Under the standard assumptions of a multivariate normal distribution for ε , ε  ~ N(0,1), control 

limits at confidence level α  may be obtained using the 2χ  distribution as 

01/
2

2 0 2 0 0
1 2

1 1

2 ( 1)1

h
c h h hQ α

α

θ θθ
θ θ

⎡ ⎤−⎢ ⎥= + +
⎢ ⎥⎣ ⎦

      (5.21) 

where 

1
( )

1

n
ii

i
i l m

λθ
= +

=
−∑ , i = 1, 2, 3; m is the number of measurements.  

1 3
0 2

2

21
3

h θ θ
θ

= −  

cα is the standard normal deviate (equal to 2.57 for α = 0.01). 

 

5.5. Fault Isolation of Sensors and Field Devices 

The task of fault isolation (or identification) is to determine what the most affected 

variables are, once a fault happens.  Fault identification is useful because it can help operators 

focus their attention on a reduced number of variables.  

5.5.1. Fault Directions 

Let fi  represent the direction in the residual space for the i-th fault such that the samples 

corresponding to the fault have the maximum projection on fi .  In other words, if Ei  denotes the 

residuals for samples corresponding to the i-th fault, the optimization problem is 
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i

T T
i i i if

max f E E fJ =  

Subject to the constraint T
if f 1i = . 

Using the Lagrangian multiplier and differentiating J with respect to fi  and setting the derivative 

to zero for maximization, gives 

T
i i i i2E E f -2σf 0=  or T

i i i iE E f =σf        (5.22) 

Then the fault direction fi  is the eigenvector of T
i iE E  corresponding to the largest eigenvalue.  

5.5.2. Fault Isolation Index 

Let F = [ 1f  2f  … fR ], where 1f  2f  … fR  are (n x 1) column vectors, denote the fault directions 

for the various fault scenarios that are observed in the database.  In case the fault is of a 

particular type j, then the projection of the residuals on fj would be very high.  Fault isolation is 

accomplished by calculating the projections onto F and classifying the fault as the one with the 

maximum projection norm.  For example, a fault isolation index for the i-th fault is defined as  

1 /i iFI Q Q= − ,         (5.23) 

where 

T T
i i i ie(I f f )(I f f )eT

iQ = − −  and eeTQ = . 

In the above equations, iQ  denotes the distance of the sample from the origin after subtracting 

the projection of the residuals on the fault direction fi.  It represents sum of the squares of the 

residuals remaining after removing the contribution from the i-th fault direction.  The fault 

isolation index quantifies the fraction of Q that is due to fi.  If the j-th fault scenario occurs, FIi 

varies from 1 to R.  This results in the isolation of the fault from the various existing scenarios. 

The fault matrix F can be extracted from historic data as described in the previous section. 
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 5.6. Application of PCA to the SP-100 Reactor System 

The application of reconstruction based PCA approach to SP-100 is presented in this section. 

5.6.1. Data Generation and Model Development 

The normal operation data were generated by adjusting the reactor control drum angle 

from 125.93° to 115.93°, to simulate reactor power change using the simulation model 

developed in Chapter 2.  The step increment is 2°, and six groups of data are generated, which 

cover 100% to around 80% of the plant thermal power capacity.  At each power level 200 

samples were recorded.  Table 5.1 lists the 8 measured variables used to develop the PCA model 

for SP-100 system.  Before the simulated data are used to build a model, Gaussian noise with 

mean zero, and variance, equal to ± 0.2% of the mean value of the whole data set, is added to the 

data to mimic the measurement noise of the corresponding sensors. 

Table 5.1. Measured variables used to develop PCA model 

Variable 
number 

Symbol Variable Description 

1 Tpout Outlet Coolant Temperature for the primary loop 

2 Tpin Inlet Coolant Temperature for the primary loop 

3 Tsout Outlet coolant temperature for the secondary loop 

4 Tsin Inlet coolant temperature for the secondary loop 

5 Thot Hot leg temperature 

6 Tcol Cold leg temperature 

7 Pt Reactor thermal power 

8 Pe Reactor electric power 
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The standard deviation of the measurement noise added to each variable is listed in the Table 5.2. 

Table 5.2. Magnitude of measurement noise 

Variables 
Tpout 

(K) 

Tsout 

(K) 

Tpin 

(K) 

Tpout 

(K) 

Thot 

(K) 

Tcol 

(K) 

Pt 

(kW) 

Pe 

(kW) 

Noise 
standard 
deviation 

2.4346 1.5928 2.3747 1.5360 2.3353 1.6274 3.5497 0.1866 

 

A PCA model is built using the data for the nominal operation case.  The nominal operation data 

matrix is preprocessed by auto-scaling the columns in the data matrix to zero mean and unit 

variance.  This puts all the measurements with their different units on a common unit variance 

scale. 

5.6.2. The PCA model 

Figure 5.1 shows the fractions of the variance contained in the data explained by the 8 

eigenvectors.  Taking just the first eigenvector as the principle component can explain more than 

99% of the total variation in the data.  From the figure, we also can observe that the measured 

variables are very collinear.  
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Figure 5.1. Fractions of the variance explained by different PC components. 

The eigenvector to define the model space is as follow: 

   -0.3537 

   -0.3531 

   -0.3537 

   -0.3530 

   -0.3537 

   -0.3532 

   -0.3540 

   -0.3539 

Figure 5.2 shows the true measurement values and the PCA predicted values.  We can see that 

values PCA model prediction can keep the main information of the data and also filter some 

noise.  
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Figure 5.2. Test of the PCA model. 

 

5.6.3. Fault detection using the PCA approach 

From above PCA model, we can calculate that 0.1063Qα =  when 0.01α = . The 2Q  

statistics for the normal measurements with temperature drift fault is plotted in Figure 5.3.  The 

blue line is the Q-statistics limits corresponding to 99% confidence level.  It illustrates that the 

fault free data are well below the limit line.  Figure 5.3 shows the Q-statistics based fault 

detection for the conditions of a drift fault in the measurement of the reactor outlet temperature.   

This PCA model can only deal with steady state condition or a slow dynamic process. 

The algorithm to perform PCA based fault detection is only applicable to steady state condition. 

The choice of the confidence level affects the false alarm.  In a real application, the confidence 

level needs to be adjusted according to the operation requirements. 
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Figure 5.3. Q-statistics for Temperature measurement drift fault. 

 

5.6.4. Fault identification 

Assume that there is a 5%-2% drift fault existing in one sensor, using the method 

introduced in Section 5.4.2, we can calculate the fault isolation indices which represent the sum- 

of-squares of residuals remaining after removing the contribution from the i-th fault direction. 

The fault isolation indices for the detected fault scenarios are plotted in Figures 5.4 - 5.6.  For the 

particular fault in each case, the fault index is close to unity, and for the others it is much smaller. 

If the drift magnitude is larger, it is easier to isolate the sensor with measurement fault from 

those without fault.  This is demonstrated in Figure 5.5.  If the drift magnitude is smaller, the 

measurement noise affects the distinction between the sensors with fault and those without fault 

(Figure 5.6).  If it is known there is only one fault exits in the system, then we still can isolate the 

fault using the fault indices by checking which one is closer to unity.  All the fault cases are 

detected correctly using the fault isolation approach described earlier.  This demonstrates the 

effectiveness of the proposed method for fault detection and isolation in complex systems with 

several interacting units and feedback control loops. 
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Figure 5.4. Fault isolation index with 1.5% measurement drift fault. 
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Figure 5.5. Fault isolation index with 2% measurement drift fault. 
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Figure 5.6. Fault isolation index with 0.5% measurement drift fault. 
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6. DEVELOPMENT OF A LABORATORY MULTIVARIATE CONTROL 
FLOW LOOP  

 

6.1. Design Features of the Two-Tank Flow Control Loop 
 An experimental flow loop with two tanks, control valves, and a variety of sensors, has 

been designed and constructed and is used to evaluate the performance of the classical 

proportional-integral controller and the model-predictive controller, along with and the 

demonstration of the fault-tolerant control strategy.   Figure 6.1 is a schematic of this loop with 

low-pressure water circulation that is facilitated by a fractional horsepower motor-driven pump. 

The loop has a centrifugal pump, one stainless steel water reservoir, two acrylic tanks, 

four flow meters, two level transmitters, four motor-operated control valves, and three manual 

valves.  The piping is made of PVC schedule 80, with diameters varying from 1/2" to 3/4" and 

with enough flexibility to accommodate minor design changes.  A data acquisition system is 

used to monitor and control the loop by varying the position of two control valves until a 

stationary flow throughout the system as well as the water level in each of the acrylic tanks is 

attained.  A manual valve in between tanks provides the capability to work with both acrylic 

tanks at the same level. 

A bypass valve is provided to divert any excess water back to the water reservoir.  The 

maximum water flow is estimated to be around 27 GPM.  Though water temperature will be 

monitored, temperature control is not addressed in this work but changes can be implemented for 

this purpose.  A 4ft deep, 7ft long and 7ft tall steel frame supports the equipment, up to a 

maximum load of 800 pounds.  Figure 6.2 shows a simplified schematic of the structure.  The 

major equipment and parts are listed in Table 6.1. 
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Figure 6.1. Schematic of the two-tank experimental control loop. 
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Figure 6.2. Two-dimensional and 3-D views of the steel support structure. 
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Table 6.1.  List of Equipment and Major Parts 

ITEM DESCRIPTION QUANTITY

1  

Rosemount 3051S Differential Pressure Transmitter. 

Part Number: 3051S 1CD 2 A 2 E12 A 1A B4 

Input Range:  -250 to 250 inH2O 

Output: 4 – 20 mA  

04 

2  
Rosemount 1195 Integral Orifice Primary Element. 

Part Number: 1195 S 010 P1 S 0150 C 
02 

3  Omega Turbine Flow Meters FTB-953  02 

4  Worcester Control Valves – Series 75 04 

5  Ball Valve 01 

6  Globe Valves 02 

7  Acrylic Tanks and Fittings 02 

8  Steel Tank 01 

9  Aluminum Sheets 02 

10  Shortec Centrifugal Pump CMPP12T (36GPM max.) 01 

11  Steel frame, bolts, nuts, brackets, wheels, etc  - 

12  Electrical Connections (wires, cables, buttons, etc) - 

13  Computer and Data Acquisition Card 1 

14  LabView, MATLAB 2 

 

 

 

 

 

 

 

 

 

 



 105 
 

6.2. General Description of the Experimental Control Loop 
The two-tank control loop is built on a wheeled table-like steel frame structure.  This 

structure holds all sensors, piping, pump, sump tank, aluminum table top, cables, control valves, 

manual valves, and two tanks and can be easily moved around.  Since eighty percent of the 

piping used to build the loop are CPVC and union connections were strategically distributed; any 

maintenance or setup modification can easily be carried out.  Figure 6.3 shows the main structure 

right at the beginning of construction and in Figure 6.4 shows the detail of the bypass hole 

drilling operation. 

 

 

Figure 6.3. Main structure. 
 

Figure 6.4. Bypass hole drilling. 

 

 

6.3. Description of Components 
A description of each of the major loop components is given in this section.  Some 

components were bought or built and some were donated by our sponsors. 

 

6.3.1. Water Tanks 

For level control experiments, two similar acrylic tanks are installed in this loop, referred 

to as Tank 1 and Tank 2, respectively.  Their dimensions are: 5.75 inch diameter and 36 inch 

long.  A 27-gallon stainless steel tank is installed underneath the table top to provide the 
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necessary water storage for the circuit.  Figure 6.5 shows a detail of the two acrylic tanks used in 

this project. 

 
Figure 6.5. Details of water tanks. 

 

6.3.2. Sensors for Process Measurement 

There are 11 sensors installed in the loop: 4 differential pressure sensors, 4 

thermocouples, and 3 turbine meters.  Also installed are 2 primary orifice plates.  Each sensor is 

discussed below. 

A. Pressure Transmitters 

Four RosemountTM differential pressure sensors are currently installed. Two of them are 

used to measure the water level in each tank, and two other pressure sensors are connected to 

orifice meters and are used to measure the water flow going into each of the level tanks. 

Information about the pressure sensors is shown in Table 6.2 and Figure 6.6 shows the details of 

two of the sensors.  To calibrate the pressure sensors range, a software package called AMS 

Suite from Emerson® was used.  This software package can provide us an easy way to calibrate, 

zero-trim, schedule maintenance, and keep record of every calibration performed.  It comes with 

an RS-232 modem and cable to plug into the computer serial port.  On the other end a pair of 

probes is used to connect the computer to the sensor terminals. 
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Table 6.2. Information about the pressure sensors 

Sensor ID Function Output Calibration Range 

Tank 1 Measures Level in Tank 1 4 – 20mA 0 – 900 mmH2O 

Tank 2 Measures Level in Tank 2 1 – 5 Volts 0 – 900 mmH2O 

Flow 1 Tank 1 Inlet flow 4 – 20mA 0 - 6303 mmH2O 

Flow 2 Tank 2 Inlet flow 4 – 20mA 0 - 6303 mmH2O 

 

 
Figure 6.6. Pressure sensors used in the loop. 

 
B. Flow Meters 

Two different types of flow rate sensors are used in the loop: turbine and orifice meters. 

The orifice meters are provided by Rosemount™ and the turbine meters are manufactured by 

Omega™.  There are 3 turbine meters installed in the loop: one at each tank outlet and one in the 

bypass; all of them are factory calibrated.  A signal conditioner transforms the frequency output 

(0-1000Hz) to voltage (0-5V or 0-10V).  The volumetric flow is calculated using the calibration 

tables provided by the manufacturer for both signal conditioner and turbine flow meter. In Figure 

6.7 a turbine meter and the signal conditioner are shown.  Figure 6.8 shows some details of the 

orifice plate and pressure lines.  Table 6.3 is an example of a calibration table provided for one of 

the turbine flow meters by the manufacturer, showing the relationship between frequency and 
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voltage and voltage and volumetric flow rate.  The orifice meter calibration procedure and results 

are shown in Appendix B.  Figures 6.9 and 6.10 show the calibration data points and the 

predicted values using polynomial fits for both voltage and volumetric flow. 

 
Figure 6.7. Turbine and signal conditioner. 

 
Figure 6.8. Orifice plate. 

 

 

Table 6.3. Calibration table provided by manufacturer for the turbine flow meter 

% of F/S Input 

Frequency 

Input Frequency 

(Hz) 

Calculated Output 

(VDC) 

Output 

(VDC) 

0% 0.0 0.000 0.000 

25% 250.0 2.500 2.502 

50% 500.0 5.00 5.000 

75% 750.0 7.5 7.500 

100% 1000.0 10.00 10.000 

Rate 

GPM 

Time 

[s] 

Approximate Frequency 

[Hz] 

27.808007 9.083 813.60784 

21.849580 11.560 639.87889 

14.621356 17.275 427.38061 

8.182758 30.869 238.94523 

2.400992 105.205 70.25331 
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Figure 6.9. Signal conditioner calibration curve 

and predicted values. 
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Figure 6.10. Turbine flow meter calibration curve 
and predicted values. 

 
C. Thermocouples 

To monitor the temperature, four type-J thermocouples are installed: one inside each 

level tank, one in the reservoir tank, and one to monitor the pump temperature.  None of these 

sensors are calibrated and a standard calibration curve is used. 

 

D. Water Circulation Pump 

A centrifugal Noryl-27 GPM pump is used to circulate the water through the loop and is 

installed underneath the circuit.  It has a 0.5 HP motor, 1.5 inch inlet – 1.5 inch outlet piping 

connections, and rated at 110-230V.  Details of the pump and of a thermocouple used to monitor 

its temperature are shown in Figure 6.11. 
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Figure 6.11. Centrifugal pump and thermocouple. 

 

E. Control Valves 

In order to control the flow in the loop, three motor-operated control valves are used: one 

on each tank inlet and one at tank-1 outlet.  Each of the control valves has two components: an 

electric actuator and a 0.5 inch ball valve.  The electric actuators were manufactured by 

Worcester Controls™ and one of them is shown in Figure 6.12.  These actuators are responsible 

for opening and closing the ball valves to regulate the flow.  The actuators are 120VAC powered, 

with input and output of 2-10 VDC, and can be manually or remotely operated, with a complete 

stroke time of about 15 seconds. 
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Figure 6.12. Motor-operated valve (MOV) electric actuator. 

