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Abstract. This paper concerns applications of advanced techniques of variational analysis and
generalized differentiation to problems of semi-infinite and infinite programming with feasible solution
sets defined by parameterized systems of infinitely many linear inequalities of the type intensively
studied in the preceding development [Cánovas et al., SIAM J. Optim., 20 (2009), pp. 1504–1526]
from the viewpoint of robust Lipschitzian stability. The main results establish necessary optimality
conditions for broad classes of semi-infinite and infinite programs, where objectives are generally
described by nonsmooth and nonconvex functions on Banach spaces and where infinite constraint
inequality systems are indexed by arbitrary sets. The results obtained are new in both smooth and
nonsmooth settings of semi-infinite and infinite programming. We illustrate our model and results by
considering a practically meaningful model of water resource optimization via systems of reservoirs.
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1. Introduction. The paper mainly deals with optimization problems formal-
ized as

minimize ϕ(p, x) subject to x ∈ F(p),(1.1)

where ϕ : P × X → R := (−∞,∞] is an extended-real-valued cost function defined
on the product of Banach spaces and where F : P →→ X is a set-valued mapping of
feasible solutions given by

F(p) :=
{
x ∈ X

∣∣ 〈a∗t , x〉 ≤ bt + 〈c∗t , p〉, t ∈ T
}

(1.2)

with an arbitrary (possibly infinite) index set T and with fixed elements a∗t ∈ X∗,
c∗t ∈ P ∗, and bt ∈ R for all t ∈ T . Optimization problems of this type relate to
semi-infinite programming, provided that the space X is finite-dimensional, and to
infinite programming if X is infinite-dimensional; see, e.g., [1, 10].

Note that a usual framework of sensitivity (or stability) analysis for semi-infinite/
infinite programs corresponds to formalism (1.2) specified as

F(p) :=
{
x ∈ X

∣∣ 〈a∗t , x〉 ≤ bt + pt, t ∈ T
}
, p = (pt)t∈T ,(1.3)
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OPTIMALITY CONDITIONS IN INFINITE PROGRAMMING 2789

where p ∈ P is treated as a perturbation parameter. This is a particular case of (1.2)
when c∗t = δt is the classical Dirac measure at t ∈ T . A natural choice of P in the
latter case is the space l∞(T ) of all bounded functions on T with the supremum norm

‖p‖∞ := sup
t∈T

|pt| = sup
{|p(t)| ∣∣ t ∈ T

}
.

When the index set T is compact (which is not assumed in what follows) and the
perturbations p(·) are restricted to be continuous on T , the supremum above is real-
ized, and thus l∞(T ) reduces to the classical space C(T ) of continuous functions over
a compact set.

In the preceding paper [5] we developed and applied advanced tools of variational
analysis and generalized differentiation to fully characterize robust Lipschitzian stabil-
ity of the feasible solution map in (1.3) expressed entirely via its initial data. The main
goal of the present paper is to employ these and related techniques and some results
from [5] to derive verifiable necessary conditions for optimal solutions to semi-infinite
and infinite programs (1.1) with general nonsmooth and nonconvex cost functions and
with feasible solution maps given by (1.2) in the case of arbitrary Banach spaces X
and P and arbitrary index sets T . If (1.2) reduces to (1.3) in (1.1) with P = l∞(T ),
the results obtained below recover those established in our preliminary research report
[4].

Note that optimization in (1.1) is conducted with respect to both variables (p, x),
which are interconnected through the infinite inequality system (1.2). This means
in fact that we have two groups of decision variables represented by x and p. One
player specifies p and the other solves (1.1) in x subject to (1.2) with the specified p
as a parameter. The first one, having the same objective, varies his/her parameter
p to get the best outcome via the so-called optimistic approach. We could treat this
as a two-level design: optimizing the basic parameter p at the upper level, while at
the lower level the cost function is optimized with respect to x for the given p. The
reader is referred to, e.g., [15] and the bibliography therein for various tuning and
tolerancing problems of such types arising in engineering design.

Other classes of optimization models that could be described in the two-variable
form (1.1) with semi-infinite/infinite constraints of type (1.2) appear in optimal con-
trol and approximation theory; see, e.g., [1, 10, 11] for more details. There are various
interesting problems of this type arising in electricity markets, multiobjective opti-
mization, etc. In this paper we confine ourselves to presenting a valuable example
related to a practical model of of water resource optimization via systems of reservoirs
by formulating it in the two-variable form of infinite programming and illustrating the
power of our new necessary optimality conditions and the assumptions made; see sec-
tion 5 for mode details.

It is worth mentioning that the basic problem (1.1) under consideration is writ-
ten in the format of the so-called abstract mathematical programs with equilibrium
constraints (MPECs) [17, 22, 24], but the main emphasis there is the generalized
equation/variational condition (in Robinson’s sense [25]) structure of the set-valued
mapping F in (1.1) given by

F(p) :=
{
x ∈ X

∣∣ 0 ∈ f(p, x) +Q(x)
}

with a single-valued mapping f : P ×X → Y and a set-valued mapping Q : X →→ Y ,
which particularly encompasses solution maps to the classical variational inequalities
and complementarity problems when Q(x) = N(x; Ω) is the normal cone mapping to
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2790 M. CÁNOVAS, M. LÓPEZ, B. MORDUKHOVICH, J. PARRA

a convex set Ω ⊂ X . The underlying infinite inequality structure (1.2) of the mapping
F in our framework is completely different from the MPEC case. The main goal and
achievement of this paper is involving infinite inequality systems (1.2) and (1.3) into
the general optimization framework (1.1) and deriving verifiable necessary optimality
conditions for such problems entirely in terms of their initial data.

Note that the results obtained below are new not only in the general case of
nonsmooth and nonconvex cost functions ϕ(p, x) and arbitrary Banach spaces X and
P as well as arbitrary index sets T in (1.1)–(1.3), but also for conventional classes of
one-variable semi-infinite programs with compact or discretized index sets. We refer
the reader to [1, 2, 3, 6, 8, 7, 10, 11, 13, 14, 16, 29, 30] and the bibliographies therein
for a range of approaches and results concerning optimal solutions to various problems
of semi-infinite and infinite programming; see more discussions in sections 3–5.

The rest of the paper is organized as follows. Section 2 is devoted to reviewing
the basic tools of generalized differentiation widely used below for deriving the main
results of the paper given in sections 3 and 4.

In section 3 we present necessary optimality conditions in the so-called lower sub-
differential type, which are expressed via appropriate extensions of the subdifferential
of convex analysis to the general class of lower semicontinuous (l.s.c.) cost functions.
Besides well-developed calculus rules for the corresponding subdifferentials, a major
role in deriving these conditions is played by the coderivative of the feasible solution
maps under consideration, which is constructively computed in [5] entirely in terms
of the initial data. The results obtained are generally given in a verifiable qualified
asymptotic form introduced in this paper, while they are presented in an extended
Karush–Kuhn–Tucker (KKT) form under some closedness (Farkas–Minkowski-type)
constraint qualification.

