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VARIATIONAL ANALYSIS IN NONSMOOTH OPTIMIZATION AND 
DISCRETE OPTIMAL CONTROL 

Boris S. Mordukhovich 

Department of MathematiCs, Wayne State University, Detroit, Michigan 48202 
(boris@math.wayne.edu) . 

The paper is devoted to applications of modern methods of variational· analysis to constrained 
optimization and control problems generally formulated in infinite-dimensional spaces. The main 
attention is paid to the study of problems with nonsmooth structures, which require the usage of 
advanced tools of generalized differentiation. In this way we derive new necessary optimality con
ditions in optimization problems with functional and. operator constraints and then apply them to 
optimal control problems governed by discrete-time inclusions in infinite dimensions. The principal 
difference between finite-dimensional and infinite-dimensional frameworks of optimization and con
trol consists of the "lack of compactness" in infinite dimensions, which leads to imposing certain 
"normal compactness" properties and developing their comprehensive calculus, together with ap
propriate calculus rules of generalized differentiation. On the other hand, one of the most important 
achievements of the paper consists of relaxing the latter assumptions for certain classes of optimiza
tion and control problems. In particular, we fully avoid the requirements of this type imposed on 
target endpoint sets in infinite-dimensional optimal control for discrete-time inclusions. 

Key words. variational analysis; noilsmooth optimization and optimal control; discrete-time inclu
sions; generalized differentiation; infinite dimensions; necessary optimality conditions 
MSC2000 subject classification: Primary: 49J53, 90C30 
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1 Introduction 

Variational analysis has been recognized as a rapidly growing and fruitful area in applied 
mathematics concerning mainly the study of optimization and equilibrium· problems and 
also applying perturbation ideas and variational principles to a broad class of problems 
and situations, which may not be of a variational nature. The reader can find more infor
mation about basic principles and results of variational analysis in the now classical book 
by Rockafellar and Wets [20] devoted to variational analysis in finite dimensions and in 
the recent mutually complementary books by Borwein and Zhu (3] and by Mordukhovich 
[16, 17] dealing with variational analysis and its applications in both finite-dimensional and 
infinite-dimensional spaces. It is important to emphasize that basic techniques in varia
tional analysis (particularly those related perturbations and the usage ofmodern variational 
principles) unavoidably lead to nonsmooth structures offunctions, sets, and set-valued map
pings, even for problems with initially smooth data. Thus appropriate tools of generalized 
differentiation lie at the very heart of modern variational analysis and its applications. 

This paper concerns applications of advanced techniques ofvariational analysis and gen
eralized differentiation to deriving necessary optimality conditions in three important classes 
of constrained optimization problems formulated generally in infinite-dimensional spaces.· 
The first class consists of problems in nondifferentiable programming with finitely many 
functional constraints described by inequalities and inequalities with real-valued functions, 
along with geometric constraints given by closed subsets of Asplund (including any reflexive 
Banach) spaces. The main results are obtained via several versions of the extended Lagrange 
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principle expressed in terms of our basic normals, subgradients, and coderivatives satisfying 
comprehensive calculus rules ("full calculus"). 

The second class of optimization problems under consideration contains the so-called 
operator constraints given by mappings. with values in infinite-dimensional spaces. Such 
constraints are typical in many infinite-dimensional optimization and equilibrium problems, 
particularly those arising in dynamic optimization and optimal control. Problems with 
operator constraints are significantly different from those with finitely many functional 
constraints; it is well known that a counterpart of the Lagrange multiplier rule does not 
hold even in smooth settings with no additional assumptions. We derive general results that 
ensure the fulfillment of first-order necessary optimality conditions in nonsmooth problems 
with operator constraints by imposing fairly weak assumptions of a "sequential normal 
compactness" (SNC) type, which are automatic in finite dimensions while being among 
the most essential ingredients of infinite-dimensional variational analysis. Furthermore, we 
show that the imposed assumptions always hold for a large class of generalized Fredholm 
mappings, which exhibit a kind of "finite codimension" behavior. 

The third class of problems under consideration in this paper concerns dynamic optimiza
tion and deals with discrete optimal control in infinite dimensions. More precisely, we study 
problems of minimizing Mayer-type functionals on trajectories of discrete-time inclusions, 
as well as those arisingfrom discrete approximations of optimal control systems governed by 
constrained differential/evolution inclusions in Banach spaces. Problems of these types can 
be reduced to mathematical programs in infinite-dimensional spaces with many geometric 
constraints and operator constraints of a special Fredholm kind. The results obtained in 
this direction are heavily based on comprehensive generalized differential and SNC calculi 
developed inthe author's book [16]. At the same time, we are able to significantly relax SNC 
requirements in infinite-dimensional optimal control problems for discrete-time systems. In 
particular, this allows us to cover optimal control problems with no such assumptions im
posed on target/endpoint constraint sets, e.g., the two-point constraint case that has always 
been an obstacle in infinite-dimensional optimal control. 

The rest of the paper is organized as follows. In Section 2 we briefly overview the 
basic constructions of generalized differentiation and some oftheir properties widely used 
in formulations and proofs of the main results. Section 3 is devoted to the afore-mentioned 
sequential normal compactness properties and related issues. In particular, in this section we 
consider generalized Fredholm mappings and prove that they enjoy, in Banach and Asplund 
space frameworks, a certain underlying version of ''partial sequential normal compactness" 
needed for deriving necessary optimality conditions in problems with operator constraints. 

Section 4 concerns optimization problems with functional and ,geometric constraints 
in infinite dimensions, while in Section 5 we deal with optimization problems involving 
operator constraints. Finally, Section 6 is devoted to the study of optimal control problems 
governed by discrete-time and finite-difference inclusions in infinite-dimensional spaces. 

Our notation is basically standard; see f16, 17]. Unless otherwise stated, all the spaces 
considered are Banach with the norm 11·11 and the canonical dual pairing (·, ·) between the 
space in question, say X, and its topological dual X* whose weak*· topology is denoted 
by w*. We use the symbols 1B and 18* to signify the closed unit balls of the space under 
consideration and its dual, respectively. Given a set-valued mapping F: X =t X*, its 
sequential Painleve-Kuratowski upper/outer limit at xis defined by 

{ *I - * w* * * } LimsupF(x) := x* EX 3 sequences Xk---+ x, xk---+ x with xk E F(xk) as k E IN , 
x~x 
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where IN:= {1, 2, ... }. The symbols x .!l x and x ~ x signify, respectively, that x ~ x 
with x E !1 and that x --t x with cp(x) --t cp(x) for sets !1 C X and extended-real-valued 
functions cp: X --t IR := [-:-oo, oo]. We distinguish between single-valued and set-valued 
mappings by using the symbols f: X ~ Y and F: X ~ Y, respectively. Recall that . 

gphF := {(x,y) EX>< Yj y E F(x)} 

stands· for the graph of the mapping F: X ~ Y. 