 

F. Data Acquisition Software 

A National Instruments® (NI) data acquisition card installed in the computer converts the 

analog signals coming from the various sensors and components to digital signals through A/D 

converters.  These signals are processed by a Virtual Instrument (VI) program developed using 

NI LabView™ package and are presented in engineering units.  The data acquisition card, model 

PCI-6259 is a 16-bit converter with 32 analog inputs, and a maximum sampling rate of 1.2 x 106 

Hz.  Figure 6.13 shows the front panel of one of two monitor screens available to the user.  This 

version shows the trend for each of the variables monitored or controlled.  Figure 6.14 is a more 

intuitive version showing the location of every variable in the loop.  The loop has a PI controller 

through interface with a MATLAB program. 
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Figure 6.13. Virtual Instrument (VI) front panel, showing signal trends. 

 

 
Figure 6.14. Virtual Instrument (VI) front panel, showing all the sensors and devices. 
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7. MODEL PREDICTIVE CONTROLLER APPLIED TO A TWO-TANK 

FLOW CONTROL SYSTEM USING PHYSICS MODELS 
 

7.1. Background of Optimal Control 
Linear Quadratic Regulator (LQR) has been initially studied for the optimal control of 

multivariable systems.  In the design of LQR, a quadratic objective function is minimized.  For a 

discrete linear process, the state space representation is as follows: 

 

kk

kkk

Cxy
BuAxx

=
+=+1

         (7.1) 

where 

ku  = process inputs. 

ky  = process output. 

kx  = process states. 

 

The objective function of LQR control is to minimize the weighted squared input and state 

deviations with state and input weight matrices Q and R, which is given by:  

∑
∞

=
++ +=

1

22 ||||||||
j

RjkQjk uxJ
        (7.2) 

 

It can be shown that the solution to the LQR problem is a proportional controller, with a gain 

matrix K computed from the solution of a matrix Ricatti equation:  

kk Kxu −=           (7.3) 

One of the significant properties of the LQR algorithm is that the infinite prediction 

horizon allows to stabilize any reasonable linear system as long as the objective function weight 

matrices Q and R are positive definite.  

Although LQR theory is a powerful tool to control an unconstrained linear plant, it has 

very limited applications in process industry where complex, nonlinear, constrained 

multivariable systems must be dealt with.  In fact, a successful controller has to maintain a 
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process close to some constraints while without violating them in order to achieve high economic 

performance. In addition, a process system typically has time dependent operation 

characteristics.  It is difficult in the framework of LQR theory to express the performance 

criteria. 

Model Predictive Control is a more general model based control methodology than LQR.  

In MPC, any desired objective function can be used to solve a generalized dynamic control 

optimization problem.  Process input and output constraints are directly included in the 

formulated optimization problem.  In addition, all types of models can be handled in the same 

manner without changing the MPC algorithm. 

Model Predictive Control (MPC) is also appropriate for a hierarchical implementation 

proposed in this research.  The top of the hierarchical structure is a plant-wide optimizer to 

determine optimal steady-state settings for each unit in the space reactor system.  These optimal 

steady-state settings may be sent to local optimizers at each unit such as the reactor core and the 

thermal electric generator that run more frequently or consider a more detailed model.  The unit 

optimizer computes an optimal economic steady state and passes this to the dynamic constraint 

control system for implementation.  The dynamic constraint control moves the plant from one 

constrained steady state to another while minimizing constraint violations.  In the MPC 

methodology, the combination of PID algorithms, Lead-Lag (L/L) blocks and High/Low select 

logic, which are implemented in conventional control, is replaced by a single MPC controller.  

 

7.2. Theory of Model Predictive Control 
For a discrete-time linear system, the state space representation is given by 
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In MPC, the performance function has the form 
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The performance function has two components, the weighted sum squares of the predicted 

tracking errors over the output horizon yn
 with a weight matrix yW

 and the weighted sum 

squares of the control changes over the control horizon un  with a weight matrix uW .  The scalar 

parameter λ  balances the penalty on the predicted tracking errors and the control changes.  

However, the two weight matrices, yW
 and uW , are positive diagonal matrices.  The balance 

between the tracking performance of each loop and its corresponding input activity can be 

realized by tuning the diagonal elements of theses two matrices. 
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In the definition of MPC optimization problem, the number of control inputs and the length of 

the control horizon are somewhat independent.  Therefore, the control problem can be stated to 

minimize the objective function with respect to the control move, which is written as follows: 
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    (7.8) 

 

The optimization algorithm is constantly solved over a receding horizon.  In other words, the 

time window over which to solve the optimization problems is constantly moving at the same 

speed.  In the MPC algorithm, the constraints on the input, output, as well as process states can 

also systematically taken into account.  For example consider the following constraints. 
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         (7.9) 

 

In order to solve a real world control problem, the model predictive control algorithm 

needs to achieve three requirements: 

• Include a disturbance model. 
• Use a model giving offset free prediction. 
• Ensure the minimum of the cost function is consistent with zero tracking errors and a 

modified performance index defined in the MPC algorithm. 

One solution to achieve the requirements is to form an algorithm to give estimates of ssx  and ssu  

which are consistent with zero tracking errors and robust to model uncertainty, and redefine the 

cost functions as follows: 

 

)()()()(min ss
T

ssss
T

ssu
uuRuuxxQxxJ −−+−−=

→→→→
→     (7.10) 

Compared to the conventional cost function, →→→→
+= uRuxQxJ TT

, the new cost function is 

consistent with zero tracking errors even if there is model uncertainty. 
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Based on the LQR theory, the above minimization will give a state feedback control with 

the following form: 

)(][)( 1
ssxx

T
xx

T
xssssk xxQPHRQHHxxKuu −+−=−−=− −

   (7.11) 

 

In the derived control law, it is necessary to ensure unbiased estimates of the steady state values 

by using an appropriate disturbance observer.  The original state space model with additive 

model uncertainty is as follows: 
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         (7.12) 

 

where kd  represents model uncertainty taking into account of disturbance and model mismatch. 

 

The standard Kalman filtering method may be used to estimate the true state x  and model 

uncertainty d , which is as follows: 
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where L  is the observer gain. 

 

Once the model uncertainty d  and the output reference r  are known, the steady state values of 

ssx  and ssu  can be estimated as follows: 

dCxy
BuAxx
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         (7.14) 

 

Therefore, the control law can be written as follows: 

ssssk uxxKu +−−= )(         (7.15) 

If the control law is given as above, when a steady state is reached the observer output must be 

equal to the process output, that is, 
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Again, 

dCxy
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For steady state condition, ssk xx =  and ssk uu = .  Therefore ssk yy = . 

 

7.3. Two-Tank Flow Control Loop 
In this research, a two tank experimental setup is designed to demonstrate the integration 

of model predictive control algorithm for the purpose of autonomous control.  Specifically, the 

experimental setup has the following objectives: 

• Investigate the extent to which a decentralized controller is capable of controlling the 

process as the interactions increase by increasing the open width of Valve 3.  

• Implement partial or full decoupling to reduce process interactions.  

• Study multivariable model based control. 

• Investigate the performance of system identification for system control and fault 

diagnosis. 

• Study robust model based control by introducing disturbance through adjusting the width 

of valve 1 and valve 2 in a sine manner. 

• Demonstrate model based fault diagnosis methods. 
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Figure 7.1. Two tank experimental control loop schematic. 

 

Figure 7.1 shows a schematic of the two tank experimental setup.  It consists of three 

tanks of Plexiglas Tubes; one constant speed centrifugal pump; two control valves; one 

connection valve between two tanks; two drainage valves; and a bypass valve.  In order to 

facilitate system identification and fault diagnosis, flow meters are installed to measure the mass 

flow rate of the two control valves, the connection valve, and the two drainage valves.  In 

addition, two pressure transmitters are installed to measure the water level of the two tanks for 

level control. 

 

The two-tank system follows the following dynamic equations: 

 

)(22 21111
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    (7.17a) 

22212
2 2)(2 gHaCHHgbCQ
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    (7.17b) 

where 
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Q1 and Q2 = the volumetric flow rate through the control valve 1 and control valve 2, 

respectively. 

H1 and H2 = the water level in the tank 1 and tank 2, respectively. 

A = the cross section area of the two tanks. 

g = the gravitational acceleration. 

a = the cross section of the drainage pipe. 

b= the cross section of the connection pipe. 

 

7.4. Results of MPC for the Two Tank System 
Figure 7.2 shows the results of model predictive control for the two tank level system.  

The comparison between Figure 2(a) and Figure 7.2(b) shows that as the prediction horizon 

increases, the closed loop dynamics slow down.  Figure 7.2(c) shows the effects of varying the 

weights of output.  As more weight is given to the tank-1 level, the closed loop performance of 

the tank level–2 degrades. 

The results in Figure 7.2 also show that MPC algorithm can provide an excellent solution 

to multivariable control.  The advantage of MPC over traditional decoupling PID control is that 

the decoupling can be realized by solving an optimization problem with unified performance 

function.  The desired closed loop performance can be achieved by tuning the length of control 

horizon and prediction horizon.  In addition, the constraints of process input and output can be 

handled with great flexibility. 
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Q1=1.0E-3 m3/s  Q2=1.0E-3 m3/s PredictionHorizon=10  Control Horizon=2 W.Output=[1.0, 1.0] 

MV(1).Min=0.0  MV(1).Max=Q1*2; MV(2).Min=0.0 MV(2).Max=Q2*2 MV(1).RateMin=-
Q1*0.35MV(1).RateMax=Q1*0.35 MV(2).RateMin=-Q2*0.35   MV(2).RateMax=Q2*0.35 

Figure 7.2(a).  MPC Control of Two Tank Level System 
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Q1=1.0E-3 m3/s  Q2=1.0E-3 m3/s PredictionHorizon=100 Control Horizon=2 W.Output=[1.0, 1.0] 

MV(1).Min=0.0  MV(1).Max=Q1*2; MV(2).Min=0.0 MV(2).Max=Q2*2 MV(1).RateMin=-
Q1*0.35MV(1).RateMax=Q1*0.35 MV(2).RateMin=-Q2*0.35   MV(2).RateMax=Q2*0.35 

Figure 7.2(b).  MPC Control of Two Tank Level System 
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Figure 7.2(c).  MPC Control of Two Tank Level System. 

 

7.5. Multivariate PI Control of the Two Tank System 
Coming back to the basic controller design strategy, we use a proportional-integral (PI) 

controller to test the performance of the MPC.  The experiment was performed on the 

SIMULINK panel of MATLAB software.  Figure 7.3 shows the Simulink model of the PI 

controller.  Tank-1 reference level and tank-2 reference level are the set point water level values 

of tank-1 and tank-2.  The water level in tank-1 changes from 0.5 m to 0.3m at the 30th second, 

and the water level in tank-2 changes from 0.5m to 0.8m at the 30th second.  G11 and G12 are the 

1st order approximations of the response of tank-1 level and tank-2 level triggered by unit step 

change of tank-1 reference level, and G21 and G22 are the 1st order approximations of the 

response of tank-1 level and tank-2 level triggered by unit step change of tank-2 reference level.   

Fcn1 and Fcn2 are the non-linear parts of the dynamic equations. 

 

1 1 1 2Fcn1=( 2 2 ( )) /dC a gH C b g H H A− − − ,    (7.18a) 
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1 2 2 2Fcn2=( 2 ( ) 2 ) /dC b g H H C a gH A− − .    (7.18b) 

 

 

 

Figure 7.3. Simulink model of the of PI controller. 

 

Figure 7.4 shows the results of PI control for the two tank level system.  The comparison 

between Figure 7.4(a), Figure 7.4(b), and Figure 7.4(c) shows that as the Kp and Ki change in 

G11, G12, G21 and G22, the closed loop dynamics will change a lot. It is hard to get the optimal 

Kp and Ki to make the system get the best performance. In another word, it is hard to tune the 

system. There are eight parameters to tune.  No matter which parameter is changed, the response 

of water level will change. 
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G11=G22=0.1+0.5/s, G12=G21=0.3+0.074s, 

Figure 7.4(a). PI Control for the two tank level system. 
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G11=G22=0.06+0.5/s, G12=G21=0.3+0.074s, 

Figure 7.4(b). PI Control for the two tank level system. 
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G11=G22=0.06+0.5/s, G12=G21=0.3+0.3/s, 

Figure 7.4(c). PI Control for the two tank level system. 

 

7.6. Comparison of Multivariable PI Control and MPC 
From above examples we can get that the MPC has more advantages than PID controller. 

(1) MPC handles difficult process dynamics with ease. For PID controller, we need the 1st order 

approximation of the dynamic system.  

(2) MPC delivers higher performance: robustness against model errors and non-linearities; 

handles interactions and constraints.  
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(3) MPC acts smoother on the process than PID controller. 

(4) MPC reduces the tuning effort. It has separate tuning for both load upsets and set-point 

changes. For PID controller, there are four controllers need to be tuned in this example. And they 

are coupled. It is hard to balance the parameters for each controller.  
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8. DEMONSTRATION OF PROPORTIONAL-INTEGRAL 

CONTROLLERS IN THE EXPERIMENTAL LOOP 

 
 Operation of the flow control loop, data acquisition from process sensors, and the 

implementation of the PI controller are described in this section. 

 

8.1. Data Acquisition Hardware 
Two National Instrument® (NI) data acquisition cards installed in the computer converts 

the analog signals coming from the various sensors and components to digital signals through 

A/D converters.  These signals are processed by a Virtual Instrument (VI) program developed 

using NI LabView™ package and presented in engineering units.  The acquisition cards are, 

respectively, models PCI-6259 and PCI-6259E.  They are 16-bit, 32 analog inputs, with up to 1.2 

MS/s.  These cards have two 1-10V analog outputs each.  These outputs can be used to open or 

close the control valves and change the inlet flow into each of the tanks.  Three SCB-68 patch 

panels are used with the acquisition cards.  These patch panels are used for interfacing the 

acquisition software and control with the loop and the acquisition cards.  The programs used for 

control and acquisition and control are described next. 

 

8.2. Data Acquisition and Control Virtual Instrumentation (VI) 
There are two main virtual instrumentation or VIs currently being used for control and 

data acquisition.  The control VI is used to control the loop, based on the experiment to be 

carried out.  This VI has several different options to choose from embedded into it, seen in Table 

8.1, giving the researcher complete control over the loop, but as stated previously, installing a 

fourth control valve in tank 1 outlet, will further increase the loop flexibility and our control over 

the loop dynamics.  Among other options, the researcher can choose to have manual or automatic 

set-point change in a ramp-like fashion, as well as controlling the rate at which the set-point can 

be changed in mm-H2O/minute.  One can choose between manual and automatic control, using 

the PI or the MPC control.  Finally, the researcher can choose from manual or automatic control 

for either one tank or both tanks at the same time.  When using PI control, if a fine-tuning is 

required, it can be accomplished by choosing the option located on the main panel, shown in 
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Figure 8.1.  Some options are common to all controls, but for the most part, the set of options 

available for each control (manual, PI or MPC) is type dependent, i.e., for each type of control 

there is a relevant set of options to choose from that will pop-up on the front panel. 

 

Table 8.1. Loop Control Options 

Control Option Tank 1 Tank 2 Both Tanks 
Setpoint 

Profile 
Tuning 

Fault 

Insertion 

Manual Yes Yes Yes Yes N/A Yes 

PI Yes Yes Yes Yes Yes Yes 

MPC Yes Yes Yes Yes N/A Yes 

 

At start up, the control VI will call the data acquisition VI and Matlab, the last to be used 

with MPC.  The data acquisition VI is responsible for displaying the current loop status on the 

screen and saving the data to disk whenever needed.  The acquisition rate can be change to 

accommodate the kind of experiment being run, i.e., for fast or slow changing dynamics.  The 

data saved in ASCII file, which can be read in any software able to handle this kind of data.  

Figure 8.2 shows the front panel of this VI and it shows the trend for each of the variables 

monitored or controlled.  It is friendlier more intuitive data acquisition user-interface version 

showing the location of every variable in the loop. 