Section 4 contains necessary optimality conditions for (1.1) established in a rela-
tively new for minimization upper subdifferential/superdifferential form that has never
been used before in semi-infinite/infinite programming. The upper subdifferential
optimality conditions obtained here are generally independent of the lower subdiffer-
ential ones derived in section 3. In fact, both agree for smooth (i.e., continuously
differentiable) objectives, while the upper conditions may be strictly better even in
the case of cost functions that are merely Fréchet differentiable at optimal solutions.
The main difference is as follows: the upper subdifferential conditions provide trivial
information in the case of convex cost functions and the like when the lower subd-
ifferential ones play a major role, but, on the other hand, the upper conditions give
significantly stronger results for broad classes of “upper regular” functions, e.g., for
minimization problems involving concave and semiconcave objectives; see more de-
tails and discussions in section 4. Similarly to the lower subdifferential conditions of
section 3, the upper ones take advantages of precisely computing the coderivative of
the feasible solution maps in (1.2) and (1.3) and thus express necessary optimality
conditions entirely in terms of the initial data of the basic model (1.1).

Section 5 is devoted to a practically meaningful model concerning control and
optimization of water resources via systems of reservoirs, which can be formulated
as an infinite program of the type studied in this paper. We pursue here a twofold
goal. On one hand, this is a valuable example of a two-variable infinite programming
model of a certain practical interest. On the other hand, we apply to this model the
necessary optimality conditions derived above while fully clarifying the situation when
the closedness/Farkas–Minkowski property holds—and so our necessary optimality
conditions are satisfied in the extended KKT form—and when it does not, and thus
we need to employ the general asymptotic form of the optimality conditions obtained.
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The notation of this paper is basically standard and conventional in the areas of
variational analysis and semi-infinite/infinite programming; see, e.g., [10, 21]. Unless
otherwise stated, all the spaces under consideration areBanach with the corresponding
norm ‖ · ‖. Recall that w∗ indicates the weak∗ topology of a dual space, and we use
the symbol w∗-lim for the weak∗ topological limit, which generally means the weak∗

convergence of nets denoted usually by {x∗
ν}ν∈N . In the case of sequences we use the

standard notation N := {1, 2, . . .} for the collections of all natural numbers.
Given a subset Ω ⊂ Z of a Banach space, the symbols intΩ, cl Ω, coΩ, and

coneΩ stand, respectively, for the interior, closure, convex hull, and conic convex hull
of Ω; the notation cl ∗Θ signifies the weak∗ closure of a subset Θ ⊂ Z∗ in the dual
space. Given a set-valued mapping F : Z →→ Y , we denote its domain and graph by,
respectively,

domF =
{
z ∈ Z

∣∣ F (z) 
= ∅} and gphF :=
{
(z, y) ∈ Z × Y

∣∣ y ∈ F (z)
}
.

Considering finally an arbitrary index set T , let R
T be the product space of λ =

(λt| t ∈ T ) with λt ∈ R for all t ∈ T , let R(T ) be the collection of λ ∈ R
T such that

λt 
= 0 for finitely many t ∈ T , and let R
(T )
+ be the positive cone in R

(T ) defined by

R
(T )
+ :=

{
λ ∈ R

(T )
∣∣ λt ≥ 0 for all t ∈ T

}
.(1.4)

2. Generalized differentiation. In our model (1.2) the cost function ϕ(p, x)
is generally nonsmooth and nonconvex, which surely require the usage of appropriate
tools of generalized differentiation. We also appeal to the coderivative construction
for set-valued mappings and its full computation [5] in the case of the feasible solution
maps F under consideration.

To proceed in this way, we briefly overview here some tools of generalized dif-
ferentiation needed in what follows; the reader can find more details and discussions
in [12, 21, 27, 28] and the references therein. Consider first (lower) subdifferentials,
or collections of subgradients, for extended-real-valued functions that reduce to the
classical subdifferential of convex analysis in the case of convex functions and are
conventionally employed in minimization problems with “less or equal (≤)” inequal-
ity constraints. Note that the adjective “lower” is usually taken for granted and is
dropped in subdifferential studies and applications; see, however, the discussions and
results in section 4.

Let Z be an arbitrary Banach space, let ϕ : Z → R be an extended-real-valued
function finite at the reference point z̄, and let ε ≥ 0. The ε-subdifferential of ϕ at z̄
is defined by

∂̂εϕ(z̄) :=

{
z∗ ∈ Z∗

∣∣∣ lim inf
z→z̄

ϕ(z)− ϕ(z̄)− 〈z∗, z − z̄〉
‖z − z̄‖ ≥ −ε

}
.(2.1)

For ε = 0 in (2.1), the construction ∂̂ϕ(z̄) := ∂̂0ϕ(z̄) is known as the regular (or
viscosity, or Fréchet) subdifferential of ϕ at this point. It reduces to the classical
subdifferential of convex analysis for convex functions ϕ while it may be empty in the
absence of convexity (as, e.g., for ϕ(x) = −|x| at x̄ = 0) and does not generally satisfy
required calculus rules. Employing the sequential limiting procedure

(2.2)

∂ϕ(z̄) :=
{
z∗ ∈ Z∗

∣∣∣∃ sequences (εk, zk, z
∗
k)k∈N ⊂ R+ × Z × Z∗ with z∗k ∈ ∂̂εkϕ(zk)

and εk ↓ 0, zk → z̄, ϕ(zk) → ϕ(z̄), z∗k
w∗
→ z∗ as k → ∞

}
,
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we arrive at the robust subdifferential construction known as the limiting (or basic, or
Mordukhovich) subdifferential of ϕ at z̄. Note that the limiting operation in (2.2) can
be symbolically written in the sequential form of the Painlevé–Kuratowski outer/upper
limit

∂ϕ(z̄) = Lim sup
z

ϕ→z̄
ε↓0

∂̂εϕ(z),

where the symbol z
ϕ→ z̄ signifies that z → z̄ with ϕ(z) → ϕ(z̄). If the function ϕ is

l.s.c. around z̄ and the space Z is Asplund (i.e., each of its separable subspaces has a
separable dual; see [9, 21] for more details), then we can equivalently put εk ≡ 0 in
(2.2) and get the representation

∂ϕ(z̄) = Lim sup
z

ϕ→z̄

∂̂ϕ(z).(2.3)

It turns out furthermore that, in spite of (actually due to) nonconvexity of the subgra-
dient sets ∂ϕ(x̄), the limiting subdifferential (2.3) admits full calculus in the Asplund
space setting that is mainly based on variational/extremal principles of variational
analysis; see [21] for the comprehensive study and references. On the other hand,
the enlarged subdifferential construction (2.2), having many useful properties and
applications in arbitrary Banach spaces (see, in particular, [21, Chapters 1 and 4]
and [22, Chapters 5 and 6]), may fail to satisfy important calculus rules in general
nonsmooth settings of non-Asplund spaces. This is the case of the space P = �∞(T )
naturally appeared in modeling infinite inequality constraints of type (1.3); see [5,
Proposition 2.5].

In what follows we proceed with applications of the aforementioned sequential sub-
differential constructions to deriving necessary optimality conditions for nonsmooth
problems (1.1) with general infinite inequality constraints (1.2) in the case of Asplund
spaces X and P . To cover simultaneously infinite programs with arbitrary Banach
spaces of decision variables, we employ the approximateG-subdifferential by Ioffe [12],
labeled in [12] as “the nucleus of the G-subdifferential,” which provides another (more
topologically complicated) infinite-dimensional extension of the original construction
by Mordukhovich [18] while it turns out to be the most appropriate to work in the
general Banach space settings including the underlying case of P = l∞(T ) as in (1.3).