2 Generalized Differentiation 

We present here a brief overview of the basic generalized differential constructions in vari
ational analysis and some of their properties widely used in what follows. The material is 
taken from the author's book [16], where the reader can find a comprehensive theory for 
these constructions with extensive discussions, references, and commentaries. 

Given a nonempty set n c X and a point x E n, the (basic, limiting) normal cone to n 
at x is defined by 

N(x;n) := Limsup.Ne:(x;n), 
X->X 
e!O 

where Ne(x; n) stands for the set of €-normals (c ~ 0) ton at X EX given by 

N.-. ( 0 ) { * X* jl· (x*, u- x) } e x; H := x E 1m~up llu _ xll :::; € , 
U->X 

X E !1, 

(2.1) 

(2.2) 

with Ne(x; !1) := 0 if x rf. n. If the space X is Asplund (i.e., each of its separable subspace 
has a separable dual) and if the set n is locally closed around x, then we can equivalently 
put c = 0 in (2.1) and replace Ne by the generally smaller prenormal (or Frechet normaQ 
cone N(x; !1) := No(x; !1) from (2.2) with c = 0. Observe that the class of Asplund spaces 
is sufficiently large including every Banach space with a Fnkhet differentiable renorm away 
from the origin (in particular, any reflexive space) and every space with a separable dual; 
see, e;g., the book by Phelps [19] and the references therein for the well-developed theory 
of Asplund spaces and some of its applications. 

Given a set-valued mapping F: X~ Yanda point (x,y) E gphF, consider two kinds 
of limiting coderivatives ofF at (x, y): the normal coderivative · 

D/vF(x,Y)(y*) := {x* E X*l (x*,-y*) E N((x,jj);gphF)}, y* E Y*, (2.3) 

and the mixed coderivative 

DMF(x, Y)(y*) := Lim sup i5;F(x, y)(y*), y* E Y*, 
(x,y)->(x,y) 

y*->ii* 
e!O 

where the €-coderivative i5;F(x, y) is defined by 

(2.4) 

i5;F(x,y)(y*) := {x* EX* I (x*, -y*) E Ne((x,y);gphF)}, · y* E Y*, c ~ 0, (2.5) 
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where the subindex "c" is omitted if c = 0. Note that we can equivalently replace .B;. by 
· D* in (2.4) and in the corresponding representation of D'Jv due to (2.1) if both spaces X 
andY are Asplund and if the graph ofF is locally closed around (x, y). 

As follows (2.4) and (2.1), the only difference.between the normal and mixed coderiva
tives is that the norm convergence of y* --t y* mixed with the weak* sequential convergence of 

x* ~ x* are used in (2.4) instead of both weak* sequential convergences y* ~· y* and x* ~ x* 
in the limiting representation of Djy. Obviously DMF(x, y)(y*) c DjyF(x, y)(y*), where 
the equality holds if dim Y < oo, while this inclusion may be strict even for single-valued 
Lipschitzian mappings from 1R into Hilbert spaces with certain differentiability properties 
as in [16, Example 1.35]. In general, the equality 

DMF(x, y)(y*) = D'}vF(x, y)(y*), y* E Y*, 

is postulated in [16] as the strong coderivative normality ofF at (x, y). This property holds 
for important classes of set-valued and single-valued mappings between infinite-dimensional 
spaces including convex-graph mappings, the so-called "strictly Lipschitzian" mappings (see 
below), etc., and it is preserved under various operations; see cases (a)-(i) summarized in 
[16, Proposition 4.9]. 

IfF= f: X --t Y is single-valued and strictly differentiable at x (which is automatic 
when f is 0 1 around this point), then 

DMf(x)(y*) = D'Jvf(x)(y*) = {V'f(x)*y*}, y* E Y*, (2.6) 

via the adjoint derivative operator \7 f(x)*: Y* --t X* in (2.6). In [16, 17], the reader can 
find equivalent analytic representations of both normal and mixed coderivatives and their 
efficient calculations for various classes of nonsmooth single-valued and set-valued mappings. 

Let <p: X --t IR be an extended-real-valued function finite at x. Then 

8<p(x) := Limsupae<p(x) 
x~x 
e!O 

is the (basic, limiting) subdifferential of <p at x, where 

(2.7) 

(2.8) 

is the c-subdifferential of <pat x, for each c ~ 0. When c = 0, the set §<p(x) := ao<p(x) in (2.8) 
is known also as the presubdifferential, or the Frechet (regular, viscosity) subdifferential of 
<pat x. If X is Asplund and if the function <pis lower semicontinuous (l.s.c.) around x, the 
sets aet.p(x) can be equivalently replaced by a<p(x) in (2.7). Furthermore, the subdifferential 
(2.7) admits the geometricdescription 

8<p(x) = {x* E X*l (x*,-1) E N((x,<p(x));epi<p)}, (2.9) 

via the normal cone (2.1) to the epigraph epi <p := {(x, JL) E X x IRI JL ~ <p(x)} of <p. 
On the other hand, the geometrically defined coderivatives (2.3) and (2.4) admit, in the 

case of single-valued locally Lipschitzian mappings f: X --t Y, the following representations 

DMf(x) = 8{y*' f)(x), D'Nf(x)(y*) = 8(y*' f)(x) as y* E Y* (2.10) 
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via the basic subdifferential (2.7) of the scalarized £miction (y*, f}(x) := (y*, f(x)). The 
first representation in (2.10) holds in arbitrary Banach spaces X andY, while the second 
one requires in addition that X is Asplund (Y is still arbitrary Banach) and that f is strictly 
Lipschitzian at x in the sense that the sequence 

contains a norm convergent subsequence whenever Xk ~ x and v belongs to some neigh
borhood of the origin; see [16, Subsection 3.1.3] for characterizations, verifiable sufficient 
conditions, and applications. Note that the latter property is in fact equivalent to the 
"compactly Lipschitzian" property introduced by Thibault [21]. 