Though working together, hardware-wise these VIs are decoupled from each other.  This 

decoupling is necessary because of the differences involved in the VIs sampling and control 

rates.  In general the control scan rate is in the order of tenths of a second, whereas the data 

acquisition scan rate is typically around 1 sample per second.  When you want to save the data at 

a different scan rate than you are controlling the loop with, problems can arise in two different 

ways.  First, you end up with large data files with unnecessary data variables outputs, that don't 

vary much.  Secondly, some variables need sometime to settle between channel sweeping; 

otherwise their readings may become unstable. 
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Figure 8.1. VI Front Panel Indicating the Control Options for "Both Tanks" with built-in Set-

point Profile. 

 

Also, we are using two different data acquisition cards (DAQ) to acquire data and control 

the loop.  Using one VI to acquire the data and other VI to control the loop caused both VIs to try 

to access the same channel and/or access the same DAQ at the same time.  With this I/O conflict 

the VIs were not able to run in parallel controlling and acquiring data at different scan rates. 
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Figure 8.2. Schematic-Like Data Acquisition Virtual Instrument Front Panel. 

 

8.3. Tests and Experiments 
The first test was to perform a valve-opening-to-flow calibration curve.  But, during a 

working session, a modification to the connection between the two tanks was proposed, since the 

present setup did not correspond to the mathematical model available, and more importantly, the 

connection was not appropriate, since with both tanks connected at low flow, the water flowing 

from one tank goes back to the sump-tank even before going into the other tank.  So a small 

modification was introduced.  The original piping connecting both tanks was kept but the manual 

valve will be kept permanently closed and a ½" internal diameter clear hose linking both tanks 

was installed with a ball valve in between.  Since it drastically modified the loop dynamics, a 

new valve-opening-to-flow calibration curve will have to be performed to account for the 

modification.  These results are presented below. 
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8.4. Valve Opening-to-Flow Calibration  
To learn how the loop dynamics works and in order to have a valve-position-to-flow 

mapping, a few tests were carried out.  It is important to notice that during all tests both tanks 

were disconnected, i.e. the manual valve connecting both tanks was kept closed. 

The inlet flow control valve (CV1) was gradually opened until the tank level reached its 

maximum level (900 mmH2O), or as close to the maximum level as possible.  The valve position 

was changed in a step-like fashion only after the level in tank reached steady state, as can be seen 

in Figure 8.3, where the upper graph indicates the signal sent to the control valve and the lower 

graph indicates the control valve position output.  It is clear, from Figures 8.4 and 8.5, the outlet 

and inlet flow and level profiles are similar to the control valve opening position (upper and 

lower left plots) and the error between inlet and outlet flows after steady state was reached 

(lower right plot) is well within acceptable range (around 0.003 liters/s, or 0.05 GPM, or 2% 

F.S.).  However, the control valve shows a hysteresis effect when the direction changes from 

open to close, though one closing point measurement was skipped, and this difference can be 

easily compensated by software. 
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Figure 8.3. Control Valve 2 Input and Output Position Profile. 
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Figure 8.4. Tank 1 Outlet Flow Profile, Inlet Flow Profile and Net Flow Difference. 
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Figure 8.5. Tank 1 Level Profile. 

 

 

In Figure 8.6, a linear fit was made using valve opening as independent the variable and 

flow rate as the dependent variable (upper plot) and the residuals shown in the lower plot.  Figure 

8.7 shows the same relationship as the valve was gradually closed, despite the hysteresis present 

due to the control valve mechanical limitations. 
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Figure 8.6. Inlet Flow Versus Control Valve-1 Position Showing Linear Relationship. 
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Figure 8.7. Inlet Flow Versus Control Valve-1 Position Showing Linear Relationship.
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Similar tests were repeated using control valve 2 (CV2) and the same results were achieved.  

These results are shown in Figures 8.8 – 8.12 
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Figure 8.8. Control Valve-2 Input and Output Position Profile. 
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Figure 8.9. Tank-2 Outlet Flow Profile, Inlet Flow Profile and Net Flow Difference. 
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Figure 8.10. Tank-2 Level Profile. 
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Figure 8.11. Inlet Flow Versus Control Valve 2 Position Showing Linear Relationship. 
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Figure 8.12. Inlet Flow Versus Control Valve 2 Position Showing Linear Relationship. 

 

Also, a mismatch was observed between inlet and outlet flows.  This problem was fixed 

by performing a quick calibration, and now both tank lines present a maximum flow difference 

between respective inlet and outlet of around 0.002 liter/second (~0.03 GPM).  But it was 

observed that an overall flow difference, that is [inlet-outlet flow]TANK-1-[inlet-outlet flow]TANK-2 

of around 0.02 liters/second (~0.3 GPM); although both flow measurements are close, the loop 

lines cannot be considered 100% symmetric. 

 

8.5. Artificial Time Delay Test 
This purpose of this experiment is to help us understand how to handle time-delayed 

systems.  The next sections will describe how this experiment was done and discuss the results. 

 

8.5.1. Determination of the Delay-Free System Dynamic Parameters 

To open or close the control valve (CV), an analog input signal voltage is sent from the 

digital-to-analog converter installed in the computer.  The signal ranges from 0-10V (0V closed, 

4.5V open), but since the tank is only 900mm high, the opening range is limited to 0 - 4.5V, 
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enough to almost completely fill the tank, keeping the flow outlet valve opened.  So, to 

determine the system "CV-Tank" dynamic parameters, a step input ranging from 0 to 4.5V was 

applied to the CV input.  Figure 8.13 shows the corresponding level variation to such an input.  It 

is clear that this system has no delay, since the controller, tank and outlet valve are very close to 

each other. 

Using Ziegler-Nichols Step Response Method, a delay-free system model was 

determined: 
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 (8.1) 

 

Where 140s is the time constant (0.632 of the steady state value for a step input, in 

seconds) and 175.7mmH2O/V is the steady state final value. 

 

8.5.2. Determination of the Delayed System Dynamic Parameters 

As stated before, the controller, tank and outlet valve components are very close to each 

other, so the system has no time-delay.  To overcome this problem, since we are interested in 

time-delayed systems, an artificial delay can be added to the system.  This delay can be added 

either to the controller or to the signal used as input to the PI controller, i.e., the level 

measurement (see Ref [27-31]). 
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Figure 8.13. Ziegler-Nichols Step Response Method. 

 

For this study, a 5 seconds time-delay will be considered, meaning the tank will be 

artificially pushed over ~5 meters from its present position relatively to the control valve 

(considering a 0.95 m/s velocity).  With this, Equation (8.1) becomes 
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where d indicates delayed system. 

 Now it is necessary to choose the stabilizing PI gains for the plant given in Equation 

(8.1), where the plant parameters are k=175.7, L=140 and T=5 seconds. To do so we first have 

to obtain the range for Kp values by using the following relationship (Datta, 2000): 
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 Solving equation (3): 035714.0−=α  

 

And the Kp range becomes: 02306500012650 .. <<− pK  

 

Now, Ki value range can be determined according to the following relationship (Datta, 

2000): 
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 Solving Equation (8.4): 1874.0=z  

 

And the Ki range becomes: 00025300 .<< iK  

 

8.6. Results of Controller Implementation 
 After installing the time-delay free PI controller and manually fine tuning it, Kp and Ki 

final values were: Kp = 0.011 and Ki = 0.00026 and Figure (8.14) shows the PI controller 

response to changes in Tank 1 level set-point. 
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Figure 8.14. Level Set-point and PI Level Control for Delay-Free System. 

 

After manually tuning, the time-delay PI controller gains were found to be Kp=0.011 and 

Ki=0.00013 and the results are shown in Figure 8.15. 

It is seen that in both cases, delay-free and delayed systems, some overshoot is present 

and some further improvement can be achieved by selecting more appropriate PI values.  This 

way, the VI was changed to use what is called Real Time Systems Package, from National 

Instruments.  This package allows us to use advanced PI control sub-VI's to provide signal 

filtering, deadband, auto-tuning and signal conversion, among other features, like Fuzzy Control 

and Neural Network control.  One of the most useful features in this package is the "PI 

Autotuning" sub-VI, which can be used once a stable system is determined using initial PI 

values.  The auto-tuning method used is the relay method. The results for both delay-free and 

delayed system using auto-tuning are shown in Figure 8.16 and 8.17, respectively, where it can 

be seen that the overshoot in both cases was dramatically lowered.  However, it is also clear 

there is room for more improvement in the PI controller output. 
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Figure 8.15. Level Set-point and PI Level Control. 
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Figure 8.16. Delay-Free Level Setpoint and PI Level Control with Auto-tuned PI Values. 
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Figure 8.17. Level Set-point and PI Level Control with Auto-tuned PI Values. 
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8.7. Remarks on the Loop Control Design 
 For small level amplitude values the overshooting reached 40% of the final value 

whereas for higher level amplitudes the overshoot lowered to ~8%, which is comparable to the 

same system but without any delay where the maximum overshoot at low levels was around ~6% 

and for higher levels was less than 3% and for clarity, these results, as well as the PI values used 

in this experiment are summarized in Table 8.4.  There are a few ways to try to enhance the time-

delay PI controllers, which are listed below. 

1) Using piece-wise PI value ranges for both low and high level amplitudes. 

2) Using piece-wise gain values for both low and high level amplitudes. 
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Table 8.4. Overshoot Percentage for Delayed and Delay-Free Systems. 

 No Time Delay With Time Delay
Manual Tune 

With Time Delay 
Auto-tune 

Low Level 6% 40% 16% 

High Level <3% 8% 4% 

 Initial Values Initial Values Auto-tuned 

Kp 0.011 0.011 0.0049 

Ki 0.00026 0.00013 0.7402 

 

 

8.8. Control Loop Fault Types 
There are several faults that can lead to significant error in the MPC prediction model.  

Directly or not, the following are the components that can contribute to a specific MPC as input 

and/or output variables: 

 

Tank Water Levels  = f(Inlet Flow Rate, Outlet MOVs Position). 

Inlet Flow Rates  = f(Sump tank water level, Bypass valve position, Inlet MOVs 

Position). 

Outlet Flow Rates  = f(Tank Water Level, Outlet MOVs Position). 

Controller Outputs  = f(Bypass valve position, Tank Water Levels, Outlet Flow Rates). 

 

When the predicted Inlet Flow Rates has significant discrepancy compared with the 

measured inlet flows, some possible faults may be responsible for this discrepancy: 

a) inlet flow meters themselves 

b) bypass valve position, and 

c) inlet MOV valves. 

 

Whenever any of these devices is faulty, the predicted model will not match closely with 

the measured inlet flow rates. 
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One way to emulate such faults, the following well-controlled tests can be designed: 

a) Water Level Controller (controller fault). 

b) Water level sensor is drifting (sensor fault). 

c) Outlet turbine flow meter is drifting (sensor fault). 

d) Outlet MOV positioning device is drifting (actuator). 

e) Bypass valve position (actuator fault). 

f) Inlet MOV positioning device is drifting (actuator fault). 

g) Flow meter is drifting (sensor fault). 

The Bypass valve can be used in the loop system to simulate changes in the pump speed. 

 

8.9. Controlled Fault Implementation 
Running only one tank, the first fault implementation performed was a simple bias value 

added to tank 1 level sensor.  The first test was made using a 5 mmH20 bias and the results are 

shown in Figures 8.18 and 8.19 (with a zoomed in look).  It can be seen that the PI controller was 

misled by the wrong level. 

Next, a 50 mm-H2O positive trend fault was introduced to the level sensor.  While level 

set-point was kept fixed, the trend occurred over a 2-hour period and the results are shown in 

Figures 8.20 and 8.21.  Though a little hard to see, the positive trend caused the PI to counter-

react by lowering the inlet flow rate, consequently lowering the water level in tank.  Using the 

same fault trend, a 9-hour period experiment was performed.  The results are shown in Figures 

8.22 and 8.23. 



 150 
 

0 10 20 30 40 50 60 70

300

400

500

600

700

800

900

Tank 1 Level

Time [Minutes]

m
m

H
2O

 

 
Level Setpoint
Faulty Tank 1 Level
Correct Tank 1 level

 
Figure 8.18. Level Sensor with 5 mm-H2O Fault. 

19 20 21 22 23 24 25 26 27 28
530

540

550

560

570

580

590

600

610

620

Tank 1 Level

Time [Minutes]

m
m

H
2O

 

 
Level Setpoint
Faulty Tank 1 Level
Correct Tank 1 level

 
Figure 8.19 Level Sensor with 5 mmH2O Fault (zoomed in). 
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Figure 8.20. 50 mm-H2O Positive Level Trend Fault. 
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Figure 8.21. Inlet Flow rate for a 50 mm-H2O Positive Level Trend Fault. 
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Figure 8.22. 50 mm-H2O Positive Level Trend Fault. 
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Figure 8.23. Inlet Flow rate for a 50 mm-H2O Positive Level Trend Fault. 
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Another experiment consisted of adding a negative bias trend of 50 mm-H2O over a 2-

hour time period to tank 1 sensor level while connected to fault-free tank number 2, with both 

tanks having fixed set-point levels at 600 mm-H2O.  Figures 8.24 and 8.25 show the level 

changes in the tanks as the fault in tank 1 level sensor changed.  From Figure 8.25, it appears the 

PI control had problems trying to keep the water level at the set point while having a bias trend 

in tank 1; this may be because of the fault severity in tank 1 over such a short period of time, or 

some fine tuning needed in tank 2 PI controller.  Figures 8.26 and 8.27 show the inlet flow rate in 

tank-1 increased to compensate for the negative trend, as opposed to tank-2 flow rate. 
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Figure 8.24. Water Level in Tank 1 with Bias Trend. 
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Figure 8.25. Water Level in Fault –Free Tank 2. 
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Figure 8.26. Tank 1 Inlet Flow rate. 
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Figure 8.27. Tank 2 Inlet Flow rate. 

 

The control valve outputs are shown in Figures 8.28 and 8.29, whose response trends 

follow the water level changes in both tanks. 
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Figure 8.28. Control Valve 1 Voltage Output. 
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Figure 8.29. Control Valve 2 Voltage Output. 
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To verify how the PI controllers would react to slow changing, low amplitude faults, 2 

more experiments were done.  The first experiment consisted of adding a negative bias trend of 

20 mmH2O over a 17-hour time period to tank 1 sensor level while connected to fault-free tank 

number 2.  In the second experiment, a positive bias trend of 30 mmH2O over a 24-hour period 

was added to tank number 2.  In both cases, initial set-point levels were fixed at 600 mmH2O.  

Figures 8.30 and 8.31 show the level changes in the tanks as the fault in tank 1 level sensor 

changed.  In Figure 8.31 is possible to see that, after fine-tuning tank 2 PI controller, the level in 

the tank was kept stable at around 600 mmH2O for the entire experiment, though this was a slow 

changing fault. 

Figures 8.32 and 8.33 shows tank 1 inlet flow rate increasing, while there is a slight 

decrease in tank 2, to compensate for the negative trend in the first tank.  
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Figure 8.30. Water Level in Tank 1 with 17-hour Bias Trend. 
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Figure 8.31. Water Level in Fault–Free Tank 2. 
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Figure 8.32. Tank 1 Inlet Flow rate. 
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Figure 8.33. Tank 2 Inlet Flow rate. 

 

Finally, the results of the second experiment are shown in Figures 8.34 – 8.37 where, 

among other things, it is possible to see an increase in tank 1 inlet flow rate, and a decrease in 

tank 2 to compensate for the negative trend in tank 2. 
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Figure 8.34. Water Level in Tank 2 with 24-hour Bias Trend. 

0 200 400 600 800 1000 1200 1400

570

580

590

600

610

620

630

Tank 1 Level

Time [Minutes]

m
m

H
2O

 

 
Tank 1 Level
Level Setpoint

 
Figure 8.35. Water Level in Fault–Free Tank 1. 
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Figure 8.36. Tank 1 Inlet Flow rate. 
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Figure 8.37. Tank 2 Inlet Flow rate. 
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9. MATLAB/SIMULINK IMPLEMENTATION OF MODEL PREDICTIVE 

AND FAULT-TOLERANT CONTROLLERS FOR THE SP-100 SYSTEM 

9.1. MPC MATLAB Toolbox 

MATLAB 7.0 has a Model Predictive Control toolbox, which facilitates a convenient 

design of the controller.  It is a collection of software routines that helps the user to design, 

analyze, and implement an advanced industrial automation algorithm.  It provides a convenient 

graphical user interface as well as a flexible command syntax that supports customization. 