The approximate subdifferential constructions on arbitrary Banach spaces are
defined by the following multistep procedure. Given a function ϕ : Z → R finite at z̄,
consider first its lower Dini (or Dini–Hadamard) directional derivative

d−ϕ(z̄; v) := lim inf
u→v
t↓0

ϕ(z̄ + tu)− ϕ(z̄)

t
, v ∈ Z,

and then define the Dini ε-subdifferential of ϕ at z̄ by

∂−
ε ϕ(z̄) :=

{
z∗ ∈ Z∗∣∣ 〈z∗, v〉 ≤ d−ϕ(z̄; v) + ε‖v‖ for all v ∈ Z

}
, ε ≥ 0.

As usual, put ∂−
ε ϕ(z̄) := ∅ if ϕ(z̄) = ∞. The A-subdifferential of ϕ at z̄ is defined via

topological limits involving finite-dimensional reductions of ε-subgradients by

∂Aϕ(z̄) :=
⋂
L∈L
ε>0

Lim sup
z

ϕ→z̄

∂−
ε

(
ϕ+ δ(·;L))(z),D
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where L is the collection of all finite-dimensional subspaces of Z, where δ(·;L) is
the indicator function of L, and where Lim sup stands for the topological Painlevé–
Kuratowski upper/outer limit of a mapping F : Z →→ Z∗ as z → z̄ defined by

Lim sup
z→z̄

F (z) :=
{
z∗ ∈ Z∗

∣∣∣∃ a net (zν , z
∗
ν)ν∈N ⊂ Z × Z∗ with z∗ν ∈ F (zν) and

(zν , z
∗
ν) → (z̄, z∗) in the ‖ · ‖ × w∗ topology of Z × Z∗

}
.

Then the approximate G-subdifferential of ϕ at z̄ is defined by

∂Gϕ(z̄) :=

{
z∗ ∈ X∗

∣∣∣ (z∗,−1) ∈
⋃
λ>0

λ∂Adist ((z̄, ϕ(z̄)); epiϕ)

}
,(2.4)

where epiϕ := {(z, μ) ∈ Z×R| μ ≥ ϕ(z)} and where dist(·; Ω) stands for the distance
function associated with the set in question.

We have the following relationship between the constructions (2.2) and (2.4) for
every l.s.c. function on a Banach space:

∂ϕ(z̄) ⊂ ∂Gϕ(z̄),(2.5)

where the equality holds when ϕ is locally Lipschitzian around z̄ and Z is Asplund and
weakly compactly generated; see [23, Theorem 9.2] and [21, Theorem 3.59]. Observe
that the inclusion in (2.5) may be proper for Lipschitz continuous functions on (non-
separable) Asplund spaces; see, e.g., [21, Example 3.61]. Both constructions (2.2) and
(2.4) are always smaller than the Clarke subdifferential; they may be substantially
smaller even for simple functions on R. We refer the reader to [21, subsection 3.2.3]
and [23, sections 8 and 9] for more results and discussions in this direction. Note
that both constructions (2.2) and (2.4) reduce, in any Banach space, to the classical
strict derivative in the case of smooth functions and to the classical subdifferential of
convex analysis when ϕ is convex.

We also recall the singular counterparts of (2.2) and (2.4) defined, respectively,
by

∂∞ϕ(z̄) := Lim sup
z

ϕ→z̄
ε,λ↓0

λ∂̂εϕ(z),(2.6)

∂∞
G ϕ(z̄) :=

{
z∗ ∈ X∗

∣∣∣ (z∗, 0) ∈ ⋃
λ>0

λ∂Adist ((z̄, ϕ(z̄)); epiϕ)

}
.(2.7)

As in (2.3), the singular subdifferential (2.6) can equivalently represented with ε = 0
on the right-hand side if Z is Asplund and if ϕ is l.s.c. around z̄. Similarly to (2.5),
we always have the inclusion ∂∞ϕ(z̄) ⊂ ∂∞

G ϕ(z̄), where furthermore ∂∞
G ϕ(z̄) = {0} if

ϕ is locally Lipschitzian around z̄ on an arbitrary Banach space Z.
To deal with the set-valued term F in deriving necessary optimality conditions

for infinite and semi-infinite programs (1.1), we use a generalized differential con-
structions for set-valued mappings known as coderivatives. Given a set-valued map-
ping F : Z →→ Y between Banach spaces and following the scheme of [19], define the
coderivative of F at (z̄, ȳ) ∈ gphF generated by the normal cone N to its graph as a
positively homogeneous mapping D∗F (z̄, ȳ) : Y ∗ →→ Z∗ with the values

D∗F (z̄, ȳ)(y∗) :=
{
z∗ ∈ Z∗∣∣ (z∗,−y∗) ∈ N

(
(z̄, ȳ); gphF

)}
,(2.8)
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where N(·; Ω) := ∂δ(·; Ω) is the normal cone corresponding to some subdifferential
∂ of extended-real-valued functions. In this way we get coderivatives corresponding
to the subdifferentials (2.2) and (2.4). Since both these subdifferentials reduce to
the subdifferential of convex analysis for convex functions and since they are used in
sections 3 and 4 for the convex-graph mappings F : P →→ X given by (1.2) and (1.3),
the coderivatives of these mappings are the same for (2.2) and (2.4).

3. Lower subdifferential optimality conditions. This section concerns nec-
essary optimality conditions of the lower subdifferential type in our model (1.1) con-
strained by (1.2) and (1.3). For these purposes we use the subdifferential (2.4) in the
general Banach space setting and the smaller subdifferential (2.3) in the Asplund space
framework, combining them with the precise computation of the coderivative (2.8) of
the corresponding feasible solution maps F . The general results obtained are given
in the so-called asymptotic form involving the weak∗ closure of a set constructively
built upon the initial data of the constraint systems (1.2) and (1.3). Furthermore,
they are presented in the more conventional (while new) KKT form under additional
constraint qualifications.

Following Definition 2.2 in [5] given for the case of system (1.3), we say that the
strong Slater condition (SSC) holds for system (1.2) if there is a pair (p̂, x̂) ∈ P ×X
such that

sup
t∈T

[〈a∗t , x̂〉 − 〈c∗t , p̂〉 − bt
]
< 0,(3.1)

where (p̂, x̂) is called the strong Slater point for (1.2). The reader can easily check the
fulfillment of the equivalent descriptions of the SSC in (3.1) similar to [5, Lemma 2.3].

We say also that system (1.2) has the Farkas–Minkowski property if the convex
cone

cone
{
(−c∗t , a

∗
t , bt) ∈ P ∗ ×X∗ × R

∣∣ t ∈ T },(3.2)

often called the second moment cone, is weak∗ closed in P ∗ × X∗ × R. The reader
is referred to [2, 6, 7, 10, 16, 30] for sufficient conditions ensuring the validity of this
property, its relationships with other constraint qualifications, and various applica-
tions to problems of semi-infinite and infinite programming.

Now we are ready to formulate and prove the main results of this section, which
are presented in two similar while independent theorems. The first theorem gives
necessary optimality conditions for problem (1.1) with infinite constraints (1.2) in ar-
bitrary Banach spaces X and P employing the G-subdifferential (2.4) and its singular
counterpart (2.7). The second theorem holds for Asplund spaces X and P while using
the smaller subdifferential constructions (2.3), (2.6) and thus providing more selective
necessary optimality conditions in the latter fairly general framework.