3 Sequential Normal Compactness and Fredholm Mappings 

We start this section with recalling certain "sequential normal compactness" properties of 
sets and mappings that are automatic in finite dimensions while playing a crucial role in 
infinite-dimensional variational analysis and its applications. We refer the reader to the 
author's books [16, 17] for more details and historical comments and also to the papers by 
Ioffe [10, 11] and the books by Fattorini [6] and by Li and Yong [14] for related (somewhat 
different from each other) "finite codimension" properties and their significance in infinite
dimensional optimization and optimal control. 

A subset n c X of a Banach space is sequentially normally compact (SNC) at x En if 
n ~ 

for any sequences ek l 0, Xk ~ x, and x'k E Nek(Xki 0) one has 

w* 
x'k ~ 0::::} llx'kll ~ 0 a.S k ~ oo. 

In Asplund spaces, we can equivalently put ek = 0 in the above definition provided that 0 is 
locally closed around x. Besides finite dimensions, the SNC property of n at x is automatic 
in any Banach space if the set n is "compactly epi:..Lipschitzian" (CEL) around x in the 
sense of Borwein and Str6jwas [2]. Note that in general the implication CEL;:::>SNC is strict 
even for convex cones in nonseparable Asplund spaces; see Fabian and Mordukhovich {5] 
for a comprehensive study of the relationships between the SNC and CEL properties. 

A set-valued mapping F: X~ Y between Banach spaces is SNCat (x,y) E gphF if 
its graph enjoys this property at (x, Y), which is in fact equivalent to require that for any 
sequences (ek, Xk, Yk, x'k, Y'k) E JR+ x (gph F) x X* x Y* satisfying 

we have ll(x'k,yk)ll ~ 0 ask~ oo, where one can equivalently put ek = 0 if both spaces 
X and Y are Asplund and ifF is closed-graph around (x, y). A more subtle partial SNC 
{PSNC) property ofF at (x, y) E gph F means that 

llx'kll ~ 0 . provided that IIYZII ~ 0 as k ~ oo 

for any sequences (ek,Xk,Yk,x'k,yk) E JR+ x (gphF) x X* x Y* satisfying {3.1), with the 
similar simplification in the Asplund space setting. The PSNC property is significantly less 
restrictive than the SNC one and always holds, in particular, for mappings F having Aubin's 
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Lipschitz-like ("pseudo-Lipschitz") property around (x, y), in the sense [1] that there are 
neighborhoods U of x and V of y and a number .e 2:: 0 such that 

F(x) n V C F(u)+ £11x- uii.JB whenever x,u E U. (3.2) 

When V. = Y, the latter property reduces to the classical (Hausdorff) Lipschitz continuity 
ofF around x. Moreover, the simultaneous fulfillment of the PSNC property ofF at (x, y) 
and the mixed coderivative condition 

DMF(x, y)(O) = {O} (3.3) 

is necessary and sufficient for F to be Lipschitz-like around (x, y); see [16, Theorem4.10]. 
We refer the reader to [16, 17] for other efficient conditions implying the SNC/PSNC 

properties for specific classes of set-valued and single-valued mappings and to the well
developed SNC calculus ensuring the preservation of such properties under various opera
tions; this seems to be the most important for applications. Note that the proofs of the 
major rules of SNC calculus in [16] are based on the extremal principle, which can be viewed 
as a local variational counterpart of the classical.convex separation in nonconvex settings. 

Next let us describe a general class of the mappings particularly important in appli
cations to infinite-dimensional optimization and control problems, for which the PSNC 
property is satisfied. . We first recall the following significant modification of the strictly 
Lipschitzian mappings (see Section 2) that is due to Ngai, Luc and Thera [18]: a mapping 
f : X ~ Y locally Lipschitzian around x is called compactly strictly Lipschitzian at x if, for . 
each sequences Xk ~ x and hk ~ 0 E X with hk =/:- 0, the sequence 

has a norm convergent subsequence. 
It is obvious that a compactly strictly Lipschitzian mapping is strictly Lipschitzian at 

the reference point. Moreover, for dim Y < oo the above strict Lipschitzian notions agree 
and reduce to the standard local Lipschitz continuity. However, it is not the case when the 
space Y is infinite-dimensional being Asplund, in particular. Indeed, consider the mapping 
f: co -'-+ eo given by 

f(x) := {sinxk} for x := {xk}, 

where co stands for the Asplund space of sequences { Xk} with Xk ~ 0 as k ~ oo endowed 
with the supremum norm. It is not hard to check that the mapping f is strictly Lipschitzian 
but not compactly strictly Lipschitzian at the origin. Observe that f is compactly strictly 
Lipschitzian at x if it is strictly Fnkhet differentiable at x with the compact derivative op
erator, or more generally: iff is a composition f =go fo, where g is strictly differentiable 
with the compact derivative while fo is locally Lipschitzian. Furthermore, the class of com
pactly strictly Lipschitzian mappings contains every mapping f: X ~ Y that is uniformly 
directionally compact around x as defined by loffe [11] in primal space terms: there is a 
norm compact set Q c Y for which 

f(x +th) E f(x) + tllhiiQ + t11(llx- xll, t)JB 

whenever h EX with llhll :::; 1 and x close to x, with 7J(c, t) ~ 0 as c 1 0 and t 1 0. 
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. Definition 3.1 (generalized Fredholm mappings). A mapping f: X~ Y is GENER

. ALIZED FREDHOLM at x if there is g: X ~ Y compactly strictly Lipschitzian at x and such 
that the difference f - g is a linear bounded operator whose image is a closed subspace of 
finite codimension in Y. · 

.· The generalized Fredholm notion extends the "semi-Fredholm" one fromioffe [11], where 
g is assumed to be uniformly directionally compact; see also Ginsburg and Ioffe [7] for 
the "Fredholm" predecessor of the _latter definition with more discussions on the previous 
developments and applications to optimal control. The following major result establishes 
the partial sequential normal compactness of generalized Fredholm mappings and their 
restrictions to closed SNC sets. 

Theorem 3.2 (partial sequential compactness of generalized Fredholm mappings.) 
Let f: X~ Y be a generalized Fredholm at x. The following assertions hold: · 

(i) The inverse set-valued mapping f-1 : Y =t X is PSNC at (f(x), x) for arbitrary 
Banach spaces X and Y. 

(ii) Assume that both X andY are Asplund, and let 

{

. f(x) 
fn(x) := 

0 

if X E il, 

if x tf. n 

be the restriction off to a set 0 c X. Then fi;_l is PSNC at (f(x), x) provided that n is. 
SNC at x and locally closed around this point. 

. . n ~ 

Proof. To prove (i), take sequences ck l 0, Xk ~a;, x'k ~ 0, and Yk ~ 0 such that 

xic E i5;J(xk)(y'k) for all k E JN. 

