1,029 research outputs found

    Variational Analysis in Semi-Infinite and Infinite Programming, II: Necessary Optimality Conditions

    Get PDF
    This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to problems of semi-infinite and infinite programming with feasible solution sets defined by parameterized systems of infinitely many linear inequalities of the type intensively studied in the preceding development [5] from our viewpoint of robust Lipschitzian stability. We present meaningful interpretations and practical examples of such models. The main results establish necessary optimality conditions for a broad class of semi-infinite and infinite programs, where objectives are generally described by nonsmooth and nonconvex functions on Banach spaces and where infinite constraint inequality systems are indexed by arbitrary sets. The results obtained are new in both smooth and nonsmooth settings of semi-infinite and infinite programming

    Variational Analysis in Semi-Infinite and Infinite Programming, II: Necessary Optimality Conditions

    Get PDF
    This paper concerns applications of advanced techniques of variational analysis and generalized differentiation to problems of semi-infinite and infinite programming with feasible solution sets defined by parameterized systems of infinitely many linear inequalities of the type intensively studied in the preceding development [Cánovas et al., SIAM J. Optim., 20 (2009), pp. 1504–1526] from the viewpoint of robust Lipschitzian stability. The main results establish necessary optimality conditions for broad classes of semi-infinite and infinite programs, where objectives are generally described by nonsmooth and nonconvex functions on Banach spaces and where infinite constraint inequality systems are indexed by arbitrary sets. The results obtained are new in both smooth and nonsmooth settings of semi-infinite and infinite programming. We illustrate our model and results by considering a practically meaningful model of water resource optimization via systems of reservoirs.This research was partially supported by grants MTM2008-06695-C03 (01-02) from MICINN (Spain), ACOMP/2009/047&133, and ACOMP/2010/269 from Generatitat Valenciana (Spain)

    Constraint Qualifications and Optimality Conditions for Nonconvex Semi-Infinite and Infinite Programs

    Get PDF
    The paper concerns the study of new classes of nonlinear and nonconvex optimization problems of the so-called infinite programming that are generally defined on infinite-dimensional spaces of decision variables and contain infinitely many of equality and inequality constraints with arbitrary (may not be compact) index sets. These problems reduce to semi-infinite programs in the case of finite-dimensional spaces of decision variables. We extend the classical Mangasarian-Fromovitz and Farkas-Minkowski constraint qualifications to such infinite and semi-infinite programs. The new qualification conditions are used for efficient computing the appropriate normal cones to sets of feasible solutions for these programs by employing advanced tools of variational analysis and generalized differentiation. In the further development we derive first-order necessary optimality conditions for infinite and semi-infinite programs, which are new in both finite-dimensional and infinite-dimensional settings.Comment: 28 page

    Variational Analysis in Nonsmooth Optimization and Discrete Optimal Control

    Get PDF
    The paper is devoted to applications of modern methods of variational· analysis to constrained optimization and control problems generally formulated in infinite-dimensional spaces. The main attention is paid to the study of problems with nonsmooth structures, which require the usage of advanced tools of generalized differentiation. In this way we derive new necessary optimality conditions in optimization problems with functional and. operator constraints and then apply them to optimal control problems governed by discrete-time inclusions in infinite dimensions. The principal difference between finite-dimensional and infinite-dimensional frameworks of optimization and control consists of the lack of compactness in infinite dimensions, which leads to imposing certain normal compactness properties and developing their comprehensive calculus, together with appropriate calculus rules of generalized differentiation. On the other hand, one of the most important achievements of the paper consists of relaxing the latter assumptions for certain classes of optimization and control problems. In particular, we fully avoid the requirements of this type imposed on target endpoint sets in infinite-dimensional optimal control for discrete-time inclusions
    corecore