Theorem 3.1 (lower subdifferential optimality conditions for nonsmooth infinite
programs in arbitrary Banach spaces). Let (p̄, x̄) ∈ gphF be a local minimizer for
problem (1.1) with the general linear constraint system F given by infinite inequalities
(1.2). Assume that both spaces X and P are Banach and that the cost function
ϕ : P ×X → R is l.s.c. around (p̄, x̄) with ϕ(p̄, x̄) < ∞. Suppose also that

(a) either ϕ is locally Lipschitzian around (p̄, x̄);
(b) or int(gphF) 
= ∅ (which holds, in particular, when F satisfies the SSC in

(3.1) and the set {(a∗t , c∗t )| t ∈ T } is bounded in X∗ × P ∗), and the system

(3.3)
(p∗, x∗) ∈ ∂∞

G ϕ(p̄, x̄),

−(p∗, x∗, 〈(p∗, x∗), (p̄, x̄)〉) ∈ cl ∗cone
{
(−c∗t , a

∗
t , bt)
∣∣ t ∈ T

}
admits only the trivial solution (p∗, x∗) = (0, 0).
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Then there exists a G-subgradient pair (p∗, x∗) ∈ ∂Gϕ(p̄, x̄) such that

−(p∗, x∗, 〈p∗, p̄〉+ 〈x∗, x̄〉) ∈ cl ∗cone
{
(−c∗t , a

∗
t , bt)
∣∣ t ∈ T

}
.(3.4)

If furthermore the constraint system (1.2) satisfies the Farkas–Minkowski property
(3.2), then the asymptotic condition (3.4) can be equivalently written in KKT form:

there are (p∗, x∗) ∈ ∂Gϕ(p̄, x̄) and λ = (λt)t∈T ∈ R
(T )
+ for which we have

(p∗, x∗) +
∑

t∈T (p̄,x̄)

λt(−c∗t , a
∗
t ) = 0,(3.5)

where T (p̄, x̄) := {t ∈ T | 〈a∗t , x̄〉 − 〈c∗t , p̄〉 = bt} and where R
(T )
+ is defined in (1.4).

Theorem 3.2 (lower subdifferential optimality conditions for nonsmooth infinite
programs in Asplund spaces). In the framework of Theorem 3.1, suppose that the
spaces X and P are Asplund and that assumption (b) is replaced by the weaker one
on the triviality of solutions to the system

(3.6)
(p∗, x∗) ∈ ∂∞ϕ(p̄, x̄),

−(p∗, x∗, 〈(p∗, x∗), (p̄, x̄)〉) ∈ cl ∗cone
{
(−c∗t , a

∗
t , bt)
∣∣ t ∈ T

}
with the singular subdifferential of ϕ defined in (2.6). Then we have the stronger
necessary optimality conditions for the given solution (p̄, x̄) with the replacement
(p∗, x∗) ∈ ∂Gϕ(p̄, x̄) in (3.4) and (3.5) by (p∗, x∗) ∈ ∂ϕ(p̄, x̄) from the limiting sub-
differential (2.3).

We prove Theorems 3.1 and 3.2 simultaneously by using the corresponding cal-
culus rules for the subdifferentials (2.4) and (2.3) in Banach and Asplund spaces,
respectively.

Proofs of Theorems 3.1 and 3.2. The original infinite programming problem (1.1)
can be obviously rewritten as a mathematical program with geometric constraints:

minimize ϕ(p, x) subject to (p, x) ∈ gphF ,(3.7)

which is equivalently described by unconstrained minimization with “infinite penal-
ties”

minimize ϕ(p, x) + δ
(
(p, x); gphF)

via the indicator function of the graph of the feasible map F given in (1.2). Consid-
ering the general Banach space setting of Theorem 3.1 and applying the generalized
Fermat rule (see, e.g., [21, Proposition 1.14]) to the latter problem at its local mini-
mizer (p̄, x̄), we have

(0, 0) ∈ ∂G
[
ϕ+ δ(·; gphF)

]
(p̄, x̄).(3.8)

Employing further the G-subdifferential sum rule to (3.8), formulated in [12, Theo-
rem 7.4] for the “nuclei,” we obtained from (3.8) that

(0, 0) ∈ ∂Gϕ(p̄, x̄) +N
(
(p̄, x̄); gphF),(3.9)

provided that either ϕ is locally Lipschitzian around (p̄, x̄) or the interior of gphF is
nonempty and the qualification condition

∂∞
G ϕ(p̄, x̄) ∩ [−N

(
(p̄, x̄); gphF)] = {(0, 0)}(3.10)
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is satisfied. It is easy to check that the strong Slater condition (3.1) and the bound-
edness of {(a∗t , c∗t )| t ∈ T } surely imply that the interior of gphF is nonempty; cf. [5,
Remark 2.4].

Observe that by the coderivative definition (2.8) we get

(p∗, x∗) ∈ −N
(
(p̄, x̄); gphF) if and only if − p∗ ∈ D∗F(p̄, x̄)(x∗).

Following the proofs of [5, Proposition 3.1] and [5, Theorem 3.2] in the case of the
feasible map F from (1.2), we see that the previous conditions are equivalent to(− p∗,−x∗,−(〈p∗, p̄〉+ 〈x∗, x̄〉)) ∈ cl∗cone

{
(−c∗t , a

∗
t , bt)
∣∣ t ∈ T

}
.(3.11)

Note to this end that the result of [5, Theorem 3.2] characterizes the coderivative
condition p∗ ∈ D∗F(0, x̄)(x∗) for F in (1.3). However, we can easily adapt the
proof of the latter result to the current setting by replacing there p∗ with −p∗, δt
with c∗t , −〈x∗, x̄〉 with :−(〈p∗, p̄〉 + 〈x∗, x̄〉), and 〈a∗t , x̄〉 with −〈c∗t , p̄〉 + 〈a∗t , x̄〉, since
now we do not assume that p̄ = 0. Employing then the above characterization of
−N((p̄, x̄); gphF) in (3.9) and (3.10), we, respectively, arrive at the necessary op-
timality condition (3.4) under the qualification condition (3.3). If furthermore the
Farkas–Minkowski property (3.2) is satisfied, then the operation cl∗ in (3.4) can be
omitted, and the latter qualification condition easily reduces to (3.5). This completes
the proof of Theorem 3.1.

To prove now Theorem 3.2, we observe first that the assumed Asplund property
of the spaces X and P implies that their product P ×X is also Asplund; see, e.g., [9].
Proceeding further as in the above proof of Theorem 3.1, we arrive at the generalized
Fermat rule

(0, 0) ∈ ∂
[
ϕ+ δ(·; gphF)

]
(p̄, x̄)(3.12)

in terms of the limiting subdifferential (2.3) in Asplund spaces and then apply to the
sum in (3.12) the subdifferential sum rule from [21, Theorem 3.36] by taking into
account the results of [21, Proposition 1.25 and Theorem 1.26] and recalling that the
indicator function δ(·; gphF) is l.s.c. on P ×X , since the graph gphF is a closed set.
The aforementioned sum rule ensures the fulfillment of the inclusion

(0, 0) ∈ ∂ϕ(p̄, x̄) +N
(
(p̄, x̄); gphF),

provided that either ϕ is locally Lipschitzian around (p̄, x̄) or the interior of gphF is
nonempty and the qualification condition

∂∞ϕ(p̄, x̄) ∩ [−N
(
(p̄, x̄); gphF)] = {(0, 0)}

is satisfied via the singular subdifferential (2.6) of ϕ at (p̄, x̄). The rest of the proof
follows the lines in the above proof of Theorem 3.1.

Next we present several consequences of Theorems 3.1 and 3.2, which are formu-
lated as remarks. These specifications seem to be new for the classes of semi-infinite
and infinite programs under consideration.