To justify the PSNC property of r-1 at (f(x), x)' we need to show that IIY'kll ~ 0 ask~ 00. 

Denote by A:= f- g the linear bounded operator from X toY whose image Yo:= AX 
is a closed subspace of finite codimension by Definition 3.1. The latter means that there is 
a closed subspace Yi c Y with Y = Yo EB Y1 and codim Y1 < oo. Due to the elementary 
sum rule for e-coderivatives in the setting f = A+ g under consideration, the desired PSNC 
property reduces to justifying the implication 

(3.4) 

provided the fulfillment of the inclusions 

xic- A*yk E f5;kg(xk)(y'k) for all k E JN. (3.5) 

Since f is compactly strictly Lipschitzian at x, inclusions (3.5) ensure, by the e-coderivative 

modification of the proof of Proposition 3.4 from Ngai, Luc and Thera [18], that Yk ~ 0 
implies the strong convergence 

llx'k- A*y'kll ~ 0 and hence IIA*y'kll ~ 0 as k ~ oo. 

By Y =Yo EB Y1 with Yo = AX, for each k E IN we find Yok E Yo and Y!k E Yt such that 
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Since dimYt < oo and since A maps X onto Yo, we get IIYikll --t 0 and 

IIA*Yokli ~ JLIIYokll with some JL > 0 

by the classical open mapping theorem. Thus IIYokll ---t 0 and IIY'kll ---t 0 as k .---t oo, which 
justifies (3.4) and completes the proof of assertion (i) of the theorem. 

To justify assertion (ii) under the Asplund space and SNC assumptions made, we use 
the simplified description of the PSNC property of fn at x, with ek = 0 in (3.1), and take 
sequences (xk, xic, yk) satisfying 

xicED*(A+g+~(·;O))(xk)(Y'k) forall kEN, 

where D.(·; 0) is the indicator mapping of the set n relative to the image space Y, which 
equals 0 E Y of x E nand 0 otherwise. Our aim is to show that for all such (xk, xic, y'k) the 
implication (3.4) holds with ek = 0. 

Employing the fuzzy sum rule for coderivatives in Asplund spaces as in [16, Theo
rem 3.10] and taking into account that 

D* ~(x; n) = N(x; n) whenever X E n, 

we find Xk ---t x, Uk ---t x, xic ---t 0, Y'k ~ 0, Yk ~ 0, and x'k E D*g(xk)(f/k) such that 

x'k- A*j)k- x'k E N(uk; n) and 111Jk- Y'kll ---t 0 as k ---t ()(). 

As in the proof of assertion (i) above, conClude from xic E D*g(xk)(f/k) and fJk ~ 0 that, 
by the compact strict Lipschitzian property of g at x, we have llx'kll ---t 0 as k ---t oo. 

Furthermore, the strong convergence 

llx'k- A*j)k- Xicll ---t 0 as k ---too, 

follows from the SNC property of nat x. We get therefore that IIA*1J'kll ---t 0 and conclude, 
by the open mapping arguments as in the proof of (a), that 

111Jkll ---t 0 as k --t oo. 

This implies the strong convergence IIY'k II ---t 0 and completes the proof of the theorem. 6 

A "codirectional compactness" counterpart of Theorem 3.2(ii) in general Banach spaces 
was established by Joffe [11, Theorem 6], with a different (significantly more involved) proof, 
for semi-Fredholm mappings f and CEL sets n. 

4 Extended Lagrange Principle 

In this section we study the following problem of nondifferentiable programming in infinite
dimensional spaces with finitely many functional constraints of the inequality and equality 
types, along with general geometric constraints: 

minimize <po(x) subject to 

<pi(x):::;o, i=l, ... ,m, 
(4.1) 

<pi(x) = 0, i = m + 1, ... , m + r, 

xE Oc X, 
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where 'Pi: X -t lR for i = 0, ... , m + r. Note that the single geometric constraint x E n 
in (4.1) is considered just for convenience and simplicity; the results obtained below can be 
extended to the case of finitely many geometric constraints x E nj, j = 1, ... , l, by reducing 
them to X E f2 := fh n ... n f21 and employing the intersection formula for basic normals in 
Asplund spaces used in what follows; cf. [17, Section 5.1]. 

Define the classical Lagrangian 

L(x, Ao, ... , Am+r) := Aot.po(x) + ... + Am+r'Pm+r(x) (4.2) 

built upon the cost function and the functional (but not geometric) constraints. 
It has been observed by Vladimir Tikhomirov in the 1960s (see, in particular, his book 

with Ioffe [12] and the recent one with Brinkhuis [4]) that necessary optimality conditions 
for various classes of extremal problems (arising, e.g., in nonlinear programming, approxi
mation theory, the calculus of variations, optimal control, classical inequalities, mechanics, 
etc.) can be obtained via the so-called Lagrange principle: by deriving them as necessary 
conditions for minimizing th~ Lagrangian (4.2) involving the cost and functional constraint 
data, subject only to the remaining geometric constraints. 

Of course, the validity of the Lagrange principle must be justified for each class of 
optimization problems under consideration. It has been done in the mentioned book [12] 
and related publications for some extremal and control problems with smooth, convex, 
and mixed "smooth-convex" structures typical in optimal control problems with smooth 
dynamics. ·More general nonsmooth developments of the Lagrange principle were later 
provided by many researchers; see particularly Hiriart-Urruty [8], Ioffe [10], Kruger {13], and 
Mordukhovich [15] for early results in this direction. We refer the reader to the author's book 
[17] for various results, discussions, and commentaries on first-order necessary optimality 
conditions on nonsmooth optimization. 

In this section we present extended results of the Lagrange principle type for the general 
class of nbndifferentiable programming problems (4.1) in infinite dimensions. Let us first 
establish in the following theorem certain calculus rules of independent interest that give 
efficient representations of basic normals (2.1) to the so-called generalized epigraphs 

E(f,e,O) := {(x,y) EX x Yif(x)- y E e, x E 0}, (4.3) 

of the mapping f: X -t Y with respect to the "ordering set" e c Y and the constraint set 
nc X. As usual, fn(x) := f(x) +6.(x; 0) signifies the restriction off to the set n. 

Theorem 4.1 (relationships for basic normals to generalized epigraphs). Let 
f: X -t Y be a mapping between Banach spaces, and let n c X and e c Y be nonempty 
sets with x E 0 and f(x)- y E e. The following assertions hold: 

(i) One always has the implication 

·(x*,y*) E N((x,fi);E(f,n, e))=> -y* E N(f(x)- y; e). 

