1,212 research outputs found

    Feedback learning particle swarm optimization

    Get PDF
    This is the author’s version of a work that was accepted for publication in Applied Soft Computing. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published and is available at the link below - Copyright @ Elsevier 2011In this paper, a feedback learning particle swarm optimization algorithm with quadratic inertia weight (FLPSO-QIW) is developed to solve optimization problems. The proposed FLPSO-QIW consists of four steps. Firstly, the inertia weight is calculated by a designed quadratic function instead of conventional linearly decreasing function. Secondly, acceleration coefficients are determined not only by the generation number but also by the search environment described by each particle’s history best fitness information. Thirdly, the feedback fitness information of each particle is used to automatically design the learning probabilities. Fourthly, an elite stochastic learning (ELS) method is used to refine the solution. The FLPSO-QIW has been comprehensively evaluated on 18 unimodal, multimodal and composite benchmark functions with or without rotation. Compared with various state-of-the-art PSO algorithms, the performance of FLPSO-QIW is promising and competitive. The effects of parameter adaptation, parameter sensitivity and proposed mechanism are discussed in detail.This research was partially supported by the National Natural Science Foundation of PR China (Grant No 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No 200802550007), the Key Creative Project of Shanghai Education Community (Grant No 09ZZ66), the Key Foundation Project of Shanghai(Grant No 09JC1400700), the International Science and Technology Cooperation Project of China under Grant 2009DFA32050, and the Alexander von Humboldt Foundation of Germany

    Controller design for synchronization of an array of delayed neural networks using a controllable

    Get PDF
    This is the post-print version of the Article - Copyright @ 2011 ElsevierIn this paper, a controllable probabilistic particle swarm optimization (CPPSO) algorithm is introduced based on Bernoulli stochastic variables and a competitive penalized method. The CPPSO algorithm is proposed to solve optimization problems and is then applied to design the memoryless feedback controller, which is used in the synchronization of an array of delayed neural networks (DNNs). The learning strategies occur in a random way governed by Bernoulli stochastic variables. The expectations of Bernoulli stochastic variables are automatically updated by the search environment. The proposed method not only keeps the diversity of the swarm, but also maintains the rapid convergence of the CPPSO algorithm according to the competitive penalized mechanism. In addition, the convergence rate is improved because the inertia weight of each particle is automatically computed according to the feedback of fitness value. The efficiency of the proposed CPPSO algorithm is demonstrated by comparing it with some well-known PSO algorithms on benchmark test functions with and without rotations. In the end, the proposed CPPSO algorithm is used to design the controller for the synchronization of an array of continuous-time delayed neural networks.This research was partially supported by the National Natural Science Foundation of PR China (Grant No 60874113), the Research Fund for the Doctoral Program of Higher Education (Grant No 200802550007), the Key Creative Project of Shanghai Education Community (Grant No 09ZZ66), the Key Foundation Project of Shanghai(Grant No 09JC1400700), the Engineering and Physical Sciences Research Council EPSRC of the U.K. under Grant No. GR/S27658/01, an International Joint Project sponsored by the Royal Society of the U.K., and the Alexander von Humboldt Foundation of Germany

    Dual sub-swarm interaction QPSO algorithm based on different correlation coefficients

    Get PDF
    A novel quantum-behaved particle swarm optimization (QPSO) algorithm, the dual sub-swarm interaction QPSO algorithm based on different correlation coefficients (DCC-QPSO), is proposed by constructing master-slave sub-swarms with different potential well centres. In the novel algorithm, the master sub-swarm and the slave sub-swarm have different functinons during the evolutionary process through separate information processing strategies. The master subswarm is conducive to maintaining population diversity and enhancing the global search ability of particles. The slave sub-swarm accelerates the convergence rate and strengthens the particles’ local searching ability. With the critical information contained in the search space and results of the basic QPSO algorithm, this new algorithm avoids the rapid disappearance of swarm diversity and enhances searching ability through collaboration between sub-swarms. Experimental results on six test functions show that DCC-QPSO outperforms the traditional QPSO algorithm regarding optimization of multimodal functions, with enhancement in both convergence speed and precision

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Adaptive particle swarm optimization

    Get PDF
    An adaptive particle swarm optimization (APSO) that features better search efficiency than classical particle swarm optimization (PSO) is presented. More importantly, it can perform a global search over the entire search space with faster convergence speed. The APSO consists of two main steps. First, by evaluating the population distribution and particle fitness, a real-time evolutionary state estimation procedure is performed to identify one of the following four defined evolutionary states, including exploration, exploitation, convergence, and jumping out in each generation. It enables the automatic control of inertia weight, acceleration coefficients, and other algorithmic parameters at run time to improve the search efficiency and convergence speed. Then, an elitist learning strategy is performed when the evolutionary state is classified as convergence state. The strategy will act on the globally best particle to jump out of the likely local optima. The APSO has comprehensively been evaluated on 12 unimodal and multimodal benchmark functions. The effects of parameter adaptation and elitist learning will be studied. Results show that APSO substantially enhances the performance of the PSO paradigm in terms of convergence speed, global optimality, solution accuracy, and algorithm reliability. As APSO introduces two new parameters to the PSO paradigm only, it does not introduce an additional design or implementation complexity
    corecore