19 research outputs found

    Evolutionary n-level hypergraph partitioning with adaptive coarsening

    Get PDF
    Hypergraph partitioning is an NP-hard problem that occurs in many computer science applications where it is necessary to reduce large problems into a number of smaller, computationally tractable sub-problems. Current techniques use a multilevel approach wherein an initial partitioning is performed after compressing the hypergraph to a predetermined level. This level is typically chosen to produce very coarse hypergraphs in which heuristic algorithms are fast and effective. This article presents a novel memetic algorithm which remains effective on larger initial hypergraphs. This enables the exploitation of information that can be lost during coarsening and results in improved final solution quality. We use this algorithm to present an empirical analysis of the space of possible initial hypergraphs in terms of its searchability at different levels of coarsening. We find that the best results arise at coarsening levels unique to each hypergraph. Based on this, we introduce an adaptive scheme that stops coarsening when the rate of information loss in a hypergraph becomes non-linear and show that this produces further improvements. The results show that we have identified a valuable role for evolutionary algorithms within the current state-of-the-art hypergraph partitioning framework

    Hierarchical Clustering Using the Arithmetic-Harmonic Cut: Complexity and Experiments

    Get PDF
    Clustering, particularly hierarchical clustering, is an important method for understanding and analysing data across a wide variety of knowledge domains with notable utility in systems where the data can be classified in an evolutionary context. This paper introduces a new hierarchical clustering problem defined by a novel objective function we call the arithmetic-harmonic cut. We show that the problem of finding such a cut is -hard and -hard but is fixed-parameter tractable, which indicates that although the problem is unlikely to have a polynomial time algorithm (even for approximation), exact parameterized and local search based techniques may produce workable algorithms. To this end, we implement a memetic algorithm for the problem and demonstrate the effectiveness of the arithmetic-harmonic cut on a number of datasets including a cancer type dataset and a corona virus dataset. We show favorable performance compared to currently used hierarchical clustering techniques such as -Means, Graclus and Normalized-Cut. The arithmetic-harmonic cut metric overcoming difficulties other hierarchal methods have in representing both intercluster differences and intracluster similarities

    A tutorial for competent memetic algorithms: Model, taxonomy and design issues

    Get PDF
    The combination of evolutionary algorithms with local search was named "memetic algorithms" (MAs) (Moscato, 1989). These methods are inspired by models of natural systems that combine the evolutionary adaptation of a population with individual learning within the lifetimes of its members. Additionally, MAs are inspired by Richard Dawkin's concept of a meme, which represents a unit of cultural evolution that can exhibit local refinement (Dawkins, 1976). In the case of MA's, "memes" refer to the strategies (e.g., local refinement, perturbation, or constructive methods, etc.) that are employed to improve individuals. In this paper, we review some works on the application of MAs to well-known combinatorial optimization problems, and place them in a framework defined by a general syntactic model. This model provides us with a classification scheme based on a computable index D, which facilitates algorithmic comparisons and suggests areas for future research. Also, by having an abstract model for this class of metaheuristics, it is possible to explore their design space and better understand their behavior from a theoretical standpoint. We illustrate the theoretical and practical relevance of this model and taxonomy for MAs in the context of a discussion of important design issues that must be addressed to produce effective and efficient MAs

    Algorithms for CAD Tools VLSI Design

    Get PDF

    Elementary landscape decomposition of the 0-1 unconstrained quadratic optimization

    Get PDF
    Journal of Heuristics, 19(4), pp.711-728Landscapes’ theory provides a formal framework in which combinatorial optimization problems can be theoretically characterized as a sum of an especial kind of landscape called elementary landscape. The elementary landscape decomposition of a combinatorial optimization problem is a useful tool for understanding the problem. Such decomposition provides an additional knowledge on the problem that can be exploited to explain the behavior of some existing algorithms when they are applied to the problem or to create new search methods for the problem. In this paper we analyze the 0-1 Unconstrained Quadratic Optimization from the point of view of landscapes’ theory. We prove that the problem can be written as the sum of two elementary components and we give the exact expressions for these components. We use the landscape decomposition to compute autocorrelation measures of the problem, and show some practical applications of the decomposition.Spanish Ministry of Sci- ence and Innovation and FEDER under contract TIN2008-06491-C04-01 (the M∗ project). Andalusian Government under contract P07-TIC-03044 (DIRICOM project)
    corecore