(ii) Assume that X andY are Asplund, that f is continuous around x relative to n, 
and that n and e are locally closed around x and f(x)- y, respectively. Then 

N((x, Y); E(f, 0, e)) C { (x*, y*) EX* x Y*l x*E D/vfn(x)(y*), 

-y* E N(f(x)- y; e)}, 
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where the equality holds if f is locally Lipschitzian around x relative to n and if fn is 
· strongly coderivatively normal at this point. 

(iii) Assume that f is locally Lipschitzian around x relative to n in the Banach space 
framework. Then 

N((x,y);&(f,n,e)) :J {<x*,y*) EX* x Y*j x* E 8(y*,fn)(x), 

(4.5) 

-y* E N(f(x)- y; e)}. 
where the equality holds if in addition X and Y are Asplund, if n and e are locally closed 
ar·ound x and f(x)- jj, respectively, and if fn is strongly coderivatively normal at x. 

Proof. Assertion (i) follows directly from definition (2.1) of basic normals in Banach spaces 
due to the structure of the set &(!, n, e) in ( 4.3). The proof of (ii) is more involved. First 
observe that e (!, n, e) admits the inverse image representation . 

e(f, n, e)= g-1(e) with g(x, y) := fn(x)- y. (4.6) 

Thus we can apply [16, Theorem 3.10] ensuring an upper estimate of N((x,jj);g-1(8)) 
under the Asplund and closednessjcontinuity assumptions imposed in {ii) provided that 

ker DMg(x, jj) = {0} and g-1 is PSNC at (f(x)- jj), x, y), (4.7) 

where DMg(x, jj) stands for the reversed mixed coderivative of g at (x, jj) defined in this 
case by the relation 

DMg(x,jj)(z*) := { (x*,y*) EX* x Y*j z* E -DMg-1(/(x)- jj,x,y)(-z*)} (4.8) 

via the mixed coderivative {2.4) of the inverse mapping; see [16] for more details. Observe 
that the upper estimate of [16, Theorem 3.10] directly implies (4.4) due to the equivalence 

(x*,y*) E DNg(x,jj)(z*) ¢=> x* E DNfn(x)(z*), y* = -z*, 

which easily follows from the normal coderivative sum rule.of [16, Theorem 1.62]. 
Let us now show that both conditions in ( 4. 7) are automatically satisfied due the special 

structure of gin (4.6). First check the kernel condition in (4.7). To proceed, pick z* with 
0 E DMg(x, jj)(z*) and find (xk, Yk) ~ (x, jj) and (uA:, vZ) .E D*g(xk, Yk)(zi::) such that 

Xk E 0, ii(ui::, vk)ll ~ 0, 
w• 

and zi:: ~ z* as k ~ oo. 

Using the elementary sum rule for the Frechet coderivative of gin (4.6), we get 

which implies the relationships 

uZ ED* fn(xk)(zk), vZ = -zi::, and hence llzZII ~ 0 = z*. 

This means that ker DMg(x, jj) = {0}. To check further the PSNC condition in (4.7), we 

take Xk En, Yk E Y, and (ut:, vt:, zi::) E N((xk, Yk, f(xk)- Yk)i gphg) with 

(xk, Yk, f(xk)- Yk) ~ (x, jj, f(x)- y), ll(uZ, vi::) II~ 0, and zi:: ~ 0 
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. and, arguing as above, get llzkll --+ 0 ask--+ oo. This precisely means, in the Asplund space 
setting, that g-1 is PSNC at (f(x)- y, x, y), which therefore justifies (4.4). 

Next we prove inclusion (4.5) in (iii) and then finally establish the equalities in both 
assertions (ii) and (iii) under the additional assumptions made. To proceed with (4.5), pick 
any y* E -N(f(x)- y;8) and x* E 8(y*,fn)(x). By definitions (2.1) and (2.7) of basic 

normals and subgradients in Banach spaces, find sequences elk L 0, e2k L 0, Xk ~ x, Yk --+ fj, 
w* w* 

xk --+ x*, and Yk --+ y* as k --+ oo such that 

xk E Belk (yk, fn)(xk) and - Yk E Ne2k (f(xk)- Yk; e) for all k E IN. 

It is easy to observe from definitions (2.2} and (2.8) of the corresponding €-elements and 
from the assumed Lipschitz continuity of fn around x with constant £ that 

(xk,Yk) E Nek((xk,Yk);£(!,0,8)) with ek :=elk+(£+ 1)e2k L 0 as k--+ oo. 

This implies, by passing to the limit ask--+ oo, that (x*,y*) E N((x,Y);£(!,0,8)), which 
justifies inclusion ( 4.5) in the general Banach space setting. 

To establish the opposite inclusion in (4.5), and hence the equality sta:tement in (iii), 
we invoke the scalarization formula 

D'Mfn(x)(y*) = 8(y*,fn)(x) whenever y* E Y* 

for the mixed coderivative, which is proved in [16, Theorem 1.90] for the general class of 
single-valued and locally Lipschitzian mappings on Banach spaces. Strictly speaking, the 
result of this theorem is formulated for locally Lipschitzian mappings relative to the whole 
space, i.e., with n =X, but its proof holds with no change in the case of arbitrary closed 
sets considered in (4.9). Furthermore, we have 

Df.dn(x)(v*) = D'M fn(x)(y*), y* E Y*, 

under the coderivative normality requirement on fn at x. Thus the opposite inclusion in 
(4.5) follows from (4.4) under all the assumptions made in (iii). Moreover, in this case the 
right~hand sides in (4.5) and (4.4) are the same, and we simultaneously get the equality 
statement in (ii) and thus complete the proof of the theorem. 6. 