Remark 3.3 (necessary optimality conditions for smooth infinite programs in
Banach spaces). Recall that a function ϕ : Z → R is strictly differentiable at z̄, with
its gradient at this point denoted by ∇ϕ(z̄) ∈ Z∗, if

lim
z,u→z̄

ϕ(z)− ϕ(u)− 〈∇ϕ(z̄), z − u〉
‖z − u‖ = 0,(3.13)
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which surely holds if ϕ is continuously differentiable around z̄. Assuming now that
the cost function ϕ : P ×X → R in (1.1) with constraints (1.2) is strictly differentiable
at a local minimizers (p̄, x̄) ∈ gphF , we get that assumption (a) of Theorem 3.1 is
satisfied and condition (3.4) reduces to

(3.14)
(
∇pϕ(p̄, x̄),∇xϕ(p̄, x̄), 〈∇pϕ(p̄, x̄), p̄〉+ 〈∇xϕ(p̄, x̄), x̄〉

)
∈ cl ∗cone

{
(c∗t ,−a∗t ,−bt)

∣∣∣ t ∈ T
}
.

Furthermore, the KKT condition (3.5) under the fulfillment of the Farkas–Minkowski

property is formulated in this case as follows: there are multipliers λ = (λt)t∈T ∈ R
(T )
+

with

∇pϕ(p̄, x̄) =
∑

t∈T (p̄,x̄)

λtc
∗
t , −∇xϕ(p̄, x̄) =

∑
t∈T (p̄,x̄)

λta
∗
t .(3.15)

Remark 3.4 (lower subdifferential optimality conditions for l∞-programs). In
the case of l∞-programs, i.e., problems (1.1) constrained by (1.3) with P = l∞(T ), we
specify the conditions of Theorem 3.1 by putting p̄ = 0 and c∗t = δt therein. Observe
that for system (1.3) the presence of some feasible point yields the fulfillment of the
SSC. Indeed, the inclusion (0, x̄) ∈ gphF implies that (1T , x̄) is a strong Slater point
of (1.3), where the function 1T ∈ l∞(T ) is defined by 1T (t) := 1 for all t ∈ T .

As mentioned at the beginning of this section, there are various qualification con-
ditions implying the fulfillment of the Farkas–Minkowski property for infinite inequal-
ity systems (1.2) and (1.3); see the references and discussions above. By Theorems 3.1
and 3.2, all such assumptions ensure the validity of necessary optimality conditions
of the KKT type (3.5) for the nonsmooth problems of semi-infinite and infinite pro-
gramming under consideration. The next corollary establishes one of the results of
this type for semi-infinite programs with constraints (1.2) over compact index sets.
For simplicity we present optimality conditions only for locally Lipschitzian cost func-
tions, while the reader can similarly extract from case (b) of the above theorems the
corresponding result for l.s.c. objectives.

Corollary 3.5 (necessary optimality conditions of the KKT type for nonsmooth
semi-infinite programs). Suppose that in the setting of Theorem 3.2 we have that T
is a compact Hausdorff space, X = R

n, P = R
m, and ϕ : Rm × R

n → R is locally
Lipschitzian around (p̄, x̄). Assume in addition that the mappings t ∈ T �→ a∗t ∈ R

n,
t ∈ T �→ c∗t ∈ R

m, and t ∈ T �→ bt ∈ R are continuous on T and that the SSC
(3.1) holds for (1.2). Then there are subgradients (p∗, x∗) ∈ ∂ϕ(p̄, x̄) and multipliers

λ = (λt)t∈T ∈ R
(T )
+ such that the KKT condition (3.5) is satisfied.

Proof. Employing Theorem 3.2 in this framework, it remains to check that the
Farkas–Minkowski property (3.2) holds for (1.2) under the assumptions made. Indeed,
we directly get the boundedness of the set {(c∗t , a∗t , bt)| t ∈ T } in R

m × R
n × R due

to the assumed continuity of (c∗t , a
∗
t , bt) and the compactness of T . Further, the

equivalent description of the SSC from [5, Lemma 2.3(ii)] ensures that

(0, 0, 0) /∈ co
{
(−c∗t , a

∗
t , bt)
∣∣ t ∈ T

}
,

which implies by [26, Corollary 9.6.1] that the conic hull cone {(−c∗t , a∗t , bt)| t ∈ T } is
closed in R

m × R
n × R. The latter signifies the fulfillment of the Farkas–Minkowski

property (3.2) for system (1.2) and thus completes the proof of the corollary.
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Let us finally discuss some significant features of the necessary optimality condi-
tions obtained in this section and compare them with known results in this direction.

Remark 3.6 (discussions on lower subdifferential optimality conditions). Observe
first that the general necessary optimality conditions obtained above in Theorem 3.1,
Theorem 3.2, and their consequences are given in the normal form involving nonzero
multipliers for the cost function. Regarding constraints, these conditions are generally
expressed in the asymptotic form that involves the weak∗ closure of the sets on the
right-hand sides in (3.4) and (3.14). The latter new feature partly relates to arbitrary
index sets in the semi-infinite and infinite models considered in the paper but may
also be exhibited in infinite programs on compact intervals for practically realistic
models; see section 5. Under the Farkas–Minkowski property/constraint qualification
(3.2) we get necessary optimality conditions in the nonasymptotic KKT form (3.5),
which reduce to those recently obtained in [7, 8] for one-variable convex and difference
of convex (DC) objectives in semi-infinite and infinite programs with arbitrary index
sets. Results of such a KKT type have been mainly developed for smooth and convex
semi-infinite and infinite programs with compact index sets; cf. Corollary 3.5 for a
rather broad nonsmooth extension. We refer the reader to the recent paper [30], prob-
ably the first one on nonsmooth and nonconvex semi-infinite optimization, containing
necessary optimality conditions of a Lagrangian type for nonsmooth and nonconvex
semi-infinite programs with compact index sets and C(T ) data. The necessary condi-
tions obtained in [30] are expressed in terms of Clarke’s generalized gradient, which
can be significantly larger than the subdifferentials used above.

4. Upper subdifferential optimality conditions. This section is devoted to
deriving a new type of upper subdifferential necessary optimality conditions for the
class of semi-infinite/infinite programs (1.1) with infinitely many linear inequality
constraints (1.2) and (1.3). Optimality conditions of this type were initiated in [20]
for other classes of nonsmooth minimization problems with finitely many constraints,
while in fact they have their roots in the study of maximization (versus minimization)
problems for concave functions over convex sets; see, e.g., [26].

The main difference of the results derived in this section from those in section 3
is the usage of upper subgradients (or supergradients) of minimizing cost functions
instead of the conventional use of (lower) subgradients in minimization. In this way
we obtain independent sets of necessary optimality conditions for the problems under
consideration in general Banach spaces; see Remark 4.5 for more details and discus-
sions.

To proceed, we recall the notion of the Fréchet upper subdifferential (known also
as the Fréchet or viscosity superdifferential) of ϕ : Z → R at z̄ defined by

(4.1) ∂̂+ϕ(z̄) :=

{
z∗ ∈ Z∗

∣∣∣ lim sup
z→z̄

ϕ(z)− ϕ(z̄)− 〈z∗, z − z̄〉
‖z − z̄‖ ≤ 0

}
,

which reduces to the classical gradient ∇ϕ(z̄) if ϕ is Fréchet differentiable at z̄ and to
the (upper) subdifferential of concave functions in the framework of convex analysis.

Note that we always have the relationship ∂̂+ϕ(z̄) = −∂̂(−ϕ)(z̄) between the upper
subdifferential (4.1) and its lower Fréchet counterpart defined in (2.1) with ε = 0.