The model Predictive Control Toolbox provides a special controller block, if a Simulink 

graphical tool is used to model the plant.  First, linearize the nonlinear Simulink model.  Then 

use the linearized model to build a Model Predictive Control Toolbox controller, and evaluate its 

ability to control the nonlinear model.  

A Model Predictive Control Toolbox design requires a plant model, which defines the 

mathematical relationship between the plant inputs and outputs. The Model predictive Control 

Toolbox requires the model to be linear and time invariant (LTI).  There are three ways to define 

such a model: 

• Create a transfer function, state space, or zero/pole/gain model using methods provided by 
the Control System Toolbox. 

• Derive the model from plant data using, for example, methods provided by the System 
Identification Toolbox. 

• Derive the model by linearizing the Simulink model. 

Most real systems are nonlinear.  If the user wants to simulate Model Predictive Control 

Toolbox control of a nonlinear system, the plant must be modeled in Simulink.  The SP-100 

reactor system is a very complex nonlinear system.  Often, it is not easy to create a transfer 

function or a state space model.  A Simulink model facilitates the easy inclusion of nonlinear 

dynamics.  It is easier to generate the LTI model by linearizing it, and to control the system 

defined by the nonlinear Simulink model. 
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9.1.1.  Linearization  

Although a controller designed using the Model Predictive Control Toolbox can regulate 

a nonlinear plant, the model used to compute the control step must be linear.  The accuracy of 

this approximation is a key issue affecting the controller performance.  The usual approach is to 

linearize the nonlinear plant at a specified operating point.  The Simulink environment provides 

two ways to accomplish this: 

• Linearization using Simulink Functions—‘linmod’. 

• Linearization using Simulink Control Design. 

9.1.2. Linearization using Simulink Functions 

A Simulink block can be linearized using standard Simulink functions.  The variables to 

be retained in the linearized model must be connected to an ‘inport’ or an ‘outport’ block.  

Figure 9,1 shows a scheme of SP-100.  In this project, the goal is to regulate the electric 

power using the control drum angle as the control action; hence, there is only one ‘inport’ block 

designating the input signal (control drum angle), and one ‘outport’ block designating the output 

(electric power output).  

 

Figure 9.1. Simulink model of nonlinear SP-100 reactor system. 

This model is named sp100.  The ‘linmod’ command linearizes it as follows: 

[a,b,c,d]=linmod('sp100') 
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By default, ‘linmod’ uses the initial conditions defined in the model as the operating point.  Here 

the operating point corresponds to the values at the rated power of 2MWt.  The LTI model is 

now created.  For the MPC Toolbox, a state space model is needed; it can be created by using the 

following command: 

 Plant=ss(a,b,c,d)  

9.1.3. Linearization using Simulink Control Design 

Simulink Control Design is an optional product that supports model linearization.  

 

Figure 9.2. Simulink model of nonlinear SP-100 reactor 

To linearize the system represented by Figure 9.2, first define the input and output signals to be 

retained in the linear approximation.  Next, create a linearization project within the Simulink 

Control and Estimation Tools Manager.  Using this toolbox, the Simulink model can be 

linearized about the default operating point (inputs values equal to zero), or can be linearized at a 

specified operating point.  Simulink Control Design can search for a new steady state operating 

point. 

9.1.4. Linearization Result 

Figure 9.3 shows the step response of the electric power output.  The blue line is the 

linearization model plot, and the red line is the step response generated by the Simulink model.  

They are almost the same; thus, the linearized model is adequate in representing the above 

nonlinear Simulink model.   
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Figure 9.3. Step Response of electric power output. 

9.2. The Design Tool 

The Model Predictive Control Toolbox design tool is a graphical user interface for 

control design.  The initial view of the MPC Toolbox is shown in Figure 9.4.  In this user-

interface, the linearized plant model has been loaded.  The input is the control drum angle, which 

is set as the manipulated variable.  The output is the electric power, which is set as the measured 

output.  By doing this, the control drum angle can be adjusted by the measurement of the electric 

power output.  Figures 9.5 (a) and (b) show the simulation results with the default controller 

setting.  These often work well, but there is still a small overshoot in the input.  The procedure 

for tuning a controller for better performance is discussed in the following section. 
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Figure 9.4.  Model predictive control toolbox design tool initial view. 
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Figure 9.5a. Plant output with default controller setting. 
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Figure 9.5b.  Plant input with default controller setting. 

9.3. Controller Setting 

When selecting the MPC1 controller in the tree in the left window, the screen shown in 

Figure 9.6 should appear.  The controller setting includes the following topics: 

• Model and horizons 

• Defining manipulated variable constraints 

• Weight tuning 

• Disturbance modeling and estimation. 
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Figure 9.6. Controller options. 

In ‘Model and Horizons’ tab, the user can change the prediction horizon, control horizon 

and select the Blocking (an alternative to penalty weighting) option to get more control over the 

way in which the controller's moves are allocated.  

In the ‘Constraints’ tab, the user can set the manipulated variable constraints.  Physical 

devices have limited ranges and rates of change.  In this project, the control drum angle's 

maximum rate of change is ±1.4 degree per second.  Without these limits, the controller might 

attempt an unrealistic adjustment just like that shown in Figure 9.5b.  

In the ‘Weight Tuning’ tab, the user can change the input weights, output weights, and 

overall rate weights.  The accuracy with which each output must track its set point is dictated by 

setting the output weights.  A large weight on a particular output causes the controller to 

minimize deviations in that output.  The use of a nonzero input weight forces the corresponding 

input back towards its nominal value.  For overall rate weights, the smaller weight forces the 
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controller to make smaller, more cautious adjustments, but takes a slower approach to reach the 

set point. 

In the ‘Estimation’ tab, we can set the disturbance of both input and output. The Model 

Predictive Control Toolbox allows users to tailor the controller's disturbance response.  

9.4. Results of MPC Controller Implementation 

Three tests with different set of MPC parameters were mentioned in this section. 

a)  Test 1 

Prediction horizon 10 

Control horizon 2 

Overall weight 0.3 

Input weight 0.3 

Output weight 1 

Figure 9.7(a) shows the controller performance when the electric power is set to increase by 4 

units at the 10th second.  Figure 9.7(b) shows how the control drum angle is adjusted with the 

increase and decrease constraint of 1 degree/sec.  The controller with the above parameters 

settings has a very slow response.  The set point reaches at around 100 seconds. 
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Figure 9.7a.   Plant electric power output. 
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Figure 9.7b. Plant input (drum angle). 

b)  Test 2 

Prediction horizon 10 
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Control horizon 2 

Overall weight 0.8 

Input weight 0.3 

Output weight 1 

By just increasing the overall weight from 0.3 to 0.8, we can get the controller performance 

shown in Figures 9.8 (a) and (b).  This controller has a very quick response, but there is a large 

overshoot in the input, which will make the SP-100 system less stable.  
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Figure 9.8a. Plant electric power output. 
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Figure 9.8b. Plant input (drum angle). 

c) Test 3 

Prediction horizon 10 

Control horizon 2 

Overall weight 0.5 

Input weight 0.3 

Output weight 1 

By changing the overall weight to 0.5, and setting the initial values of the input and 

output to be the values at which the SP-100 model is linearized, the controller performance 

shown in Figures 9.9 (a) and (b) is achieved.  This controller has a better performance than case 

(b).  The control drum angle changes more smoothly, and the electric power output reaches the 

set point at around 25 seconds.  This is a much better controller.  It is saved as mpc_sp100, and is 

used to control the nonlinear plant. 
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Figure 9.9a.  Plant electric power output. 
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Figure 9.9b.  Plant input (drum angle). 

9.5. Controller Performance for the Nonlinear Plant 

The MPC controller has a good performance using the linearized model.  This is 

connected to the nonlinear Simulink model to control the SP-100 system.  Figure 9.10 shows the 
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SP-100 with an added MPC Controller block.  The MPC controller is the one that is designed 

using the linearized model.  The set point for the MPC block ref input can be any value or trend 

of electric power. 

 

Figure 9.10. Simulink model for SP-100 controller. 

Figure 9.11 shows the comparison of the electric power output between the set values and 

the actual values.  The electric power output increases by 10 kW with a ramp 1kW/sec at the 10th 

second, and then decreases by 20 kW, with a ramp 1kW/sec at the 80th second. The actual values 

match the set values very well.  The response of the control drum angle is shown in Figure 9.12.  

There is a small overshoot at the end of each change. The reactor thermal power, the fuel 

temperature, cladding temperature, and the core coolant temperature changes are shown in 

Figures 9.13 and 9.14.  The reactor thermal power change is similar to the control drum angle 

change, which has a large overshoot at the end of each change.  This is because the temperatures 

change is much smoother and slower, which makes the feedback reactivity change slower; but, 

the reactivity insertion has a quicker response, so it needs quite a while for the feedback 

reactivity to compensate the external reactivity insertion.  Therefore, the reactor thermal power 

change has a larger overshoot.  
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Figure 9.11. The electric power output. 
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Figure 9.12. Control drum angle response. 
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Figure 9.13. Reactor thermal power response. 
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Figure 9.14. Response of key core temperatures. 

9.6. Summary 

The MPC Toolbox makes it a lot easier and more convenient to design a MPC controller for the 

SP-100 system. It provides a convenient graphical user interface (DUI). All the changes and 

comparison can be down under the same interface. It shortens the time for coding and tuning the 
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program.  The MPC Toolbox also provides a Simulink block the users can use to control a plant 

modeled in Simulink.  In this chapter, we are using MPC Simulink block to control the Simulink 

model of SP-100. The procedures for implementing MPC to SP-100 Simulink system is shown 

in the below flow chart figure 9.15. 

Nonlinear    
physical model

LTI model 

Linearize the model

MPC controller

Next step input 
value

Make predictions

 

Figure 9.15.  Flow chart of MPC implementation 

The advantage for using the MPC block to control a Simulink system is: at each time step, the 

nonlinear system will be linearized based on the last step inputs and outputs. So the linearized 

system will be updated at each step. It will give more precise predictions than the empirical 

model developed basing on one group of observations. 

 

9.7. Fault Tolerant Control 

When a single failure occurs, the FDI system will point out the nature of the failure. In 

this chapter, the control strategies about how to handle the single failure are discussed.  

9.7.1. System failures 

Generally there are three types of failures may occur in a control system: actuator failure, 

‘internal’ failure and sensor failure.   
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1. Actuator failure: the range of the actuator is reducing, or the movement of the actuator is 

getting slower or faster, or the actuator is stuck in a special position.  Actuator failures are 

hardware failures.  They would not change the dynamics of the system. For our study case, 

the SP-100 space reactor system we designed is a single-input and single-output system. The 

input is the control drum angle. Here we assume the control drum was stuck in a special 

position, and could not move further more. Also, we need a secondary actuator which can 

change to compensate the loss of major actuator failure.  The TE power output can be 

adjusted by changing the value of control drum angle, coolant flow rate or shunt resistor. 

Here we use shunt resistor as the backup control actuator.  When the control drum actuator 

failure is detected, the control system will suspend the MPC controller which is used to 

control the control drum angle, and startup the secondary PI controller which is used to 

control the shunt resistor.  

2. ‘Internal’ failure: some parts of the plant fail, with the consequence of significant changes of 

the plant dynamics and gains.  In this project, the case we studied is the calibration for 

control drum angle corresponding to the insertion of external reactivity has changed.  

3. Sensor failure: some measurements become unavailable, or incorrect, or unusually noisy. 

For some sensor failures, they may not cause any trouble for the control system, but for the 

sensor, whose measurement will go to the control algorithm, its failure will cause the control 

action to deviate from the desire result. 

In this section, each of the three types of failures will be considered separately, and the 

corresponding control strategies are designed to compensate the loss caused by each failure. 

9.8. Strategies for Fault Tolerant Control 

9.8.1. Actuator Failure 

It is assumed that the control drum motion is stuck at a given position.  It can only change 

its angle from 0° to 130°, and the corresponding electric power output is 0 kW to 128 kW.  It is 

impossible to reach the power demand beyond this range by only controlling the control drum 

angle.  A reconfigurable control strategy is developed to solve this kind of problem. A sub-
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controller is started-up if the electric output remains unchanged for 30 seconds and there is still a 

big gap between the target value and the real value.  This sub-controller is a PI controller, which 

regulates the electric power output to the desired power by controlling the shunt resistor value. 

The performance of the reconfigurable control is illustrated in Figure 9.16.  Figure 9.16a 

shows performance of the SP-100 space reactor system under the actuator failure. We can see 

that when the reactor desired power is changing from 112.53 kW to 120 kW, it is still within the 

adjustable range of the control drum angle. So just adjusting the control drum angle, we can 

reach the aim point. At the 300th second, the desired electric power changes from 120 kW to 132 

kW, which is out of the range that control drum angle can cover. Thus, when the control drum 

angle is stuck at its extreme position, the TE power output will remain at 128 kW, although there 

is still a big gap between the desired value and the actual value.  Figure 9.16b shows the system 

performance with the reconfigurable control. When the actual electric power remains unchanged 

for 30 seconds, and there is still a big difference between the target value and actual value, an 

alarm signal is sent to a subsystem. A PI controller is activated to control the shunt resistor to 

trace the target value.  From this figure, we can see the sub-controller is enabled around 250th 

second, and the actual electric power output will reach the desired the value in around 100 

second.  Figure 9.16c shows the change of shunt resistor. A small change of the shunt resistor 

will cause of big change of the TE power output.  It is not a very stable and easy manipulative 

way to control the TE power output.  Within a limited range, as a secondary control method, its 

performance is acceptable.  
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Figure 9.16a. System performance without reconfigurable control. 

 

 

9.16b. System performance with reconfigurable control. 
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9.16c. Change of the shunt resistor. 

Figure 9.16. Performance of the reconfigurable control 

 

9.8.2. 'Internal' Failure 

In this work, the assumed 'internal' failure is the change in the gain of the external reactivity of 

the control drum angle, starting at the 400th second point.  For the normal condition, 5° change of 

the control drum angle approximately inserts or takes out 0.1 cent of reactivity. As the 'internal' 

failure occurs, 5° change of the control drum angle approximately inserts or takes out 0.09 cent 

of reactivity.  Figure 9.17 shows the comparison of the electric power output with and without 

the MPC.  Note that without MPC the electric power is much lower than the desired power.  

With MPC, the condition is improved, although it does not fully meet the desired values.    
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Figure 9.17. Electric power output under 'internal' failure. 

 

9.8.3. Sensor Failure 

With the above knowledge, a PCA model representing the normal operating conditions is 

developed to detect the sensor failure.  The objective of sensor failure detection is to diagnose 

sensor degradation at the incipient stage, with a very small probability of making a wrong 

decision. When a measurement fault is detected in the TE power sensor, an alarm signal is sent 

to the system. The MPC controller will switch its control input from the difference between the 

reference value and measurement value to the difference between the reference value and the 

predictive value. The predictive value of the TE power output is estimated by the empirical 

model, which is built with the normal operation data.  Figure 9.18a depicts the step response of 

the empirical model and the step response of the non-linear Simulink model.  It can be seen that 

the empirical model can provide a very good prediction of the system.  The performance of the 

SP-100 system when the TE power sensor failure occurs at the 300th second is illustrated in 

Figure 9.18b.  Without any interference, the actual electric power will run further away from the 

target values because the degrading fault is getting larger.  Figure 9.18c shows the FDI detects 

the sensor failure at 450th second, and sends alarm signal to the SP-100 system. So the input 

signal of the MPC controller will change to track the difference between the estimated value and 
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reference value. Since the empirical model to make the estimation is good enough to present the 

system performance, the control results are much better improved. 

 

(a) Comparison between the step response of the empirical model and the Simulink model 

 

 

(b) Performance of the SP-100 system under sensor failure 
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(c) Performance of control system with FDI 

Figure 9.18. System performance under TE sensor failure. 

