13 research outputs found

    Complex Networks

    Full text link
    Introduction to the Special Issue on Complex Networks, Artificial Life journal.Comment: 7 pages, in pres

    A characterization of the Edge of Criticality in Binary Echo State Networks

    Full text link
    Echo State Networks (ESNs) are simplified recurrent neural network models composed of a reservoir and a linear, trainable readout layer. The reservoir is tunable by some hyper-parameters that control the network behaviour. ESNs are known to be effective in solving tasks when configured on a region in (hyper-)parameter space called \emph{Edge of Criticality} (EoC), where the system is maximally sensitive to perturbations hence affecting its behaviour. In this paper, we propose binary ESNs, which are architecturally equivalent to standard ESNs but consider binary activation functions and binary recurrent weights. For these networks, we derive a closed-form expression for the EoC in the autonomous case and perform simulations in order to assess their behavior in the case of noisy neurons and in the presence of a signal. We propose a theoretical explanation for the fact that the variance of the input plays a major role in characterizing the EoC

    Dynamic Adaptive Computation: Tuning network states to task requirements

    Get PDF
    Neural circuits are able to perform computations under very diverse conditions and requirements. The required computations impose clear constraints on their fine-tuning: a rapid and maximally informative response to stimuli in general requires decorrelated baseline neural activity. Such network dynamics is known as asynchronous-irregular. In contrast, spatio-temporal integration of information requires maintenance and transfer of stimulus information over extended time periods. This can be realized at criticality, a phase transition where correlations, sensitivity and integration time diverge. Being able to flexibly switch, or even combine the above properties in a task-dependent manner would present a clear functional advantage. We propose that cortex operates in a "reverberating regime" because it is particularly favorable for ready adaptation of computational properties to context and task. This reverberating regime enables cortical networks to interpolate between the asynchronous-irregular and the critical state by small changes in effective synaptic strength or excitation-inhibition ratio. These changes directly adapt computational properties, including sensitivity, amplification, integration time and correlation length within the local network. We review recent converging evidence that cortex in vivo operates in the reverberating regime, and that various cortical areas have adapted their integration times to processing requirements. In addition, we propose that neuromodulation enables a fine-tuning of the network, so that local circuits can either decorrelate or integrate, and quench or maintain their input depending on task. We argue that this task-dependent tuning, which we call "dynamic adaptive computation", presents a central organization principle of cortical networks and discuss first experimental evidence.Comment: 6 pages + references, 2 figure

    Complexity and Information: Measuring Emergence, Self-organization, and Homeostasis at Multiple Scales

    Full text link
    Concepts used in the scientific study of complex systems have become so widespread that their use and abuse has led to ambiguity and confusion in their meaning. In this paper we use information theory to provide abstract and concise measures of complexity, emergence, self-organization, and homeostasis. The purpose is to clarify the meaning of these concepts with the aid of the proposed formal measures. In a simplified version of the measures (focusing on the information produced by a system), emergence becomes the opposite of self-organization, while complexity represents their balance. Homeostasis can be seen as a measure of the stability of the system. We use computational experiments on random Boolean networks and elementary cellular automata to illustrate our measures at multiple scales.Comment: 42 pages, 11 figures, 2 table

    Multiplex visibility graphs to investigate recurrent neural network dynamics

    Get PDF
    Source at https://doi.org/10.1038/srep44037 .A recurrent neural network (RNN) is a universal approximator of dynamical systems, whose performance often depends on sensitive hyperparameters. Tuning them properly may be difficult and, typically, based on a trial-and-error approach. In this work, we adopt a graph-based framework to interpret and characterize internal dynamics of a class of RNNs called echo state networks (ESNs). We design principled unsupervised methods to derive hyperparameters configurations yielding maximal ESN performance, expressed in terms of prediction error and memory capacity. In particular, we propose to model time series generated by each neuron activations with a horizontal visibility graph, whose topological properties have been shown to be related to the underlying system dynamics. Successively, horizontal visibility graphs associated with all neurons become layers of a larger structure called a multiplex. We show that topological properties of such a multiplex reflect important features of ESN dynamics that can be used to guide the tuning of its hyperparamers. Results obtained on several benchmarks and a real-world dataset of telephone call data records show the effectiveness of the proposed methods

    Bits from Biology for Computational Intelligence

    Get PDF
    Computational intelligence is broadly defined as biologically-inspired computing. Usually, inspiration is drawn from neural systems. This article shows how to analyze neural systems using information theory to obtain constraints that help identify the algorithms run by such systems and the information they represent. Algorithms and representations identified information-theoretically may then guide the design of biologically inspired computing systems (BICS). The material covered includes the necessary introduction to information theory and the estimation of information theoretic quantities from neural data. We then show how to analyze the information encoded in a system about its environment, and also discuss recent methodological developments on the question of how much information each agent carries about the environment either uniquely, or redundantly or synergistically together with others. Last, we introduce the framework of local information dynamics, where information processing is decomposed into component processes of information storage, transfer, and modification -- locally in space and time. We close by discussing example applications of these measures to neural data and other complex systems
    corecore