We have the following upper subdifferential necessary optimality conditions for the
infinite and semi-infinite programs (1.1) with constraints (1.2) under consideration.

Theorem 4.1 (upper subdifferential optimality conditions for nonsmooth infinite
programming in Banach spaces). Let (p̄, x̄) ∈ gphF be a local minimizer for problem
(1.1) with the infinite inequality constraints (1.2) in Banach spaces X and P . Then

D
ow

nl
oa

de
d 

04
/2

7/
18

 to
 1

93
.1

45
.2

30
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMALITY CONDITIONS IN INFINITE PROGRAMMING 2799

every upper subgradient (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄) satisfies inclusion (3.4) of Theorem 3.1.
If furthermore the constraint system (1.2) has the Farkas–Minkowski property (3.2),
then the asymptotic condition (3.4) can be equivalently written in the following upper

subdifferential KKT form: for every (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄) there are multipliers λ =

(λt)t∈T ∈ R
(T )
+ such that the optimality condition (3.5) is satisfied.

Proof. Pick any (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄) and, employing [21, Theorem 1.88(i)] held
in arbitrary Banach spaces, construct a function s : P ×X → R such that

s(p̄, x̄) = ϕ(p̄, x̄), ϕ(p, x) ≤ s(p, x) for all (p, x) ∈ P ×X,(4.2)

and s(·) is Fréchet differentiable at (p̄, x̄) with the gradient∇s(p̄, x̄) = (p∗, x∗). Taking
into account that (p̄, x̄) is a local minimizer for (1.1) with constraints (1.2) and that

s(p̄, x̄) = ϕ(p̄, x̄) ≤ ϕ(p, x) ≤ s(p, x) for all (p, x) ∈ gphF near (p̄, x̄)

by (4.2), we conclude that (p̄, x̄) is a local minimizer for the auxiliary problem

minimize s(p, x) subject to (p, x) ∈ gphF(4.3)

with the objective s(·) that is Fréchet differentiable at (p̄, x̄). Rewriting (4.3) in the
infinite-penalty unconstrained form

minimize s(p, x) + δ
(
(p, x); gphF)

via the indicator function of gphF , observe directly from definition (2.1) of the Fréchet
subdifferential at a local minimizer that

(0, 0) ∈ ∂̂
[
s+ δ(·; gphF)

]
(p̄, x̄).(4.4)

Since s(·) is Fréchet differentiable at (p̄, x̄), we easily get from (4.4) that

(0, 0) ∈ ∇s(p̄, x̄) +N
(
(p̄, x̄); gphF),

which implies by ∇s(p̄, x̄) = (p∗, x∗) and the coderivative definition (2.8) that

−p∗ ∈ D∗F(p̄, x̄)(x∗).(4.5)

It follows from the proof of Theorem 3.1 that the coderivative condition (4.5) can
be constructively described via (3.11) in terms of the initial data of the problem un-
der consideration. The latter justifies (3.4) for the given upper subgradient (p∗, x∗) ∈
∂̂+ϕ(p̄, x̄). The KKT conclusion of the theorem is proved similarly to Theo-
rem 3.1.

Remark 4.2 (necessary optimality conditions for infinite programs with Fréchet
differentiable objectives). Similarly to Remark 3.3 we get specifications (3.14) and
(3.15) of the necessary optimality conditions of Theorem 4.1, provided that the cost
function ϕ is merely Fréchet differentiable at the optimal point (p̄, x̄) in the classical
case with u = z̄ = (p̄, x̄) and z = (p, x) in (3.13). This follows Theorem 4.1 due to

the fact that ∂̂+ϕ(p̄, x̄) = {∇ϕ(p̄, x̄)} when ϕ is Fréchet differentiable at (p̄, x̄).
Remark 4.3 (upper subdifferential optimality conditions for l∞-programs). Sim-

ilarly to Remark 3.4 we have the specifications of Theorem 4.1 for l∞-programs by
putting p̄ = 0 and c∗t = δt in the conditions therein.
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Based on Theorem 4.1 and proceeding similarly to the proof of Corollary 3.5, we
ensure the validity of the upper subdifferential necessary optimality conditions of the
KKT type under the following assumptions.

Corollary 4.4 (upper subdifferential optimality conditions of the KKT type
for nonsmooth semi-infinite programs). Let in the framework of Corollary 3.5 the

cost function ϕ be just finite in (p̄, x̄). Then for every (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄) there

are multipliers λ = (λt)t∈T ∈ R
(T )
+ from (1.4) such that the KKT condition (3.5) is

satisfied.
Finally, we discuss the major relationships between the lower and upper subdif-

ferential optimality conditions obtained in this paper, focusing mainly on comparison
between the corresponding conditions of Theorems 3.1, 3.2, and 4.1. Note that there
is no particular counterpart of Theorem 4.1 in the Asplund space setting.

Remark 4.5 (comparison between lower and upper subdifferential optimality con-
ditions for infinite and semi-infinite programs). We can see that the necessary opti-
mality conditions in Theorems 3.1, 3.2, and 4.1 are formulated in the similar formats
with two visible distinctions:

(i) The upper subdifferential conditions in the asymptotic form hold in Theo-
rem 4.1 with no assumptions imposed on ϕ and F , in contrast to those in Theorems 3.1
and 3.2.

(ii) The resulting inclusion (3.4) is proved to hold for every Fréchet upper sub-

gradient (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄) in Theorem 4.1 in comparison with just some (lower)
subgradients (p∗, x∗) ∈ ∂Gϕ(p̄, x̄) and (p∗, x∗) ∈ ∂ϕ(p̄, x̄) in the lower subdifferential
result of Theorems 3.1 and 3.2, respectively.

The underlying issue to draw the reader’s attention is that the Fréchet upper sub-
differential ∂̂+ϕ(p̄, x̄) may be empty in many important situations (e.g., for convex cost
functions), while the lower subdifferentials ∂Gϕ(p̄, x̄) and ∂ϕ(p̄, x̄) are surely nonempty
at least for any locally Lipschitzian functions on Banach and Asplund spaces, re-
spectively. Note that the optimality condition of Theorem 4.1 holds trivially if
∂̂+ϕ(p̄, x̄) = ∅, while even in this case it provides some easily checkable information on
optimality without taking constraints into account. Of course, a real strength of upper
subdifferential optimality conditions as in Theorem 4.1 should be exhibited for non-
smooth cost functions admitting Fréchet upper subgradients at the point in question.

There are remarkable classes of nonsmooth functions enjoying the latter prop-
erty. First we mention concave continuous functions on arbitrary Banach spaces and
also DC functions whose minimization can be reduced to minimizing concave func-
tions subject to convex constraints. Another important class of functions admitting
a nonempty set of Fréchet upper subgradients consists of the so-called semiconcave
functions, known also under various other names (e.g., upper subsmooth, paracon-
cave, approximately concave, etc.) and being particularly important for applications
to optimization, viscosity solutions of the Hamilton–Jacobi partial differential equa-
tions, optimal control, and differential games; see more discussions and references in
[22, Commentary 5.5.4, pp. 135–136].