9.8.4. Summary 

In this chapter the control strategies are designed to handle different single failures. A 

reconfigurable control is designed to solve the actuator failure. A secondary PI controller is used 

to compensate the loss of the actuator failure. For a well tuned MPC controller, it has the 

capability of reducing the effect of dynamics change caused by 'Internal' failure. To solve the 

sensor failure problem, a model is needed to estimate the measurement values during the process. 

When the sensor failure is detected, instead of using the measurement value, the model's estimate 

value will go to the control algorithm.  

By far the control strategies we designed can solve the problems caused by single 

specified failure. For the actual situation, one single failure may cause consequent failures. To 

realize autonomous control, the control strategies to handle multi-failure need to be considered in 

the future research work.   
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10. IMPLEMENTATION OF MPC IN THE EXPERIMENTAL LOOP 

USING EMPIRICAL INPUT-OUTPUT MODELS 

10.1. General Description 

The two-tank flow rate control loop is built to test the control strategies which have been 

applied to the SP-100 space reactor system.  

The schematic of the two-tank loop is shown in Figure 10.1.  CV-1 and CV-2 are the two 

control valves.  By sending different control voltages, the control valves open or close, so that 

the flow rate of the water flows to tank-1 and tank-2 change as well.  The other valves are 

manual valves.  They are kept fully open during the normal operation condition. The maximum 

flow rate can reach 0.2 L/sec. 

 

Figure 10.1. Schematic of two-tank flow rate control loop. 

16 different state variables are measured and recorded. They are: water level in tank 1, water 

level in tank 2, inlet flow rate to tank1, inlet flow rate to tank2, outlet flow rate from tank 1, 

outlet flow rate from tank 2. bypass flow rate, the water temperatures in tank1, tank 2, sump tank 
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and pump, the voltages from control valves 1, 2 and 3. Usually, the change of temperatures is 

very small. It is not an important factor that will affect the water levels, so we will not consider 

the effect of temperatures. 

Figure 10.2 shows the photograph of the experimental loop at the University of 

Tennessee.  The yellow-colored devices are the control valves. There are three control valves in 

the real experimental loop. The third control valve is used to control the flow rate of the water 

flows out of tank 2. It is kept fully open during the current experimental design. It will work as a 

redundancy control method in the future research work about fault tolerant control. The blue 

parts at the right bottom corner are the pressure meters. The pressure signals will be converted to 

voltage signals and sent to the computer. There are also two orifice meters to measure the inlet 

flow rates and two turbine meters to measure the outlet flow rates.        

 

Figure 10.2. The experimental loop. 

Two data acquisition cards are used to acquire loop process data.  One set of data is sent to the 

LabVIEW VI simulation model to monitor the current operation situation. One set of data is sent 

to a notepad file for future data analysis. The front panel of the VI is shown in Figure 10.3. 
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Figure 10.3. Two-tank loop VI. 

When the two-tank flow rate control loop has been well tuned, and all the software and 

hardware are working properly, the PI controllers were first implemented to the loop.  The PI 

controllers will drive the water levels to the desired positions.  The data under normal operation 

condition will be acquired, which will cover the water level range from 300 mm to 800 mm.  

The whole experiments that will do to the loop are listed in the flow chart as Figure 10.4. 

First we acquire the normal operation data; then use the data to build an empirical model; design 

the MPC based on the empirical model, then implement MPC online to make sure the MPC will 

work fine on the non-linear real-time loop. The above procedures guarantee the two-tank loop 

with the basic control functions, that the water levels will arrive at the desired points.  Then a 

fault diagnosis system is needed to monitor the operation situation of the two-tank loop and send 

alarms to the operator if there is any abnormal situation happens.  The fault diagnosis system will 

base on the Principal component analysis (PCA) technique.  The data under normal operation 

condition are acquired to develop the PCA model. Then the control strategies to handle the 

abnormal situations are needed. So when the abnormal data go to the control system, the fault 
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diagnosis system will point out the nature of the fault, and the fault tolerant control system will 

take some actions to compensate the loss caused by the fault, and make the whole system still 

satisfy the water level requirements.  

 

Figure 10.4. Experiment flow chart for two-tank flow rate control loop. 

In this chapter, we are focusing on the implementation of MPC controllers to the real flow rate 

control loop. 

10.2. Control Problem Description 

For model predictive control, the more precise the model is, the better the performance of 

the controller will be. We have built a Simulink model to simulate the dynamics of the two-tank 

experiment loop, but because there are a lot of simplifications in the dynamic dominating 

equations, the Simulink model could not represent the dynamics of the real two-tank loop. In the 

design of MPC controller for the two-tank loop, we are using the empirical model which is 

developed with the data acquired from the running loop under normal operation condition.  

Data Acquisition 

Empirical Model 

MPC Control Design 

Online Implementation of MPC 

Fault Diagnosis 

Fault Tolerant Control  
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Three aspects need to be considered to achieve a good performance of MPC control 

system:  

1. The improvement of empirical model. The original data set could not be used to develop an 

empirical model directly. There will be big vibrations in the data when the water level is low. 

When the water level is high, the high pressure caused by the height of water column will 

affect the inlet flow rate, so the dynamic of the system will be slightly changed. It is very 

important to choose the correct data region. Here we choose the data corresponding to the 

water level between 400 mm to 700 mm. Also different orders and different combination of 

the orders of the Auto Regression Moving Average with eXogenous inputs (ARMAX) model 

need to be tested to find the best fit.   

2. The parameters setting for MPC. There are several parameters need to be adjusted in the 

MPC Toolbox, such as the control horizon, prediction horizon, input weight, output weight, 

overall weight, control constraints, et al. When a MPC controller with specified parameters is 

developed, it needs to be implemented on-line to the real loop to check the real performance 

of the MPC controller. Several MPC controllers with different designs need to be tested on 

the real loop, until we can find one which satisfies all the control design requirements.  

3. The correct way to implement MPC online. There were several papers about how to online 

implement MPC. Special code needs to be run to hook up MATLAB with LabView. The 

MPC controller is running under MATLAB environment, and the control movement 

generated by the MPC controller will go to LabView to drive the motors of control valves, 

and the new values of the current system state variables will go back to MPC controller to 

generate the next step control decision.   

The final goal is to implement MPC control for the two tank loop. Before working on the MPC 

controller for the two-tank loop, we started with a simpler case—MPC implementation on single 

tank. The experience of implementing MPC to single tank loop is very valuable for the 

implementation of MPC to Two-tank loop. 
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10.3. MPC Implementation in Single Tank Loop 

Figure 10.5 shows the data acquired to build the empirical model. We changed the water 

level from 300mm to 800 mm, and the changing step is 50mm. The PI controller is used to direct 

the water level to the desired values. We can also acquire data with manual control by changing 

the control voltage sending to the control valve. But in this way it will take longer time for the 

water level to reach the steady state, and some of the data may just be the same value. So in this 

way the data may not carry a lot of information about system dynamics. The PI controller we 

used is not well tuned. At the beginning of each water level change, there will be a big jump of 

the inlet flow rate.  
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Figure 10.5. The data acquired for single tank loop with PI controller. 

The entire data set could not be directly used to develop the empirical model. We just choose the 

data within the water level region from 400mm to 700 mm to build an empirical model.  The 

MATLAB command ‘armax’ is used to generate the empirical model.  ARMAX stands for Auto 

Regression Moving Average with eXogenous inputs.  The model orders need to be specified. 
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Different combinations of model orders are tried to generate the empirical model. The best fit is 

with model order [10, 4, 1, 1]. The empirical model can fit the data up to 99%.  

That SISO model is defined as follows: 

 A(q)y(t) = B(q)u(t) + C(q)e(t)            

Where, A(q) = 1 - 1.946 q^-1 + 1.096 q^-2 - 0.2593 q^-3 + 0.04471 q^-4 + 0.06736 q^-5 - 

0.03803 q^-6 + 0.04998 q^-7 - 0.01116 q^-8 - 0.004916 q^-9 + 0.002253 q^-10                                                     

B(q) = 72.64 q^-1 - 74.6 q^-2 + 20.19 q^-3 - 18.23 q^-4                

C(q) = 1 - 0.9966 q^-1  

and [10 4 1 1] stands for the order of A(q), order of B(q), order of C(q) and the step size. 

The performance of MPC controller for the single tank loop is shown in Figure 10.6. The 

constraints of the MPC controller are: 
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A dead-band is set for the flow rate perturbation.  If the change of water level from current value 

to next step value is smaller than 5mm, there is no change of the inlet flow rate.  This ensures 

that the control valve does not move frequently to follow any small changes in the water level. 
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Figure 10.6. MPC performance for single tank loop. 

10.4. MPC implementation in two tank loop 

Because the two-tank loop is very nonlinear, it is not easy to develop a linear empirical model to 

represent the dynamic of the two-tank loop.  Figure 10.7 shows the data that were acquired for 

the two-tank loop.  
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Figure 10.7 Data acquisition for two-tank loop. 

Only a part of the data was selected to develop an empirical model. 

The MATLAB command ‘pem’ can be used to develop a Multi-Input and Multi-Output (MIMO) 

model. After trying several orders of the MIMO model, when the order is 5, the MIMO model 

fits the data best. Figure 10.8 shows the fitness of the model.  The MIMO model can fit the data 

around 99%. 
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Figure 10.8. Comparison between MIMO model and measurement data. 

The MPC controller for two-tank loop was developed basing on the above MIMO model. 

Several MPC controllers with different parameters designs have been tested online on the two-

tank loop, but none of them gave a good results for two-tank water level control.  

The observations of the performance of former MPC controllers show that the water level 

in tank 1 can follow the target values quite well, but the water level in tank 2 could not track the 

set points. The probable reason is the control valve which controls the inlet flow rate for tank two 

is not functioning properly. In order to find a good MPC design for two-tank loop, we may need 

to change that control valve. 

 

10.5. Summary  
The MPC controller for the single tank loop has been successfully implemented in the 

real-time loop. It shows a better performance over the traditional PI controller.  By setting proper 
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constraints, the MPC controller can reach an optimal control.  The improvement of the MPC 

controller for the two-tank case will continue as part of the future work. 
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11. CONCLUDING REMARKS AND FUTURE WORK 
 

11.1. Summary and Concluding Remarks 
 As stated in the Executive Summary, the three major tasks of developing the SP-100 

space reactor nodal model and transient simulations, development and implementation of 

classical and model-predictive controller to SP-100, development of fault detection and isolation 

and integration for the design of fault-tolerant controller, and finally the on-line demonstration of 

the control strategies with application to a multivariate experimental flow control loop have been 

accomplished.  The specific accomplishments are restated below for easy reference: 

• Development and testing of the SP-100 reactor system dynamics and the power 
conversion module (thermo-electric conversion) nodal model as an integrated system. 

 
• Development and application of the Model Predictive Control (MPC) algorithm to the 

SP-100 system.  The SP-100 reactor simulation model has been used in this task.  The 
MPC algorithm has been evaluated against traditional controllers, for various transient 
conditions. 

 
• Development of a fault detection and isolation module for monitoring incipient faults in 

various field devices.  This method uses the Principal Component Analysis (PCA) and 
data-driven models for fault monitoring. 

 
• Design and completion of a laboratory multivariate water level control test loop, for 

evaluating the various control strategies and the fault-tolerant control method. 
 

• Development of a multivariate flow control loop and on-line demonstration of the 
classical proportional-integral controller and the model-predictive controller (MPC) using 
the laboratory test loop. 

 
• Development of an autonomous control framework, with control mode reconfiguration 

and hierarchical control strategy. 
 

• Presentation of seven papers in national and international conferences, and publication of 
four manuscripts in refereed journals. 

 
The features of an autonomous control strategy, such as controller auto-tuning and fault-

tolerant control features have been demonstrated in this project.  The development of methods 

and their implementation to both reactor simulation models and to a laboratory control test loop 

have applications to terrestrial reactors.  These include both current and next generation 

commercial power reactors, and modular grid-appropriate reactors for remote deployment.  It is 
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anticipated that the technology developed under this NEER project will add to the autonomy of 

reactor operation and maintenance, uninterrupted operation of long-duration fuel cycles, and life 

extension of currently operating reactors. 

 

11.2. Recommendations for Future Research 
Based on the research and development performed under this NEER grant, the following 

research areas are recommended for further work. 

• A reliable and robust autonomous control requires proper integration of basic control and 
fault monitoring functions, a control supervisor, and a system executive.  It is 
recommended that this integration effort be pursued as part of future work. 

 
• Autonomous control often requires increasing the knowledge base by continuous 

learning.  This learning scheme and knowledge use must be developed and integrated into 
the control framework. 

 
• Development of alternative control mode selection (also referred to as control 

reconfiguration). 
 

• Demonstration of the integrated system using a multivariate laboratory control 
experiment. 

 
• Evaluation of the effect of actuator dynamics in on-line control strategies. 

 
• Technology transfer from the aerospace and robotics industry to the incorporation of 

operational autonomy in nuclear power reactors. 
 

• Evaluation of the effect of digital instrumentation and control in enhancing the operation 
and maintenance of both large and modular reactors for power generation and other 
applications. 
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Abstract 
The control system of an SP-100 space reactor is a key element of space reactor design to 

meet the space mission requirements of safety, reliability, survivability, economics, and life 

expectancy.  In this work, a fault-tolerant controller (FTC) consisting of a model predictive 

controller and a fault detection and diagnostics algorithm for the input and output measurements 

for the controller is developed to control the thermoelectric (TE) power in the SP-100 space 

reactor.  A fault-tolerant controller makes the control system stable and retains acceptable 

performance even under system faults. The future TE power is predicted by using the fuzzy 

model identified by a subtractive clustering method of a fast and robust algorithm.  The 

objectives of the proposed model predictive controller are to minimize both the difference 

between the predicted TE power and the desired power, and the variation of control drum angle 

that adjusts the control reactivity.  Also, the objectives are subject to maximum and minimum 

control drum angle and maximum drum angle variation speed.  The genetic algorithm that is 

effective in accomplishing multiple objectives is used to optimize the model predictive controller. 

The model predictive controller is equipped with a fault detection and diagnostics algorithm so 

that the controller can work properly even under input and output measurement faults.  A lumped 
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parameter simulation model of the SP-100 nuclear space reactor is used to verify the proposed 

controller.  Simulation results of the proposed controller show that the TE generator power level 

controlled by the proposed controller could track the target power level effectively even under 

measurement faults, satisfying all control constraints. 

KEY WORDS: Fault detection and diagnostics, fault-tolerant control, fuzzy model, genetic algorithm, model 
predictive control, space reactor power control, sequential probability ratio test, subtractive clustering method 

1. Introduction 
The SP-100 space reactor is designed to provide a realistic and reliable source of long-

term power for space exploration and exploitation activities.  The SP-100 system is a fast 

spectrum lithium-cooled reactor system with an electric power rating of 100 kW [1].  The 

primary heat transport system consists of the working fluid, liquid lithium, and electromagnetic 

(EM) pumps.  The energy conversion system uses a direct thermoelectric (TE) conversion 

mechanism.   

The control system is a key element of space reactor design to meet the space mission 

requirements of safety, reliability, survivability, economics, and autonomous action.  In order to 

accomplish a space mission with uncertain environment, rare events, and communication delays, 

all the control functions must be achieved through a sophisticated control system with a limited 

degree of human intervention from the earth.  The control functions needed for SP-100 and other 

space reactors can be ensured only by an autonomous control system, which assumes the 

responsibilities for normal control, abnormal event response and fault tolerance, and provides an 

interface with operators on earth for high-level decision-making.  Many studies have been 

conducted to control the SP-100 space reactor [2-5].  These studies focus on normal control of 

the reactor.  This work deals with the normal and fault-tolerant control for the autonomous 

control system of the SP-100 space reactor. 

In order to optimize the reactor power control performance, techniques for the optimal 

power control of nuclear reactors have been studied extensively in the past two decades [6-9].  

