1,491 research outputs found

    Constraining High Redshift X-ray Sources with Next Generation 21 cm Power Spectrum Measurements

    Get PDF
    We use the Fisher matrix formalism and semi-numerical simulations to derive quantitative predictions of the constraints that power spectrum measurements on next-generation interferometers, such as the Hydrogen Epoch of Reionization Array (HERA) and the Square Kilometre Array (SKA), will place on the characteristics of the X-ray sources that heated the high redshift intergalactic medium. Incorporating observations between z=5z=5 and z=25z=25, we find that the proposed 331 element HERA and SKA phase 1 will be capable of placing 10%\lesssim 10\% constraints on the spectral properties of these first X-ray sources, even if one is unable to perform measurements within the foreground contaminated "wedge" or the FM band. When accounting for the enhancement in power spectrum amplitude from spin temperature fluctuations, we find that the observable signatures of reionization extend well beyond the peak in the power spectrum usually associated with it. We also find that lower redshift degeneracies between the signatures of heating and reionization physics lead to errors on reionization parameters that are significantly greater than previously predicted. Observations over the heating epoch are able to break these degeneracies and improve our constraints considerably. For these two reasons, 21\,cm observations during the heating epoch significantly enhance our understanding of reionization as well.Comment: 15 pages, 10 figures, Accepted to MNRA

    Cosmology with anisotropic galaxy clustering from the combination of power spectrum and bispectrum

    Get PDF
    The apparent anisotropies of the galaxy clustering in observable redshift space provide a unique opportunity to simultaneously probe cosmic expansion and gravity on cosmological scales via the Alcock--Paczynski effect and redshift-space distortions. While the improved theoretical models have been proposed and developed to describe the apparent anisotropic clustering at weakly non-linear scales, the applicability of these models is still limited in the presence of the non--perturbative smearing effect caused by the randomness of the relative velocities. Although the cosmological constraint from the anisotropic clustering will be certainly improved with a more elaborate theoretical model, we here consider an alternative way by using the statistical power of both the power spectrum and bispectrum at large scales. Based on the Fisher matrix analysis, we estimate the benefit of combining the power spectra and bispectra, finding that the constraints on the cosmic expansion and growth of structure will be improved by a factor of two. This compensates for the loss of constraining power using the power spectrum alone due to the randomness of the relative velocities.Comment: 11 pages, 8 figures, preprint number YITP-15-

    Properties and use of CMB power spectrum likelihoods

    Full text link
    Fast robust methods for calculating likelihoods from CMB observations on small scales generally rely on approximations based on a set of power spectrum estimators and their covariances. We investigate the optimality of these approximation, how accurate the covariance needs to be, and how to estimate the covariance from simulations. For a simple case with azimuthal symmetry we compare optimality of hybrid pseudo-C_l CMB power spectrum estimators with the exact result, indicating that the loss of information is not negligible, but neither is it enough to have a large effect on standard parameter constraints. We then discuss the number of samples required to estimate the covariance from simulations, with and without a good analytic approximation, and assess the use of shrinkage estimators. Finally we discuss how to combine an approximate high-ell likelihood with a more exact low-ell harmonic-space likelihood as a practical method for accurate likelihood calculation on all scales.Comment: 15 pages, 11 figures; updated to match version accepted by PR

    PAPER-64 CONSTRAINTS ON REIONIZATION: THE 21 cm POWER SPECTRUM AT z = 8.4

    Get PDF
    In this paper, we report new limits on 21 cm emission from cosmic reionization based on a 135 day observing campaign with a 64-element deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. This work extends the work presented in Parsons et al. with more collecting area, a longer observing period, improved redundancy-based calibration, improved fringe-rate filtering, and updated power-spectral analysis using optimal quadratic estimators. The result is a new 2σ upper limit on Δ[superscript 2](k) of (22.4 mK)[superscript 2] in the range 0.15 < k < 0.5h Mpc[superscript -1] at z = 8.4. This represents a three-fold improvement over the previous best upper limit. As we discuss in more depth in a forthcoming paper, this upper limit supports and extends previous evidence against extremely cold reionization scenarios. We conclude with a discussion of implications for future 21 cm reionization experiments, including the newly funded Hydrogen Epoch of Reionization Array

    How Sound Are Our Ultralight Axion Approximations?

    Get PDF
    Ultralight axions (ULAs) are a promising dark-matter candidate. ULAs may have implications for small-scale challenges to the ΛCDM model and arise in string scenarios. ULAs are already constrained by cosmic microwave background (CMB) experiments and large-scale structure surveys, and will be probed with much greater sensitivity by future efforts. It is challenging to compute observables in ULA scenarios with sufficient speed and accuracy for cosmological data analysis because the ULA field oscillates rapidly. In past work, an effective fluid approximation has been used to make these computations feasible. Here this approximation is tested against an exact solution of the ULA equations, comparing the induced error of CMB observables with the sensitivity of current and future experiments. In the most constrained mass range for a ULA dark-matter component (10−27  eV≤max≤10−25  eV), the induced bias on the allowed ULA fraction of dark matter from Planck data is less than 1σ. In the cosmic-variance limit (including temperature and polarization data), the bias is ≲2σ for primary CMB anisotropies, with more severe biases (as high as ∼4σ) resulting for less reliable versions of the effective fluid approximation. If all of the standard cosmological parameters are fixed by other measurements, the expected bias rises to 4−20σ (well beyond the validity of the Fisher approximation), though the required level of degeneracy breaking will not be achieved by any planned surveys
    corecore