Observe that for our optimization problem (4.1) under consideration, the set 

£(cpo, ... ,cpm+r 1 0) := {(x,a:o, ... ,a:m+r) EX X JRm+r+ll X E 0, cpi(x):::; O:i, 

i=O, ... ,m; cpi(x)=a:i, i=m+1, ... ,m+r} 

corresponds to (4.3) with an arbitrary constraint set n c X and the other data given 
by f = ( cpo' ... ' cpm+r) : X --+ mm+r+l and e = JR"!}:+l X { 0} c mm+r+l. We use the 
calculus results of Theorem 4.1 for the following necessary optimality conditions in (4.1) 
given in certain extended forms of the Lagrange principle, the proof of which is based on the 
extremal principle of variational analysis; see below. Along with the classical Lagrangian 
(4.2), consider the extended Lagrangian · 

Ln(x; .Xo, ... , Am+r) := .Xocpo(x) + , .. + Am+rcpm+r(x) + o(x; 0) (4.10) 

involving also geometric constraints via the set indicator functzon o(x; 0) := 0 for X. E 0 
and o(x; n) := 00 otherwise. 
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Theorem 4.2 (Lagrange principle for nondifferentiable programming). Let x be 
a locaJ optimal solution to problem (4.1), where the space X is Asplund and where the set 
n is locally closed around x. The following assertions hold: 

(i) Assume that the functions <pi are lower semicontinuous around x relative to n for 
i = 0, ... , m and continuous around x relative to n fori = m +1, ... , m + r. Then there 
are Lagrange multipliers (>.o, ... , Am+r) E mm+r+l, not all zero, such that 

(0, ->.o, . .. , ->.m+r) E N ( (x, 0); £( <po, . .. , <{)m+r• 0)), (4.11) 

which implies the sign and complementary slackness conditions 

Ai 2:: 0 for i = 0, ... , m, Ai<{)i(x) = 0 for i = 1, ... , m, (4.12) 

If in addition the functions <pi, i = 0, ... , m, are also continuous around x relative to n, 
then ( 4.11) yields the coderivative inclusion 

0 E D'N( (<po; ... , <{)m+r) +A(·; O)){x)(>.o, ... , Am+r ). (4.13) 

(ii) Assume that all the functions <pi, i = 0, ... , m + r, are Lipschitz continuous around 
x relative to the set n. Then there are Lagrange multipliers (>.o, ... , >.m+r) :f: 0 satisfying 
(4.12) and the inclusion 

0 E 8Ln(·, >.o, ... , >-m+r)(x) (4.14) 

in terms of the basic subdifferential of the extended Lagrangian (4.10), which implies 

0 E 8L( ·, >.o, ... , Am+r )(x) +N(x; 0) (4.15) 

via the classical Lagrangian (4.2). Moreover, in this case conditions (4.13) and (4.14) are 
equivalent, while (4.11) is equivalent to the simultaneous fulfillment of (4.13) and (4.14). 

Proof. Suppose for simplicity that <po(x) = 0. Since xis a local optimal solution to (4.1), 
there is a neighborhood U of x such that x provides the minimum to <po over x ·E U subject 
to the constr~ints in ( 4.1). Consider the sets 

In the Asplund space X x mm+r+l that are locally closed around (x, 0) due to the assump
tions made on <pi and n. Let us check that (x, 0) is an extremal point for the set system 
{OI. 02} in the sense of [16, Definition 2.1], i.e., (x, 0) E fh n 02 (which is obvious) and 
there is a sequence { ak} C X x JRm+r+l with ak ~ 0 as k ~ oo such that 

Indeed, the latt.er holds by the local optimality of x in (4.1) for ak := {0, vk, 0, ... , 0), where 
vk j 0 = <po(x) as k ~ oo. Note that n2 is SNC at (x, 0), since x E int U and the second 
set in the product therein is finite-dimensional. Applying now the exact extremal principle 
from [16, Theorem 2.22] to the system {01, 02} and taking into account the structur-e of 
n2, we directly arrive at (4.11) with (>.o, ... , Am+r) =/= 0. The sign and complementary 
slackness conditions in {4.12) follow from (4.11) by assertion {i) of Theorem 4.1 above due . 
to the structure of 01 = £(<po,.,., <{)m+r• !1) corresponding to B = JR~+l X {0} C JRm+r+l 
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in (4.3). Furthermore, the coderivative condition (4.13) follows from inclusion (4.4) in 
assertion (ii) of Theorem 4.1 provided that the functions r.pi, i = m + 1, ... , m + r, are 
continuous around x. This pro~es ~se~tion (i) of the the~rem. 

To justify (ii), observe that the mapping 

fn(x) := (r.po(x), ... ,r.pm+r(x)) +~(x;O) 

is strongly coderivatively normal at x, since its image space in finite-dimensional. Thus 
the extended Lagrangian inclusion (4.14) and the equivalence statements in (ii) follow from 
assertions (ii) and (iii) of Theorem 4.1, respectively. Finally, inclusion (4.15) follows from 
(4.14) by the semi-Lipschitzian sum rule of [16, Theorem 2.33(c)] applied to the extended 
Lagrangian (4.10) due to 8o(x; S1) = N(x; n). D.. 

The following consequence of the Lagrange principle from Theorem 4.2 provides sepa
rated necessary conditions for local minimizers to problem (4.1) that are expressed, in con
trast to the "condensed" Lagr~gian forms (4.14) and (4.15), in terms of the corresponding 
subdifferentials of each function "Pi, i = 0, ... , m + r, separately. 

Corollary 4.3 (separated necessary optimality conditions in nondifferentiable 
programming). Let all the assumptions from assertion (ii) of Theorem 4.2. be fulfilled. 
Then there are nonnegative multipliers (Ao, .. :, Am+r) # 0 satisfying the complementary 
slackness conditions in (4.12) and such that 

m m+r 
o E 2:: Ai8r.pi(x) + 2:: Ai [8r.pi(x) u 8( -:-"Pi)(x)] + N(x; n). (4.16) 

i=O i=m+l 

Proof. Inclusion (4.16) follows from (4.15) by the afore-mentioned sum rule from [16, 
Theorem 2.33(c)] due to the relationships 

8(Ar.p)(x) = A8r.p(x) for A~ 0 and 8(Ar.p)(x) c IAI [8r.p(x) u 8(-r.p)(x)] for any A E JR. 

Thus the results of the corollary follow from assertion (ii) of Theorem 4.2. 

Note that all the multipliers Ai in Corollary 4.3, including those corresponding to the 
equality constraints, are nonnegative that is different from conventional versions of the La
grange multiplier rule, even for smooth functions. On the other hand, the even subgradient 
set 8r.p(x) U 8( -r.p)(x) does not reduce to the standard gradient when r.p is smooth. Observe 
also that the even subgradient sets Ai[8r.pi(x) U 8(-r.pi)(x)] with Ai ~ 0 in (4.16) can be 
replaced by the generally larger sets 

Ai8°r.pi(x) with Ai E lR as i = m + 1, ... , m + r 

via the symmetric subdifferential of r.p at x defined by 

8°r.p(x) := 8r.p(x) u ( - 8( -r.p )(x))' 

which is a two-sided extension of the classical gradient to nonsmooth functions. 
The next consequence of Theorem 4.2 gives a result of the abstract minimimjmaximum 

principle type, which directly follows from the extended Lagrange principle under the con
vexity requirement on the geometric constraint set. 
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Corollary 4.4 (abstract minimum principle in nondifferentiable programming). 
Let x be a local minimizer for problem (4.1). Suppose in addition to the assumptions of 
Theorem 4.2(ii) that the set n is convex. Then there are multipliers (.Ao, ... , Am+r) =1- 0, 
satisfying the sign and complementary slackness conditions in (4.12), and a basic subgradient 
of the classical Lagrangian 

x* E 8L(·, .Ao, ... , Am+r)(x) 

such that the following minimum condition holds: 

(x*,x) =min { (x*,x)J X E 0}. 