But it is very difficult to design optimized controllers for nuclear systems because of variations 

in nuclear system parameters and modeling uncertainties, and in particular, for the long-term 

operation of the SP-100 space reactor. 
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This work employs the model predictive control method, which has received increased 

attention as a powerful tool for the control of industrial process systems [10-16].  It incorporates 

the fuzzy modeling for the output prediction of the model predictive control and combines the 

fault detection and diagnostics for fault tolerance of which the combined controller is a fault-

tolerant controller.  The basic concept of the model predictive control is to solve an optimization 

problem for a finite future at the current time.  Once a future input trajectory is chosen, only the 

first element of that trajectory is applied as the input to the plant, and the calculation is repeated 

at each subsequent instant.  This method has many advantages over the conventional infinite 

horizon control because it is possible to handle input and state (or output) constraints in a 

systematic manner during the design and implementation of the control.  In particular, it is a 

suitable control strategy for nonlinear time varying systems because of the model predictive 

concept.  Recently, the problem of controlling uncertain dynamical systems has been of 

considerable interest to control engineers.  The model predictive control method has been applied 

to a nuclear engineering problem [17-18].  

In this work, the fuzzy model is used to predict the future output that should be calculated 

at first to minimize the control cost function.  That is, at the present time the behavior of the 

process over a prediction horizon is considered and the process output to changes in the 

manipulated variable is predicted by using a fuzzy model based on a subtractive clustering 

method of a fast and robust algorithm.  Based on the predicted future output, a model predictive 

controller is designed to minimize the output error that means the difference between the 

predicted output and the setpoint.  In addition, another fuzzy model estimates the input and 

output of the control system by using other process signals, and the errors between the estimated 

signals and the measured signals are used to determine the health of the measurement 

instruments by using the sequential probability ratio test (SPRT).  A lumped parameter 

simulation model of the SP-100 space reactor is used to verify the proposed FTC for a space 

nuclear reactor. 

2. Model Predictive Control Combined with a Fuzzy Model 
The model predictive control (MPC) is combined with the fuzzy model based on the 

subtractive clustering approach.  The model predictive controller combined with a fuzzy model is 

called a fuzzy model predictive controller.  The MPC method is to solve an optimization problem 
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for a finite future at current time and to implement the first optimal control input as the current 

control input. The procedure is then repeated at each subsequent instant. Figure 1 shows the 

basic concept of the model predictive control [12].  That is, for any assumed set of present and 

future control moves, the future behavior of the process outputs can be predicted over a 

prediction horizon L , and the M  present and future control moves ( M L≤ ) are calculated to 

minimize a quadratic objective function.  Although M  control moves are calculated, only the 

first control move is implemented.   At the next time step, new values of the measured output are 

obtained, the control horizon is shifted forward by one step, and the same calculations are 

repeated.  

Fig. 1 
 

The purpose of taking new measurements at each time step is to compensate for 

unmeasured disturbances and model inaccuracies, both of which make the measured system 

output to be different from the one predicted by the fuzzy model.  At every time instant, model 

predictive control requires the on-line solution of an optimization problem to compute optimal 

control inputs over a fixed number of future time instants, known as the time horizon.  The basic 

idea of model predictive control is to calculate a sequence of future control signals in such a way 

that it minimizes a multistage cost function defined over a prediction horizon.  A performance 

index for deriving an optimal control input is represented by the following quadratic function: 

[ ]2 2

1 1

1 1ˆ( | ) ( ) ( 1)
2 2

L M

k k

J y t k t w t k R u t k
= =

= + − + + Δ + −⎡ ⎤⎣ ⎦∑ ∑ ,  (1) 

subject to constraints min max

max max

( 1) 0  for  ,
( ) ,

( ) .

u t k k M
u u t u

du u t du

Δ + − = >⎧
⎪ ≤ ≤⎨
⎪ − ≤ Δ ≤⎩

 

where R  weights the control drum angle (control input) change between neighboring time steps, 

compared to the TE power (system output) error, and w  is a setpoint (desired TE power) or 

reference sequence for the output signal.  The estimate ˆ( | )y t k t+  is an optimum k -step-ahead 

prediction of the system output based on data up to time t ; that is, the expected value of the 

output at time t  if the past input and output and the future control sequence are known. uΔ  is an 

input move between neighboring time steps.  L  and M  are called the prediction horizon and the 
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control horizon, respectively.  The prediction horizon represents the limit of the instant in which 

it is desired for the output to follow the reference sequence.  The constraint, 

( 1) 0 foru t k k MΔ + − = > , means that there is no variation in the control signals after a certain 

interval M L< , which is the control horizon concept.  minu  and maxu  are the minimum and 

maximum values of input, respectively, and maxuΔ  is a maximum allowable control move per 

time step. 

In order to obtain control inputs, the predicted outputs have to be first calculated by using a 

fuzzy model, in which the inputs consist of past values of control system inputs and outputs, and 

of assumed future control system input signals.  The fuzzy model has been widely used for 

function approximation problems and has been proved to have good characteristics.  Therefore, 

the fuzzy model is used to predict the future output based on past inputs and outputs; this 

approach is described in the following section. 

 

2.1. Output Prediction Using a Fuzzy Model 

In this work, a fuzzy model based on subtractive clustering (SC) is used to predict the 

future output of the model predictive controller.  The i -th fuzzy rule for k -th time instant data is 

described as follows: 
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where  

, ( )i jA k  = membership function value of the j -th input variable for the i -th fuzzy rule, 

ˆ ( )iy k  = estimated output for the i -th fuzzy rule, 

d = time delay which is equal to or greater than the prediction horizon L , 

yn = number of time points used for output signals, 

un = number of time points used for input signals. 

The fuzzy model consists of a total of n  fuzzy rules.  The integer parameter d  is 

introduced to estimate the present and future output signal by using only the past output signal.  
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The input vector to the fuzzy model consists of y  and uΔ  which are past values of output and 

control input move, respectively, and can be indicated as a vector consisting of a total of m  

elements ( y um n n= + , number of input variables to the fuzzy model): 

( ) ( 1) ( ) ( 1) ( )y uk y k d y k d n u k u k n⎡ ⎤= − − − − Δ − Δ −⎣ ⎦x . 

The fuzzy model identification can be accomplished through clustering of numerical data.  

A SC method is used as the basis of a fast and robust algorithm for identifying a fuzzy model and 

assumes the availability of N  input/output training data ( )( ) ( ), ( )k k y k=z x , 1, 2,...,k N= .  It is 

assumed that the data points have been normalized in each dimension.  The method starts by 

generating a number of clusters in the m N×  dimensional input space.  The SC method considers 

each data point as a potential cluster center and uses a measure of the potential of each data point, 

which is defined as a function of the Euclidean distances to all other input data points [19-20]: 

2 24 ( ) ( )
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j
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=

Ψ =∑ x x , 1, 2,..., ,k N=  (3) 

where rα  is a radius, defining a neighborhood of a cluster center, which has considerable 

influence on the potential.  Obviously, the potential of a data point is high when it is surrounded 

by many adjacent data.  After the potential of every data point has been computed, the data point 

with the highest potential is selected as the first cluster center, which means that 

{ }1(1) max ( )
k

k∗Ψ = Ψ .  After finding out the first cluster center *(1)x  and its corresponding potential 

value (1)∗Ψ , to solve the second cluster center, the potential of each data point is revised by the 

following formula: 

2 24 ( ) (1)
2 1( ) ( ) (1)

k r
k k e β

∗− −∗Ψ = Ψ −Ψ
x x , 1, 2,..., ,k N=  (4) 

where βr  is another radius, usually greater than rα  in order to limit the number of generated 

clusters.  The second series of potentials is subtracted from the first series of potentials as a 

function of its distance from the first cluster center.  The data points near the first cluster center 

will have greatly reduced potential, and therefore are unlikely to be selected as the next cluster 

center.  When the potentials of all data points have been revised according to Eq. (4), the data 

point with the highest remaining potential is selected as the second cluster center that 
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corresponds to { }2(2) max ( )
k

k∗Ψ = Ψ .  After the i -th cluster center has been obtained, the potential 

of each data point is revised by the following equation: 

2 24 ( ) ( )
1( ) ( ) ( )

k i r
i ik k i e β

∗− −∗
+Ψ = Ψ −Ψ

x x , 1, 2,...,k N= , (5) 

where ( )i∗x  is the location of the i -th cluster center and ( )i∗Ψ  is its potential value.  If the 

inequality ( ) (1)i ε∗ ∗Ψ < Ψ  is true, these calculations stop, else these calculations are repeated.  The 

parameter ε  is a design parameter, which controls the number of generated clusters which is the 

number of fuzzy rules, n . 

When the SC method is applied to a collection of input/output data, each cluster center is 

in essence a prototypical data point that exemplifies a characteristic behavior of the system and 

each cluster center can be used as the basis of a fuzzy rule that describes the system behavior.  

Therefore, a fuzzy system identification model can be developed based on the results of the SC 

technique.  The number of n  fuzzy rules can be generated, where the premise parts are fuzzy sets, 

defined by the cluster centers that are obtained by the SC algorithm. The membership function 

value ( ( ))iA kx  of an input data vector ( )kx  to a cluster center ( )i∗x  can be defined as follows: 

( )
2 24 ( ) ( )
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x x

x , (6) 

The fuzzy model output ˆ( )y k  is calculated by the weighted average of the consequent parts 

of the fuzzy rules as follows: 

( ) ( )

( )

1

1

( ) ( )
ˆ( )

( )

n

i i
i

n

i
i

A k f k
y k

A k

=

=

=
∑

∑

x x

x
, (7) 

where the function ( )( )if kx  which is an output of a fuzzy rule  is a polynomial in the input 

variables and represented by the first-order polynomial of inputs as given in Eq. (8): 
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where 

,i jq = weighting value of the j -th input on the i -th fuzzy rule output, 
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ir  = bias of the i -th fuzzy rule output. 

Therefore, the estimated output by Eq. (7) can be rewritten as 
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The value ( )iw k  is the normalized firing level of the i -th fuzzy rule.  For a series of the N  input/output data pairs, 

the following equation is derived from Eq. (9):  

ˆ =y Wq , (10) 

where 

ˆ ˆ ˆ ˆ(1) (2) ( ) Ty y y N= ⎡ ⎤⎣ ⎦y , 

[ ](1) (2) ( ) TN=W w w w . 

The vector q  is called the consequent parameter vector.  By replacing the vector ŷ  and the 

matrix W  of Eq. (10) with the N  training input/output data pairs, the vector q  is calculated.The 

current estimated output may be expressed generally as follows: 

( ) ( )ˆ( / ) ( ) ( 1), , ( ), ( 1), , ( )y uy t t f t f y t d y t d n u t u t n= = − − − − Δ − Δ −x . (11) 

The fuzzy model-based output prediction can be calculated as 
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( / ) ( 1), , ( ), ( 1), , ( ) ,y u

y t k t d t t f t k

d t t f y t k d y t k d n u t k u t k n

+ = + +

= + + − − + − − Δ + − Δ + −

x
 (12) 

where ( / )d t t  is a disturbance estimation.  The disturbance estimation is defined as the difference 

between the actual output values and the predicted output and is calculated as follows: 

ˆ( / ) ( ) ( / )d t t y t y t t= − . (13) 
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The disturbance estimation is assumed to be constant over the prediction horizon. 

2.2. Control Input Optimization by a Genetic Algorithm 

Since the genetic algorithm has been known to be effective in solving multiple objective 

functions, in this work, a genetic algorithm is used to minimize the control objective function.  

Compared to the conventional optimization methods that move from one point to another, 

genetic algorithms start from many points simultaneously climbing many peaks in parallel. 

Accordingly, genetic algorithms are less susceptible to getting stuck at local minima 

compared to conventional search methods [21-22]. 

The term chromosome of the genetic algorithm is referred to as a candidate solution that 

minimizes a control objective function.  A chromosome which is a candidate solution of the 

optimization problem is represented by gs , whose elements consist of present and future control 

inputs and has the following structure [20,23]: 

( ) ( 1) ( 1) , 1, ,g g g gs u t u t u t M g G⎡ ⎤= + + − =⎣ ⎦ , (11) 

where t  indicates the current time.  Assuming we have chosen the number of chromosomes G  

which will constitute the initial population, the crossover probability cP  and the mutation 

probability mP , the algorithm proceeds according to the following steps: 

Step 1 (initial population generation): Generate an initial population consisting of a total of 

G  chromosomes.  The values are allocated randomly, but they should satisfy both input and 

input move constraints of Eq. (1).  For this purpose, a simple procedure is used as follows: 

(a) Read the measured value ( 1)u t −  of the input variable at the previous time point -1t , 

which has already been implemented. Then select the current input value using the 

following equations: 

max( ) ( 1)gu t u t r u= − + ⋅Δ . (12) 

where r  is a random number with uniform distribution between 
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 so that it satisfies the maximum and minimum input 

constraints. 

 (b) Select the rest of the input moves using the following equations: 
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max( ) ( 1) , 1 1g gu t k u t k r u k M+ = + − + ⋅Δ ≤ ≤ − . (13) 

where r  is a random number with uniform distribution between 

⎥
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ktuu gg . 

A new random number r  is generated each time Eq. (12) or Eq. (13) is used. 

Step 2 (fitness function evaluation): Evaluate the objective function of Eq. (1) for all the 

chosen chromosomes.  Then invert the objective function values to obtain the fitness value of the 

g -th chromosome as follows: 

1 , 1, ,
( )g

g
F g G

J t
= =  (14) 

where ( )gJ t  is the objective function value for the g -th chromosome.  Then, calculate the normalized 

fitness value of each chromosome, meaning that the selection probability gp  is calculated by 

1

, 1, ,g
g G

i
i

F
p g G

F
=

= =

∑
. (15) 

Step 3 (selection operation): Calculate the cumulative probability gq  for each chromosome 

using the following equation: 

1

, 1, ,
g

g j
j

q p g G
=

= =∑ . (16) 

Generate a random number r  between 0 and 1 and select the chromosome for which 1g gq r q− ≤ ≤ . 

At this point of the algorithm a new population of chromosomes has been generated.  The 

chromosomes with high fitness value have more chance to be selected. 

Step 4 (crossover operation): For each chromosome gs , generate a random number r  

between 0 and 1.  If r  is lower than cp , this particular chromosome will undergo the process of 

crossover, otherwise it will remain unchanged. Mate the selected chromosomes and for each 

selected pair ( )1,g gs s + , generate a random integer number c  between 1 and 1M −  which is a 

crossing point. Two new chromosomes ( )1,new new
g gs s +  are produced by interchanging all the 
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members of the parent chromosomes following the crossing point.  The crossover operation 

might produce infeasible offsprings if the input values at the cross point do not satisfy the input 

move constraints. Therefore, the crossover operation is conducted if and only if the following 

two conditions are satisfied for the values of the input parameters before and after the cross 

position so that the input move constraints are satisfied: 

max( ) ( 1)new new
g gu t c u t c u+ − + − ≤ Δ , (17) 

1 1 max( ) ( 1)new new
g gu t c u t c u+ ++ − + − ≤ Δ , (18) 

where 1
new
gu +  and new

gu  are members of newly generated chromosomes. 

Step 5 (mutation operation): For every member of each chromosome gs , generate a random 

number r  between 0 and 1.  If r  is lower than mp , this particular member of the chromosome 

will undergo the process of mutation, otherwise it will remain unchanged. For the selected 

members define upper and lower bounds as follows: 

max max max

max max min

min( ( 1), ( 1), )

max( ( 1), ( 1), )
u g

l g

b u u t u u t k u

b u u t u u t k u

= Δ + − Δ + + +

= −Δ + − −Δ + + +
   if k  = 0,  (19) 

max max max

max max min

min( ( 1), ( 1), )

max( ( 1), ( 1), )
u g g

l g g

b u u t k u u t k u

b u u t k u u t k u

= Δ + + − Δ + + +

= −Δ + + − −Δ + + +
   if 0 1k M< < − ,  (20) 

max max

max min

min( ( 1), )

max( ( 1), )
u g

l g

b u u t k u

b u u t k u

= Δ + + −

= −Δ + + −
   if 1k M= − .  (21) 

The above bounds define the region of values of ( )gu t k+  which will produce a feasible solution.  