Since the subdifferentials ∂Gϕ(p̄, x̄) and ∂ϕ(p̄, x̄) used above are smaller than the
Clarke generalized gradient ∂Cϕ(p̄, x̄) for every l.s.c. function in any Banach space,
Theorems 3.1 and 3.2 immediately imply their counterparts with some C-subgradient
(p∗, x∗) ∈ ∂Cϕ(p̄, x̄) therein. It is worth emphasizing that the latter lower subdiffer-
ential optimality condition is significantly weaker than the upper subdifferential one
in Theorem 4.1 for concave and other “upper regular” functions (see [21]) including
those mentioned above. Considering for simplicity the case of concave continuous
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functions, we have

∂̂+ϕ(z̄) = −∂̂(−ϕ)(z̄) = −∂C(−ϕ)(z̄) = ∂Cϕ(z̄) 
= ∅
due to the plus-minus symmetry of the generalized gradient for locally Lipschitzian
functions. Thus Theorem 4.1 dramatically strengthens the C-counterpart of Theo-
rems 3.1 and 3.2 in such cases justifying the necessary optimality condition held for
every (p∗, x∗) ∈ ∂Cϕ(p̄, x̄) instead of just one element from this set.

5. Applications to optimization of water resources. The concluding sec-
tion of the paper concerns a water resource model, which is of a certain practical
meaning. We formulate this problem and reduce it to a two-variable infinite program
of the type investigated in the previous sections. The cost function in this problem
may be either smooth or nonsmooth, and we study the possibility of applying to
its solution the necessary optimality conditions derived in sections 3 and 4. On one
hand, we explore the outcome of the optimality conditions obtained in the extended
KKT form under the Farkas–Minkowski property (3.2) and discuss qualitative and
quantitative consequences of these conditions for optimal strategies in our model. On
the other hand, we fully characterize the situation when the Farkas–Minkowski prop-
erty holds and show that it is not the case of the model considered on the compact
continuous-time interval/index set. In the latter case the asymptotic necessary opti-
mality conditions of Theorems 3.1 and 4.1 hold, and we discuss their impact by using
reasonable and practically realistic approximations.

The water resource problem under consideration is inspired by a continuous-
time network flow model (see [1], section 1.2.2). Consider a system of n reservoirs
R1, R2, . . . , Rn from which a time-varying water demand is required during a fixed
continuous-time period T = [t, t]. Let ci be the capacity of the reservoir Ri, and let
water flow into Ri at rate ri(t) for each i = 1, . . . , n and t ∈ T . Denote by D(t) the
rate of water demand at t, and suppose that all these nonnegative functions r1, . . . , rn
and D are piecewise continuous on the closed and bounded interval T and are known
in advance.

If there is enough water to fill all the reservoir capacity, then the rest can be sold
to a neighboring dry area, provided that the demand is satisfied. Conversely, if the
inflows are short and the reservoirs have free capability for holding additional water,
then some water can be bought from outside to meet the inner demand in the region.

Denote by xi(t) the rate at which water is fed from the reservoir Ri at time t ∈ T .
It is natural to assume in our basic model that xi ∈ C(T ) for all i = 1, . . . , n. The
feeder constraints can be expressed by

(5.1) 0 ≤ xi(t) ≤ ηi, i = 1, . . . , n,

with fixed bounds ηi ≥ 0. The selling rate of water from the reservoir Ri at time t is
given by dpi(t), which means that pi(t) is the quantity of water sold until instant t and
depending on t continuously on the the time interval T . Without loss of generality,
we assume that pi (t) = 0 for all i. Note that we are actually buying water at time
t ∈ T if the selling rate dpi(t) is negative. Denoting by si ≥ 0 the amount of water
initially stored in Ri, we formulate the storage constraints by

(5.2)

0 ≤
∫ t

t

[
ri(τ) − xi(τ)

]
dτ −

∫ t

t

dpi(τ) + si

=

∫ t

t

[
ri(τ) − xi(τ)

]
dτ − pi(t) + si

≤ ci for all t ∈ T and i = 1, . . . , n
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and finally arrive at the following problem of water resource optimization:

(5.3)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
minimize ϕ(p, x) subject to

(5.1), (5.2), and

n∑
i=1

xi(t) ≥ D(t), t ∈ T,

where the cost/objective function ϕ(p, x) is determined by the cost of water, environ-
mental requirements in the region, and the technology of reservoir processes in the
water resource problem (WR). It is clear that we should impose the relationship

D(t) ≤
n∑

i=1

ηi, t ∈ T,

in order to ensure the consistency of the constraints in (5.3).
Let us show that problem (5.3) can be reduced to the form of infinite programming

(1.1) with two groups of variables (p, x) ∈ C(T )n × C(T )n and infinitely many linear
inequality constraints (1.2). To proceed, define the following t-parametric families of
functions on T :

δt(τ) :=

{
0 if t ≤ τ < t,
1 otherwise;

αt(τ) :=

{
τ if t ≤ τ < t,
t otherwise.

Both families {δt| t ∈ T } and {αt| t ∈ T } can be seen as subsets of the dual space
C(T )∗. In fact, the Riesz representation theorem (see, e.g., [9, Proposition 2.19])
ensures that each function γ : T → R of bounded variation on T determines a linear
functional on C(T ) by

z �→ 〈γ, z〉 :=
∫ t

t

z(τ) dγ(τ), z ∈ C(T ),

via the Stieltjes integral; all elements of C(T )∗ are of this type. We can easily check
that ∫ t

t

xi(τ) dτ = 〈αt, xi〉, t ∈ T,

and observe the relationship

dαt(τ) = χ[t,t](τ) dτ, t ∈ T,

where χ[t,t] is the standard characteristic function of the interval [t, t]. Moreover, it
holds for each element z ∈ C(T ) that

〈δt, z〉 = z (t) , t ∈ T,

and thus δt can be identified in this context with the classical Dirac measure at t.
Denote further the functions

βi(t) :=

∫ t

t

ri(τ) dτ for i = 1, . . . , n, t ∈ T,
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and notice that the constraints in (5.2) can be rewritten as

(5.4)

{〈δt, pi〉+ 〈αt, xi〉 ≤ βi(t) + si,
−〈δt, pi〉 − 〈αt, xi〉 ≤ ci − si − βi(t),

while the one in (5.3) admits the form

(5.5)

n∑
i=1

〈δt, xi〉 ≥ D(t), t ∈ T.

Observing finally that the constraints in (5.1) can be equivalently written as

0 ≤ 〈δt, xi〉 ≤ ηi, i = 1, . . . , n, t ∈ T,(5.6)

we arrive at the desired reduction result.
Proposition 5.1 (water resource problem as infinite programming). The prob-

lem of water resource optimization (5.3) is equivalent to the following two-variable
infinite program of type (1.1), (1.2) in the space C(T )× C(T ):

(5.7)

{
minimize ϕ(p, x) subject to
(5.4), (5.5), and (5.6)

with the given data δt, αt, βt,ci, si, ηi, and D defined above.
Next we examine the possibility of applying necessary optimality conditions ob-

tained in sections 3 and 4 to the case of the water resource model (5.7). Since the
space C(T ) for both variables x and p in our model is not Asplund, we consider appli-
cations of Theorems 3.1 and 4.1 to infinite program (5.7). For simplicity of notation,
suppose in what follows that n = 1 in our model and write (p, x, β, c, s, η) instead of
(p1, x1, β1, c1, s1, η1).