Proof. This follows from condition (4.15) of Theorem 4.2(ii), since the basic normal cone 
( 4.1) reduces, in the case of convex sets, to the classical normal cone of convex analysis 

N(x;n) = {x* E X*J (x*,x- x) :'S; 0 for all x E 0}. 

intrinsically having an extremal structure. 

5 Optimization Problems with Operator Constraints 

In this section we study optimization problems that, in contrast to the nondifferentiable 
programming problem ( 4.1) from Section 4, have infinitely many equality constraints given 
by mappings/operators with values in infinite-dimensional spaces. Such constraints are 
known as operator constraints; they are typical, e.g., in optimal control problems governed 
by ordinary, or delay, or partial differential equations. The problem under consideration in 
this section is described as follows: 

minimize cpo(x) subject to cpi(X) :'S; 0, i = 1, ... ,m, f(x) = 0, X En, (5.1) 

where cp: X ---+ IR, n c X, and f : X ---+ Y is a mapping between Banach spaces. This 
problem is formally more general that (4.1), while the results obtained and the methods 
employed in this section are different from those in Section 4. 

Given a point x feasible to problem (5.1), define the the index set for active inequality 
constraints at x by 

I(x) := {i E {1, ... ,m}i cpi(x) = o}. 

Theorem 5.1 (necessary optimality conditions in problems with operator con
straints). Let x be local minimizer for (5.1), where the space X is Asplund, where theset 
n is locally closed around x, and where the functions cpi are locally Lipschitzian around x 
fori E J(x) U {0} and upper semicontinuous at x fori E {1, ... ,m} \ I(x). Assume that 
the mapping f: X ---+ Y with values in Asplund spaces is Lipschitz continuous around x and 
the restriction f0

1 is PSNC at (f(x), x). Then there are Lagrange multipliers Ai ;::: 0 for 
i E J(x) U {0} and a linear functional y* E Y*, not equal to zero simultaneously, such that 

o E a( I: .Aicpi )<x) + D!vf(x),(y*) + N(x; n) 
iEJ(x}U{O} 

c I: .Aiacpi(x) + D'Nf(x)(y*) + N(x;n). 
iEJ(x}U{O} 
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If in addition f is strictly Lipschitzian at x, then. 

o E a( L: >.ic,oi) (x) + 8(y*, f)(x) + N(x; f2) 
iEJ(x)U{O} 

c · 2:: >.iac,oi(x) + o(y*, f)(x) + N(x; n). 
iEJ(x)U{O} 

(5.3) 

Proof. Suppose first that the mapping f is metrically regular at x relative to n in the sense 
that there is J.L > 0 and a neighborhood U of x such that 

dist(x; S) ::; J.L llf(x) - f(x)ll for all X E u n n, 

where S := {x E 01 f(x) = f(x)}. Then, by Joffe's exact penalization theorem from [9] (see 
[17, Theorem 5.16]), xis a local optimal solution to the the unconstrained minimization 
problem for all J.L > 0 sufficiently large: 

minimize max {c,oo(x) - c,oo(x), max c,oi(x)} + J.t(lif(x) 11 + dist(x; n)). (5.4) 
iEJ(x) 

Thus, by the generalized fermat rule in (5.4, we have 

0 E a(max { c,oo(-)-' c,oo(x), .m~ C,Oi(·)} + J.L(IIf(-)11 + dist(·; n))) (x). 
. ~EJ(x) 

To transform the latter "condensed" subdifferential condition into the efficient form of the 
theorem under the assumptions made, we employ the sum, maximum, and chain rules for 
basic subgradients of functions in Asplund spacestaken from [16, Subsection 3.2.1] and the 
representation of basic subgradients of the distance function 

U odist(x; n) = N(x; n), x E n, 
>.;:::o 

valid in arbitrary Banach spaces; see [16, Theorem 1.97]. Thus we arrive at (5.2) with 

Ai ;::: 0 and (>.i) :F 0 as i E I(x) U {0}. 

The inclusions in (5.3) follow from (5.2) due to the scalarization formula for the normal 
coderivative of strictly Lipschitzian mappings given in (2.10); see [16, Theorem 3.28]. 

Suppose now that f is not metrically regular at x relative to n. One can easily check 
that in this case the mapping 

fn(x) = f(x) + ~(x; 0), X E 0, 

is not metrically regular around x in the conventional sense; see [16, Definition 1.47]. Thus, 
by the characterization of the latter notion from [16, Theorem 4.18], we have that 

either kerDMfn(x):;f{O} or f[/ isnotPSNCat (f(x),x), 

where the reversed mixed coderivative is defined via the mixed one (2.4) in the way of (4.8). 
Since the latter is excluded by the assumption of the theorem, we find y* :F 0 satisfying 
0 E DMfn(x)(y*) and thus · 

o E D'Nfn(x)(y*) = D'N(l+ ~(·; n))(x)(y*) c D'Nf(x)(y*) + N(x; n); (5.5) 
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the set inclusion in (5.5) is by the coderivative sum rule from {16; Proposition 3.12], which 
holds due to the local Lipschitz continuity off around x. By (5.5), we conclude that (5.2) 
is fulfilled in this case withy* =I= 0. As above, this implies (5.3) provided that f is strictly 
Lipschitzian at x and thus completes the proof of the theorem. 6 

It is obvious that the PSNC assumption on fn in the theorem automatically holds 
when Y is finite-dimensional. In this case Theorem 5.1 actually reduces to assertion {iii) 
of Theorem 4.2. The next corollary, ensuring the latter property in infinite dimensions, 
provides efficient conditions for the fulfillment of the optimality results of Theorem 5.1. 