This definition is followed by the generation of a random binary number b .  Based on the value 

of b , ( )gu t k+  is modified by the following equations: 

( ) ( )( )max1 /( ) ( ) ( ) 1 if 0iter iter
g g u gu t k u t k b u t k r b−+ = + + − + − = , (22) 

( ) ( )( )max1 /( ) ( ) ( ) 1 if 1iter iter
g g g lu t k u t k u t k b r b−+ = + − + − − = . (23) 

where r  is a random number between 0 and 1, iter  is the number of iterations performed so far 

and maxiter  is the expected final number of iterations. 
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Step 6 (repeat or stop): If the maximum allowed time has not expired, return the algorithm to 

Step 2.  Otherwise, stop the algorithm and select the chromosome that produced the lowest value 

of the objective function throughout the entire procedure. 

 

3. Fault Detection and Diagnostics for Input and Output Measurements 
In this work, a failure detection and diagnostics algorithm is developed to estimate the 

input and output measurements using a fuzzy model based on the subtractive clustering method 

[19] and to check the operability of existing hardware sensors using a sequential probability ratio 

test so that the FTC can handle the fault situations of the input and output measurements. There 

are two types of approaches in estimating the input and output measurements.  One is a method 

that estimates required parameters on the basis of a deterministic model, and the other is the 

black-box modeling method that depends only on the measured values.  Black-box modeling 

approaches, such as artificial intelligence, are favored because they can model complicated 

processes that are difficult to be described by analytical and mechanistic methods. Therefore, 

black-box model approaches for estimating the signals have been widely attempted.  Also 

recently, artificial intelligence techniques, such as fuzzy inference systems and artificial neural 

networks have been given close attention from many researchers because artificial intelligence 

can model complex nonlinear systems easily.  Therefore, in this work, a fuzzy model is used to 

estimate the input and output measurement signals.  

3.1 Signal Estimation 

The estimation of sensor signals uses the fuzzy model based on the subtractive clustering 

method mentioned in the subsection “2.1 Output Prediction Using a Fuzzy Model”.  Therefore, 

the detailed description for estimating the signals is abbreviated here.  The design method that 

optimizes the fuzzy model is accomplished by a genetic algorithm, combined with a least-

squares method.  The genetic algorithm is used to optimize the cluster radii, rα  and rβ , for the 

subtractive clustering of numerical data, and the least squares algorithm is used to calculate the 

consequent parameters, ijq  and ir . 

The problem of learning a smooth mapping from data samples is ill-posed in the sense 

that the reconstructed mapping is not unique. Constraints can be imposed to the mapping to make 

the problem well-posed. Typical constraints are smoothness and piecewise smoothness. This 
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method to exchange an ill-posed problem into a well-posed one is called regularization [24-25]. 

Regularization is a well-known method for the treatment of mathematically ill posed problems. It 

has been successfully applied to numerous machine-learning problems for avoiding overfitting in 

neural network training. In this work, the regularization is accomplished by making the fuzzy 

model have smaller consequent parameters, which causes the fuzzy model to respond smoother 

and less likely to overfit.  The following multiple objectives are suggested to minimize a root 

mean squared error along with the small consequent parameters: 

( )2211exp EEF μμ −−= , (24) 

where 1μ  and 2μ  are the weighting coefficients, and 1E  and 2E  are defined as 

( )2
1

1

1 ˆ( ) ( )
N

k

E y k y k
N =

= −∑ , (25) 

D
E

qq ⋅
=2 . (26) 

The variables )(ky  and )(ˆ ky  denote the actual measured signal and the estimated signal, 

respectively.  The parameter D  is the number of consequent parameters, ijq  and ir , that is, the 

number of the elements of the vector q  which is ( 1)n m + . 2E  is introduced for the regularization 

of the input. The smaller the consequent parameters, better is generalization capability of the 

fuzzy model. The fitness function depends strongly on the relative value of 2 1μ μ . The ratio 

2 1μ μ  is iteratively altered in the training stage by the values of 1E  and 2E  so that the best 

chromosome with the maximum fitness keeps the specified relative magnitude of two terms of 

1 1Eμ  and 2 2Eμ  in Equation (24). 

Since the genetic algorithm requires much computational time if there are many 

parameters involved, the genetic algorithm is combined with a least-squares algorithm. If some 

parameters of the fuzzy model are fixed by the genetic algorithm, the resulting fuzzy model 

output can be described as a series of expansions of some basis functions. This basis function 

expansion is linear in its adjustable parameters as shown in Equation (9) since the parameters 

needed to calculate ( )T kw  such as αr  and βr  and have been already known by the genetic 

algorithm. Therefore, the least-squares method can be used to determine the remaining 
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parameters of the fuzzy model to estimate the input and output measurement signals. The least-

squares method was already explained in the subsection 2.1.  

3.2 Failure Detection and Diagnostics  

In failure detection and diagnostics, at every new sample of a signal, a new mean and a new 

variance of the signals may be required to check the health of the sensor. However, this 

procedure requires too many samples to obtain its meaningful mean and variance. During the 

acquisition of the samples, a significant degradation of the monitored process may occur.  

Therefore, sequential probability ratio test (SPRT) is used to detect a sensor failure based on the 

degree of failure and the continuous behavior of the sensor, without having to calculate a new 

mean and a new variance at each sampling instant. The SPRT is a statistical model developed by 

Wald in 1945 [26, 27].  

The objective of sensor failure detection and diagnostics is to diagnose sensor health as 

soon as possible with a very small probability of making a wrong decision. The SPRT uses the 

residual (difference between the measured value and the estimated value, ˆ( ) ( )y k y k− ). Normally 

the residual signals are randomly distributed, so they are nearly uncorrelated and have a 

Gaussian distribution function ( , , )i k i iP mε σ , where kε  is the residual signal at time instant k , and 

im  and iσ  are the mean and the standard deviation under hypothesis i , respectively. The sensor 

degradation or failure can be stated in terms of a change in the mean m  or a change in the 

variance 2σ . Therefore, the SPRT detects sensor health by sensing the alteration of the 

probability distribution. If a set of samples, ix , 1, 2, ,i n= , is collected with a density function 

describing each sample in the set, an overall likelihood ratio is given by 

)|()|()|()|(
)|()|()|()|(

00030020010

11131121111

HPHPHPHP
HPHPHPHP

n

n
n εεεε

εεεεγ
⋅⋅⋅⋅⋅
⋅⋅⋅⋅⋅

= , (27) 

where 0H  represents a hypothesis that the sensor is normal and 1H  represents a hypothesis that 

the sensor is degraded.  

By taking the logarithm of the above equation and replacing the probability density 

functions in terms of residuals, means and variances, the log likelihood ratio can be written as the 

following recurrent form: 
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This is the form used for deriving the sensor drift detection algorithm. For a normal sensor, the 

log likelihood ratio would decrease and eventually reach a specified bound A , a smaller value 

than zero. When the ratio reaches this bound, the decision is made that the sensor is normal, and 

then the ratio is reinitialized by setting it equal to zero. For a degraded sensor, the ratio would 

increase and eventually reach a specified bound B , a larger value than zero. When the ratio is 

equal to B , the decision is made that the sensor is degraded. The decision boundaries A and 

B are chosen by a false alarm probability α  and a missed alarm probability β ; ⎟
⎠
⎞

⎜
⎝
⎛

−
=

α
β

1
lnA  and 

⎟
⎠
⎞

⎜
⎝
⎛ −

=
α
β1lnB  [26]. 

4. Application to the SP-100 Space Reactor 
The SP-100 space reactor system is a fast spectrum lithium-cooled reactor system that 

can generate electric power of 100 kW for space exploration and exploitation activities.  The 

reactor system is made up of a reactor core, a primary heat transport loop, a thermoelectric 

generator, and a secondary heat transport loop to reject waste heat into space through radiators. 

The reactor core is composed of small disks of highly enriched (93%) uranium nitride fuel 

contained in sealed tubes. Figure 2 shows a schematic of one loop of the reactor system.  The 

heat generated in the reactor core is transported by liquid lithium and is circulated by 

electromagnetic (EM) pumps.  The interface between the primary heat transport system and the 

energy conversion system is a set of primary heat exchangers.  The energy conversion system 

uses the direct thermoelectric (TE) conversion mechanism.  A temperature drop of about 500 K 

is maintained across the TE elements by the cooling effect of a second liquid lithium loop that 

transfers the waste heat from the converter to a heat-pipe radiator. 

Fig. 2 
 

Table 1 shows a comparison between the simulation results [28] and the design 

parameters of SNPSAM design [29] for the rated operation condition.  Most of the simulation 

results are in good agreement with the SNPSAM design parameters.  The noticeable differences 
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are in the TE hot side and cold side temperatures.  The reason for the differences is that a 

secondary lithium loop is added to the developed simulation model while TE cold shoes are 

directly connected to radiators in SNPSAM design.  However, the calculated electric conversion 

efficiency is close to the value of SNPSAM. Therefore, the developed simulation model can be 

used to provide a credible control design for SP-100 space reactor system. The schematic block 

diagram of the proposed FTC is illustrated in Figure 3.   

Table 1 
 

Fig. 3 
 

The FTC for the TE power control is subject to constraints as follows: 

( 1) 0 foru t j j MΔ + − = > ,  

0 ( ) 180o ou t≤ ≤ , 

( ) 1.4ou t TΔ ≤ . 

The sampling interval T  is 1 second.  The external reactivity control uses the mechanism of the 

stepper motor control drum system [2].  The control drum angle of the stepper motor shaft can be rotated from 0 to 

180 degrees.  The maximum angular velocity of the drums is 1.4 / seco . The input-weighting factor R  is 

expressed by the following equation:  

2
o

o

y
R

u
ω
⎛ ⎞

= ⎜ ⎟
⎝ ⎠

 

where oy  is a rated value of the TE generator power and ou  is a rated value of  control drum 

angle.  It is known that the response speed depends much on the input-weighting factor that is a 

tuning variable.  According as the input-weighting factor increases, the response speed becomes 

slower. 

Figure 4 describes the performance of a failure detection and diagnostics algorithm. 

Figure 4(a) shows the training and test data used to design and test the algorithm which are 

different. Figure 4(b) and (c) shows the estimation performances of the algorithm for the training 

and test data, respectively. In addition, Figure 4(d) shows the fault detection and diagnostics 

performance when the output measurement is assumed to begin to be gradually degraded 
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artificially from 300 sec. The gradual degradation of the output measurement is detected at 321 

sec since the beginning of the gradual degradation. 

Fig. 4 
 

Figure 5 shows the performance of the proposed FTC for normal transients such as the 

setpoint change of TE power.  The setpoint starts to change by ramp at 100 sec and 300 sec, 

respectively and also changes by step at 600 sec and 800 sec. The performance of the proposed 

controller was checked with a roughly adjusted factor of 1=ω .  It is shown that the TE generator 

power follows its desired setpoint change very well.  It was known that the proposed controller 

meets several constraints very well and accomplishes the fast and stable responses.   

Fig. 5 
 

Figure 6 shows the performance of the proposed FTC against output measurement fault.  

The TE setpoint starts to change by ramp at 100 sec and 300 sec, respectively and also changes 

by step at 600 sec and 800 sec. The output measurement is assumed to start to be gradually 

degraded on purpose from 300 sec and the failure detection and diagnostics algorithm detects the 

output measurement degradation at 241 sec since the beginning of the gradual degradation.  

After detecting the fault, the FTC uses the estimated output signals instead of the measured 

output signal.  Therefore, the FTC try to recover its actual desired output at 541 sec.  It is shown 

that the TE generator power follows its desired setpoint change very well.   

Fig. 6 
 

Figure 7 shows the performance of a proposed FTC against the change of the control 

input constraint.  The maximum control input move is sec/4.1 o  but the maximum value changes 

to sec/14.0 o  from 500 sec. In order to observe that the response is slower after the maximum 

control input move becomes low, differently from the setpoint changes of the above simulation 

cases, the TE setpoint starts to change by ramp at 100 sec and changes by step at 350 sec, 

respectively and also changes by step at 550 sec and starts to change by ramp at 750 sec. 

Although its response becomes slower because of low control input change speed, it is shown 

that the TE power eventually follows its desired power.  
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Fig. 7 
 

5. Concluding Remarks 
In this work, the fault-tolerant controller combining a model predictive controller and the 

fault detection and diagnostics algorithm was developed to control the nuclear power in the SP-

100 space reactor system.  Based on a fuzzy model consisting of the control drum angle change 

and the TE power, the future TE power is predicted by using the fuzzy model identified by a 

subtractive clustering method of a fast and robust algorithm.  Another fuzzy model combined 

with the sequential probability ratio test estimates the input and output measurement signals and 

diagnoses the health of input and output measurements.  The genetic algorithm was used to 

optimize the model predictive controller and both the fuzzy models.  It was determined from 

many numerical simulation results that the proposed FTC was able to actuate the control drum to 

regulate the control reactivity so that the TE generator electric power followed the setpoint 

changes.  Also, the performance of the new proposed controller was proved to be efficient even 

under constraint changes and gradual sensor degradation (fault).  
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Table 1. Comparison between simulation results and design parameters 
 

Parameters 
SNPSAM Design 

[28] 

Current 

Model 

Nominal thermal power 

(kW) 
2000.0 2000.3 

Electric power output 

(kW) 
112.0 112.6 

Thermal efficiency (%) 5.59 5.63 

Core inlet temperature 

(K) 
1254.0 1254.0 

Core outlet temperature 

(K) 
1284.0 1284.0 

Fuel temperature (K) 1376.0 1376.0 

Cladding temperature (K) 1288.0 1288.0 

TE hot side temperature 

(K) 
1237.0 1228.5 

TE cold side temperature 

(K) 
857.0 841.8 
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Fig. 1. Model predictive control concept. 
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Fig. 2. Schematic of the TE SP-100 space reactor system. 
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Fig. 3. Block diagram of the proposed FTC for an SP-100 space reactor. 
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(c) estimation performance for the test data (d) fault detection and diagnostics 

  

Fig. 4. Performance of a failure detection and diagnostics algorithm. 
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Fig. 5. Performance of the proposed FTC for normal transients. 

 



 247 
 

0 200 400 600 800 1000
60

70

80

90

100

110

120

130
TE

 p
ow

er
 (k

W
)

time (sec)

 setpoint
 actual
 estimated
 measured

1.0

1.5

2.0

2.5

th
er

m
al

 re
ac

to
r p

ow
er

 (M
W

)

 thermal power

0 200 400 600 800 1000
110

115

120

125

130

dr
um

 a
ng

le
 (d

eg
)

time (sec)

(a) TE power and thermal reactor power (b) control drum angle 

0 200 400 600 800 1000
-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

re
ac

tiv
ity

 (d
ol

la
r)

time (sec)

 control
 feedback
 total

0 200 400 600 800 1000
700

800

900

1000

1100

1200

1300

1400

1500

te
m

pe
ra

tu
re

 (o K
)

time (sec)

 fuel
 core outlet
 core inlet
 hot shoe
 cold shoe

(c) reactivity (d) temperature 

0 200 400 600 800 1000

0

1

fa
il 

fla
g

time (sec)

 



 248 
 

(e) fail flag  

Fig. 6. Performance of the proposed FTC against output measurement fault. 
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Fig. 7. Performance of a proposed FTC against the change of the control input constraint. 
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APPENDIX B 

Orifice Meter Calibration Procedure and Results 
 

In order to calibrate the orifice meters, rigorous mechanical timing experiments were 

performed to find the proportionality of flow to pressure drop across the orifice using the 

relationship, Flow rate = K*SQRT (Pressure difference).  Using a timer and pre-calibrated liter 

marks on the level tanks, average flow rates were determined for different positions of the 

control valves.  Simultaneously, output voltages from the pressure sensors were compared to 

values set with the calibration software, AMS Device Manager.  Using linear interpolation of 

voltages between the maximum and minimum pressure differences, a ΔP was found for each 

output voltage recorded at each control valve position.  Four sets of test positions were 

performed for each tank; from these an average proportionality constant was determined.  Any 

anomalous data points were retaken to allow a more accurate calculation to be made. 

 

Procedure:  

1) Find Flow Rate 

1. Isolate one tower.  

2. Close all Valves. 

3. Turn on Pump. 

4. Open Bypass 

5. Input test voltage into Control Valve in order to open it. 

6. As water fills to zero line start timer. 

7. Stop timer when a whole number a liters are filled. 

8. Record Time to fill in seconds (T) and Liters filled (L) 

9. From these Calculate Flow rate for each test point 

 

2) Find Pressure Difference (ΔP) 

1. Find Max and Min Voltage and corresponding ΔP using calibration 

software 

2. Record output voltage from pressure sensor at each test point 
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3. Perform linear interpolation between max and min to determine ΔP 

at each point. 