Involving the initial data of problem (5.7), construct the conic hull in the dual
space C(T )∗ × C(T )∗ × R by

(5.8) K(T ) := cone

⎧⎨⎩
[(
δt, αt, β(t) + s

)
,
(− δt,−αt, c− s− β(t)

)
,(

0,−δt,−D(t)
)
,
(
0, δt, η

)
over all t ∈ T

] ⎫⎬⎭ ,

which is a specification of the general second moment cone (3.2) for our problem
(5.7). It is convenient for us to indicate the explicit dependence of the cone (5.8) on
the time/index interval T . Given a solution pair (p̄, x̄), define the set of active indices
corresponding to all four inequality constraints in (5.7):

T1(p̄, x̄) :=
{
t ∈ T

∣∣ 〈δt, p̄〉+ 〈αt, x̄〉 = β(t) + s
}
,(5.9)

T2(p̄, x̄) :=
{
t ∈ T

∣∣ − 〈δt, p̄〉 − 〈αt, x〉 = c− s− β(t)
}
,(5.10)

T3(p̄, x̄) :=
{
t ∈ T

∣∣ − 〈δt, x〉 = −D(t)
}
,(5.11)

T4(p̄, x̄) :=
{
t ∈ T

∣∣ 〈δt, x̄〉 = η
}
.(5.12)

Now we are ready to formulate the main results for problem (5.7), which are
consequences of Theorems 3.1 and 4.1. Regarding applications of Theorem 3.1, we
confine ourselves for simplicity to the case (a) therein.

Proposition 5.2 (necessary optimality conditions for water resource optimiza-
tion). Let (p̄, x̄) be a local optimal solution to problem (5.7) with some cost function
ϕ : C(T )× C(T ) → R and be ϕ finite at (p̄, x̄). The following assertions hold:
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(i) Every upper subgradient (p∗, x∗) ∈ ∂̂+ϕ(p̄, x̄) satisfies the inclusion

(5.13) −(p∗, x∗, 〈p∗, p̄〉+ 〈x∗, x̄〉) ∈ cl ∗K(T ),

where the cone K(T ) is defined in (5.8). If furthermore ϕ is locally Lipschitzian
around (p̄, x̄), then there is a G-subgradient (p∗, x∗) ∈ ∂Gϕ(p̄, x̄) satisfying (5.13).

(ii) Assume that the cone K(T ) in (5.8) is weak∗ closed. Then for every (p∗, x∗) ∈
∂̂+ϕ(p̄, x̄) there are generalized multipliers λ = (λt)t∈T , μ = (μt)t∈T , γ = (γt)t∈T ,

and ρ = (ρt)t∈T ∈ R
(T )
+ satisfying the condition

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
− (p∗, x∗) =

∑
t∈T1(p̄,x̄)

λt (δt, αt) +
∑

t∈T2(p̄,x̄)

μt (−δt,−αt)

+
∑

t∈T3(p̄,x̄)

γt (0,−δt) +
∑

t∈T4(p̄,x̄)

ρt (0, δt) ,

(5.14)

where the sets of active indices Ti(p̄, x̄), i = 1, 2, 3, 4, are built in (5.9)–(5.12), respec-
tively. If in addition ϕ is locally Lipschitzian around (p̄, x̄), then there are (p∗, x∗) ∈
∂Gϕ(p̄, x̄) and generalized multipliers λ = (λt)t∈T , μ = (μt)t∈T , γ = (γt)t∈T , and

ρ = (ρt)t∈T ∈ R
(T )
+ satisfying condition (5.14).

Proof. It follows from the necessary optimality conditions in Theorems 4.1 and
3.1(a), respectively, applied to problem (5.7), with taking into account the derived
formula (5.8) for the second moment cone K(T ) and the form of the active index sets
(5.9)–(5.12) corresponding to the infinite inequality constraints in (5.4)–(5.6).

Observe that the necessary optimality conditions obtained in Proposition 5.2 pro-
vide a valuable contribution to our understanding of optimal strategies in the water
resource problem. Indeed, it follows from the structures of constraints in (5.7) and
their active index sets that the time inclusion t ∈ T1 (p̄, x̄) means that at this moment
t the reservoir is empty, while the one of t ∈ T2 (p̄, x̄) means that at this time the
quantity of water inside the reservoir (given by 〈δt, p〉+ 〈αt, x〉 − s− β(t)) attains its
maximum level c; i.e., the reservoir is full. Similarly the inclusions t ∈ Ti (p̄, x̄) for
i = 3, 4 signify, respectively, that the water is flowing at its minimum rate to satisfy
the demand or at its maximum rate technically possible. The KKT relationship (5.14),
valid under the Farkas–Minkowski qualification condition, reflects therefore that the
“dual action” (p∗, x∗) is a linear combination of these “bang-bang” strategies with the
corresponding weights (λ, μ, γ, ρ). Our general asymptotic optimality condition (5.13)
indicates from this viewpoint that, in the absence of the Farkas–Minkowski property,
the optimal impulse can be approximated by such combinations.

Finally, we fully characterize the setting of Proposition 5.2(ii) when the Farkas–
Minkowski property is satisfied in problem (5.7).

Proposition 5.3 (Farkas–Minkowski property in water resource optimization).

Let T̃ be a nonempty subset of the time interval T = [t, t] in (5.7). Then the second

moment cone K(T̃ ) in (5.8) is weak∗ closed in C(T )∗ × C(T )∗ ×R if and only if T̃ is
finite.

Proof. The “if” part is standard. Let us justify the “only if” part arguing by
contradiction and taking into account that the space C(T ) is separable. Assume that

the set T̃ is infinite and pick for simplicity a strictly increasing or decreasing sequence
{tk}k∈N

in T̃ , which is therefore converging to a certain element of T . The reader can

D
ow

nl
oa

de
d 

04
/2

7/
18

 to
 1

93
.1

45
.2

30
.3

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

OPTIMALITY CONDITIONS IN INFINITE PROGRAMMING 2805

easily check that the sequence in C(T )∗ × C(T )∗ × R given by⎧⎨⎩
k∑

j=1

1

j2
(
δtj , αtj , β(tj) + s

)⎫⎬⎭
k∈N

weak∗ converges to some (δ, α, b) defined as 〈(δ, α, b) , (p, x, q)〉 := 〈δ, p〉 + 〈α, x〉 + bq
with

〈δ, p〉 :=
∞∑
j=1

1

j2
p (tj) , 〈α, x〉 :=

∞∑
j=1

1

j2

∫ tj

t

x (t) dt, and b :=

∞∑
j=1

1

j2
(β(tj) + s) .

The weak∗ convergence of the above sequence follows from the boundedness of the
set
{(

δtj , αtj , β(tj) + s
)}

k∈N
in C(T )∗ × C(T )∗ × R and the convergence of the series∑∞

j=1
1
j2 .

Let us show now that (δ, α, b) /∈ K(T̃ ), and thus the cone K(T̃ ) is not weak∗

closed. Indeed, the inclusion (δ, α, b) ∈ K(T̃ ) implies that

δ =
∑
t∈ ˜T

λtδt for some λ ∈ R
(˜T )
+ ,

which is discontinuous only on a finite subset of T . It is easy to check at the same
time that δ is the weak∗ limit of the functions

∑k
j=1

1
j2 δtj as k → ∞, and hence it is

discontinuous on the infinite set {tk}k∈N
. This contradiction completes the proof of

the proposition.
One of the remarkable consequences of Proposition 5.3 is that the Farkas–

Minkowski qualification condition does not hold for the water resource problem stated
in (5.7) on the compact continuous-time interval T = [t, t]. On the other hand, this re-
sult justifies yet another interpretation of the optimality conditions of Proposition 5.2
corresponding to the practical realization of control strategies for reservoirs. Since
in practice the measuring and control processes for the water resource model under
consideration are implemented only at discrete instants of time, we can consider a
discretization T̃ of the time interval T and apply the simplified optimality conditions
of Proposition 5.2(ii) on T̃ .
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