 

3) Determine Proportionality constant K 

1. Using flow rate and ΔP relationship find K at each point 

2. Find Average K 

 

Calculations: 

Flow Rate: 

FRate (L/s) = L/T  

 

ΔP: 

ΔP (mm H20) = SLOPE(ΔPmin, ΔPmax, Vmin, Vmax )*ΔPtest + INTERCEPT( ΔPmin, ΔPmax, 

Vmin, Vmax) 

K = (FRate *0.001) / SQRT (ΔP*9.806652) 
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Results 

 

Orifice Meter 1 
 Average       

Voltage 

to 

Control 

Valve 1 

Liters 

Filled 

Time To 

Fill (sec) 

Fill Flow 

Rate 

(Liter/sec) 

Flow Rate 

(GPM) 

Voltage 

Recorded

ΔP in 

mm H2O K 

0 x x x x x x x 

1 x x x x x x x 

2 n/a n/a n/a n/a n/a n/a n/a 

3 8 168.33 0.0475257 0.7532917 0.843152 84.36427 1.6523E-06 

4 8 64.54 0.1239493 1.9646218 1.112355 585.1418 1.63626E-06 

5 8 41.01 0.1950982 3.0923448 1.582293 1459.329 1.63086E-06 

6 8 29.65 0.2697918 4.2762533 2.252593 2706.235 1.6561E-06 

7 8 24.38 0.3281715 5.2015834 3.026973 4146.753 1.62737E-06 

8 7 18.72 0.3740315 5.9284745 3.712115 5421.27 1.62217E-06 

9 7 17.36 0.4032839 6.3921302 4.149825 6235.507 1.63085E-06 

               

           Avg K 1.63656E-06 
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Flow Rate vs Voltage
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K Orifice 1

0.00000158

0.00000159

0.0000016

0.00000161

0.00000162

0.00000163

0.00000164

0.00000165

0.00000166

0.00000167

0.00000168

2.5 3.5 4.5 5.5 6.5 7.5 8.5 9.5

Voltage to Control Valve

K

Series1
Series2
Series3
Series4
Average

 
Orifice Meter 2 
 Average       

Voltage to 

Control 

Valve 2 

Liters 

Filled 

Time To 

Fill (sec) 

Fill Flow 

Rate 

(Liter/sec) 

Flow Rate 

(GPM) 

Voltage 

Recorded

ΔP in 

mm H2O K 

0 x x x x x x x 

1 x x x x x x x 

2 n/a n/a n/a n/a n/a n/a n/a 

3 8 86.43 0.0925578 1.4670593 0.971 318.8873 1.65514E-06 

4 8 46.30 0.1727768 2.7385476 1.403 1128.569 1.64233E-06 

5 8 32.54 0.2458513 3.8967916 2.007 2260.625 1.65119E-06 

6 8 25.52 0.3134489 4.9682280 2.7375 3629.775 1.66137E-06 

7 8 22.09 0.3621548 5.7402263 3.48 5021.416 1.632E-06 

8 8 20.40 0.3921569 6.2157647 4.0175 6028.833 1.61281E-06 

8.5 8 19.56 0.4089980 6.4826994 4.16382 6303.075 1.64507E-06 

               

           Avg K 1.64284E-06 
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Flow Rate vs Voltage
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K Orifice 2
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Concluding Remarks 

After analysis of the data, for orifice meter 1, the proportionality constant K is found to 

be 1.63666E-6, making the calibration curve for Orifice Meter 1, including all conversions: 

 

SQRT {(1860.2209*Voltage -1484.084253)*9.806652} * 1.63666E-6 * 15850.2 =  

Flow Rate (GPM). 

 

For Orifice Meter 2 K is found to be 1.64296E-6. The corresponding calibration curve is: 

 

SQRT {(1874.264032*x-1501.023093)*9.806652} * 1.64296E-6 * 15850.2 =  

Flow Rate (GPM) 
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APPENDIX C 

M-file of System Parameters of SP-100 Reactor 
 

% the initial values of each state variable 

clear all 

close all 

clc 

lambda=[0.0127, 0.0317, 0.115, 0.311, 1.4, 3.78]; 

beta=[0.000252,0.00147,0.001344,0.002941,0.001024,0.000237]; 

beta_tot=sum(beta); 

%% average generation time (s) 

kapa=1.55e-7; 

%% Coolant flow rate 

Wc=14.1; 

Ws=14.1; 

%% fuel doppler coefficient 

alpha = 0.24e-6; 

%% core expansion 

alpha_fuel = -3.72e-6 - 8.50e-6; 

alpha_clad = 0.12e-6; 

%% coolant expansion 

alpha_co = -3.25e-6; 

%% reactor core thermal model 

mCf = 1.465e2 * 109.0; 

hAf = 2.0e6/(1376-1288); 

mClad = 0.276 * 25.5; 

hAclad = 2.0e6/(1288-1267.1); 

CpLi = 4200.0; 

 

%% initial state values 

theta=fzero(inline('9.41E-11*x^5-3.57E-8*x^4+2.21E-6*x^3+3.72E-4*x^2-2.5E-3*x-4.0'),125); 
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dtheta = 0; 

Power=2.0000E+006; 

Cfission=[2.56044980203996   5.98380618825848   1.50806782543339   1.22026479381736   

0.09438247614957   0.00809051173591]*1.0E11; 

Tfuel0=1376.0; 

Tclad0=1288.0; 

Tcore0=1267.1; 

Thxin0=1284.; 

Thxout0=1250.2; 

Thxsout0 = 848.0; 

Thxsin0 = 828.0; 

Nhx = 12; 

Nchannel = 30; 

epsn = 0.85; 

 

Mdot_tot = Wc/Nhx; 

Sdot_tot = Ws/Nhx; 

 

%% parameter definition for thermal calculation 

 

%% channel inner and outer size (m);  

wchannel = 0.0254; 

tchannel = 0.0035; 

lchannel = 0.254; 

twall = 0.0005; 

 

%% # of segment per channel  

Nsegp = 1; 

%% # of TE couples per channel  

Nte = 480; 
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%%header size (m) 

 

Lhead = 0.8; 

Dhead_in = 0.0413; 

Dhead_end = 0.019; 

lhead = 0.2825; 

 

mdot=Mdot_tot/Nchannel; 

sdot = Sdot_tot/Nchannel; 

 

vchannel =wchannel * tchannel *lchannel; 

cp = 4200.0; 

wp = mdot; 

ws=sdot; 

Tav_ref = 1267.1 ; 

Tav_ref2 = 865.0 ; 

 

 

%%% the parameters to compute the thermal electric resistance 

%% Nb-Zr 

t1 = 0.05e-2; 

k1 = 41.9; 

%% Al203 

t2=0.0254e-2; 

k2=25.0; 

%% Tungstern 

t3 = 0.127e-2; 

k3 = 163.3; 

%  Forsterite 

t4 = 0.0025e-2; 

k4 = 8.0; 
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% Nickel 

t5 = 0.03e-2; 

k5 = 60.7; 

Ap = 0.14e-4; 

An = 0.14e-4; 

Apn = Ap+An; 

 

Tref3 = 0.5 *(828.0+841.2); 

rho=interp1([0.0 600 1600 1.0e10],[500 500 400 400],Tref3,'linear','extrap'); 

Cprad = cp*rho*vchannel; 

sbc = 5.67e-8; 

Arad = 17.8051*0.14e-4*2.0*480*1.175; 

Tatm = 250.0 ; 

 

%% Cross sections: An:Ap = 0.14cm2, 0.14 cm2 

Ap=0.14; 

An = 0.14; 

%% Length: 0.38 cm 

Length = 0.38; 

%% Compute the initial state 

 

Y0=[Thxout0,Thxsout0,Tfuel0,Tclad0,Tcore0,Thxin0,Power,Cfission,Thxsin0 ]; 

Tp = Thxout0; 

Ts = Thxsout0; 

Tpin = Thxin0; 

Tsin = Thxsin0; 

Rl=0.016; 
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APPENDIX D 

Fault Detection and Isolation (FDI) Algorithm for SP-100 System 
 

close all 

clear all 

 

load data_pca_0802 

load dat_test_0801 

n=1200; 

 

Tpout=state(1:n,7); 

Tsout=state(1:n,2); 

Tpin=state(1:n,1); 

Tsin=state(1:n,8); 

Thot=state(1:n,10); 

Tcol=state(1:n,11); 

Pt=state(1:n,3); 

Pe=state(1:n,9); 

a=0.002; 

X1=Tpout+a*randn(n,1)*mean(Tpout);  

X2=Tsout+a*randn(n,1)*mean(Tsout) ; 

X3=Tpin+a*randn(n,1)*mean(Tpin); 

X4=Tsin+a*randn(n,1)*mean(Tsin) ; 

X5=Thot+a*randn(n,1)*mean(Thot) ; 

X6=Tcol+a*randn(n,1)*mean(Tcol) ; 

X7=(Pt+a*randn(n,1)*mean(Pt))/1000; 

X8=Pe+a*randn(n,1)*mean(Pe); 

 

dat=[X1,X2,X3,X4,X5,X6,X7,X8]; 
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Tpout_test=dat_test(:,1); 

Tsout_test=dat_test(:,2); 

Tpin_test=dat_test(:,3); 

Tsin_test=dat_test(:,4); 

Thot_test=dat_test(:,5); 

Tcol_test=dat_test(:,6); 

Pt_test=dat_test(:,7); 

Pe_test=dat_test(:,8); 

 

m=length(Tpout_test); 

X1_test=Tpout_test+a*randn(m,1)*mean(Tpout);  

X2_test=Tsout_test+a*randn(m,1)*mean(Tsout) ; 

X3_test=Tpin_test+a*randn(m,1)*mean(Tpin); 

X4_test=Tsin_test+a*randn(m,1)*mean(Tsin) ; 

X5_test=Thot_test+a*randn(m,1)*mean(Thot) ; 

X6_test=Tcol_test+a*randn(m,1)*mean(Tcol) ; 

X7_test=(Pt_test+a*randn(m,1)*mean(Pt))/1000; 

X8_test=Pe_test+a*randn(m,1)*mean(Pe); 

 

test=[X1_test,X2_test,X3_test,X4_test,X5_test,X6_test,X7_test,X8_test]; 

 

[datnew,mv,std]=zscore(dat); 

[pc,score,latent,tsquare] = princomp(datnew); 

PP=pc(:,1); 

 

test_new=zscore(test,mv,std); 

for i=1:m 

test_pc(i,:)=mv+std.*(test_new(i,:)*PP*PP'); 

error(i,:)=datnew(i,:)*(eye(8,8)-PP*PP'); 

end 
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% Q statistics 

[q]=qstat(datnew,pc,1); 

[qa]=qlim(datnew,1); 

 

% b==drift magnitude 

b=0.005  ;  

 

% fault position: coolant Temperature outlet Primary loop 

 

fault1=X1_test(end)+b*mv(1); 

dat_f1=[fault1,test(end,2:8)]; 

[dat_f1_new,mean1,std1]=zscore(dat_f1,mv,std); 

[q1]=qstat(dat_f1_new,pc,1); 

 

 

err1=dat_f1_new*(eye(8,8)-PP*PP'); 

[FF1,E1]=eig(err1'*err1); 

F1=FF1(:,8); 

 

% fault position: coolant Temperature inlet Primary loop 

 

fault2=X2_test(end)+b*mv(2); 

dat_f2=[test(end,1),fault2,test(end,3:8)]; 

dat_f2_new=zscore(dat_f2,mv,std); 

 

err2=dat_f2_new*(eye(8,8)-PP*PP'); 

[FF2,E2]=eig(err2'*err2); 

F2=FF2(:,8);    

 

% fault position: coolant temperature outlet secondary loop 
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fault3=X3_test(end)+b*mv(3); 

dat_f3=[test(end,1:2),fault3,test(end,4:8)]; 

dat_f3_new=zscore(dat_f3,mv,std); 

 

err3=dat_f3_new*(eye(8,8)-PP*PP'); 

[FF3,E3]=eig(err3'*err3); 

F3=FF3(:,8);    

 

% fault position: coolant temperature inlet secondary loop 

fault4=X4_test(end)+b*mv(4); 

dat_f4=[test(end,1:3),fault4,test(end,5:8)]; 

dat_f4_new=zscore(dat_f4,mv,std); 

 

err4=dat_f4_new*(eye(8,8)-PP*PP'); 

[FF4,E4]=eig(err4'*err4); 

F4=FF4(:,8);  

 

% fault position: hot leg temperature 

fault5=X5_test(end)+b*mv(5); 

dat_f5=[test(end,1:4),fault5,test(end,6:8)]; 

dat_f5_new=zscore(dat_f5,mv,std); 

 

err5=dat_f5_new*(eye(8,8)-PP*PP'); 

[FF5,E5]=eig(err5'*err5); 

F5=FF5(:,8);  

 

% fault position: cold leg temperature 

fault6=X6_test(end)+b*mv(6); 

dat_f6=[test(end,1:5),fault6,test(end,7:8)]; 

dat_f6_new=zscore(dat_f6,mv,std); 
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err6=dat_f6_new*(eye(8,8)-PP*PP'); 

[FF6,E6]=eig(err6'*err6); 

F6=FF6(:,8);  

 

% fault position: reactor thermal power 

fault7=X7_test(end)+b*mv(7); 

dat_f7=[test(end,1:6),fault7,test(end,8)]; 

dat_f7_new=zscore(dat_f7,mv,std); 

 

err7=dat_f7_new*(eye(8,8)-PP*PP'); 

[FF7,E7]=eig(err7'*err7); 

F7=FF7(:,8);  

 

% fault position: electric power 

fault8=X8_test(end)+b*mv(8); 

dat_f8=[test(end,1:7),fault8]; 

dat_f8_new=zscore(dat_f8,mv,std); 

 

err8=dat_f8_new*(eye(8,8)-PP*PP'); 

[FF8,E8]=eig(err8'*err8); 

F8=FF8(:,8);  

F=[F1,F2,F3,F4,F5,F6,F7,F8]; 

 

 

for i=1:8 

     

    Q1(i)=err1*(eye(8,8)-F(:,i)*F(:,i)')^2*err1'; 

    QQ1=err1*err1'; 

    Q2(i)=err2*(eye(8,8)-F(:,i)*F(:,i)')^2*err2'; 

    QQ2=err2*err2'; 

     Q3(i)=err3*(eye(8,8)-F(:,i)*F(:,i)')^2*err3'; 
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    QQ3=err3*err3'; 

    Q4(i)=err4*(eye(8,8)-F(:,i)*F(:,i)')^2*err4'; 

    QQ4=err4*err4'; 

     Q5(i)=err5*(eye(8,8)-F(:,i)*F(:,i)')^2*err5'; 

    QQ5=err5*err5'; 

    Q6(i)=err6*(eye(8,8)-F(:,i)*F(:,i)')^2*err6'; 

    QQ6=err6*err6'; 

     Q7(i)=err7*(eye(8,8)-F(:,i)*F(:,i)')^2*err7'; 

    QQ7=err7*err7'; 

    Q8(i)=err8*(eye(8,8)-F(:,i)*F(:,i)')^2*err8'; 

    QQ8=err8*err8'; 

     

   

end 

FI1=ones(1,8)-Q1/QQ1; 

FI2=ones(1,8)-Q2/QQ2; 

FI3=ones(1,8)-Q3/QQ3; 

FI4=ones(1,8)-Q4/QQ4; 

FI5=ones(1,8)-Q5/QQ5; 

FI6=ones(1,8)-Q6/QQ6; 

FI7=ones(1,8)-Q7/QQ7; 

FI8=ones(1,8)-Q8/QQ8; 

FI=[FI1',FI2',FI3',FI4',FI5',FI6',FI7',FI8']; 

bar(FI) 

title('Fault Isolation Index'); 

xlabel('Fault Direction #'); 

ylabel('FI') 

legend('1','2','3','4','5','6','7','8') 

 