Corollary 5.2 (optimality conditions for problems with operator constraints of 
the generalized Fredholm type.) Let x be a local solution to problem (5.1). Suppose 
that, in addition to the assumptions imposed on the functions r.pi, i = 0, ... , m + r, and on 
the spaces X andY in Theorem 5.1, the set n is locally closed around x and SNC at this 
point, and the mapping f: X ~ Y is generalized Fredholm at x. Then there are Lagrange 
multipliers Ai ;:::: 0 fori E I(x) U {0} and a linear functional y* E Y*, not all zero, such that 
conditions (5.3) are satisfied. 

Proof. First observe from Definition 3.1 of generalized Fredholm mappings that f is strictly 
Lipschitzian at x. Furthermore~ Theorem 3.2(ii) ensures that j 01 is PSNC at (f(x), x). 
Thus we arrive at all the requirements and conclusions of Theorem 5.1 in the case of operator 
constraints given by strictly Lipschitzian mappings. 6 

6 Discrete Optimal Control 

In the concluding section of this paper, we study dynamic optimization problems gov
erned by discrete-time inclusions and also by those arising from discrete approximations of 
continuous-time problems of optimal controL 

Let us first consider the general Mayer problem of discrete optimal control with endpoint 
constraints of inequality, equality, and geometric types in infinite-dimensional spaces: 

minimize r.po(xo, XK) subject to 

Xj+l E Fj(Xj) for j = 0, ... ,K -1, 

<t'i(xo,xK) ~ 0 for i = 1, ... ,m, (6.1) 

<t'i(xo, XK) = 0, for i = m + 1, ... , m + r, 

where Fj: X =t X, r.pi: X 2 ~ JR, and K E IN. Observe that the discrete inclusion model 
in ( 6.1) covers more conventional discrete control systems of the parameterized type 

with explicit control variables Uj taking values in some admissible control regions Uj. 

The next theorem provides necessary optimality conditions of the discrete Euler-Lagrange 
type for problem (6.1), where we impose the Lipschitzian assumptions on <t'i for simplicity. 



Theorem 6.1 (extended Euler-Lagrange conditions for discrete optimal control). 
Let {xjl j = 0, ... ,K} be a local optimal solution to the optimal control problem (6.1). 
Assume that the space X is Asplund, that the functions cpi are locally Lipschitzian around 
(xo, x K) for all i = 0, ... , m + r while the set n is locally closed around this point, and that 
the graphs of Ji'j are locally closed around (xj,Xj+l) for every j = 0, ... ,K -1. Suppose also 
that all but one of the sets n andgphFj, j = 0, ... , K -1, are SNC at the points (xo, XK) and 
(xj,Xj+l), respectively. Then there are multipliers(Ao, ... ,>..m+r) and an adjoint discrete 
trajectory {Pj E X* I j = 0, ... ,K} satisfying the relationships: 

-the Euler-Lagrange inclusion 

(6.2) 

-the transversality inclusion 

. m+r 
. (po,-PK) E a( L Aicpi)(xo,XK) +N((xo,XK);O.), (6.3) 

i=O 

-the sign and complementary slackness conditions 

Ai·2::0 for i=O, ... ,m, Aicpi(xo,xK)=O for i=1, ... ,m, (6.4) 

-and the nontriviality condition 

(6.5) 

If in addition the set-valued mappings Fj are Lipschitz-like around (xj,Xj+l) and strongly 
coderivatively normal at these points for all j = 0, ... , K - 1, then we have the enhanced 
nontriviality condition 

(Ao, ... , Am+r, PK) =/= 0. 

Proof. Introduce the new variable 

Z := (xo, ... ,XK) E Z := XK+l 

and consider the nondifferentiable programming problem of type (4.1): 

minimize c/>o(z) := cpo(xo, XK) subject to 

c/>i(z) := cpi(xo, XK) ::; 0 for i = 1, ... , m, 

c/>i(z) := <t'i(xo,XK) = 0 for i = m+ 1, ... ,m + r; 
K 

z E A := n Aj c Z, 
j=O 

where the latter geometric constraints are defined by 

Aj := {z E Zl (xj,Xj+l) E gphFj}, j = 0, ... ,K -1, 
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Applying assertion (ii) of Theorem 4.2 to the optimal solution z := (xo, ... , XK) for problem 
(6.7), we find multipliers (.Xo, ... , Am+r) =/:. 0 satisfying (6.4) and such that 

m+r K 

0 E a( L Ai¢i)(z) + N(z; n Aj)· 
i=O j=O 

By the intersection rule for basic normals from [16, Corollary 3.37], we have 

K 

N(z; n Aj) c N(z;Ao) + ... +N(z;AK) 
j=O 

(6.9) 

(6.10) 

provided that all but one of the sets Aj are SNC at z and that the qualification condition 

[z0 + ... + z.K = o, zj E N(z; Aj)] ====> [zj ~O; j = o, ... , K] (6.11) 

is satisfied. It is easy to observe; by the structures of the sets Aj, that the above SNC 
conditions for Aj reduce to the SNC requirements on n and Fj imposed in the theorem. 
Furthermore, these structures yield that the generalized normals 

zj = (x0j, ... , xkJ) E N(zj; Aj), j = 0, ... , K, 

admit the representations 

(6.12) 

xjj E D/vFj(Xj, Xj+1)( -x(j+l)j) and xij = 0 as i =/:. j;j + 1 for j = 0, ... , K- 1; 
{6.13) 

(x0K,xKK) E N((xo,xK);O) and xiK = 0 as i =/:. O,K. 

It follows from (6.9) and (6.10) that, under the SNC and qualification conditions imposed, 
there are generalized normals zj, j = 0, ... , K, from(6.12) such that 

K m+r 
- I: zj E a ( 2: Aic/Ji) (z). (6.14) 

j=O i=O 

Taking into account the structures of ¢i in (6.7) and representations of zj in (6.13), we 
deduce from (6.14) that 

m+r 
( -x(;o, -xj<(K-1)) E a( L Aicpi) (xo, XK) + N( (xo, XK ); n), 

. i=O {6.15) 

-xj3 = x(j+l)j for j = 0, ... , K - 1. 

Introducing now the adjoint trajectory p := (po, ... ,pK) E (X*)K+l by 

Pj := xj(j-1) for j = 1, ... , K and Po := -x00, (6.16) 

we get from (6.13) and (6.15) both Euler-Lagrange and transversality inclusions of the 
theorem, where (.Xo, ... , Am+r) =/:. 0 in the nontriviality condition (6.5). 

Consider next the case when the qualification requirement (6.11) is not fulfilled. This 
means that there are ( z0, ... , z_K) =/:. 0 such that 

zjEN(x;Aj) as j=O, ... ,K with z0+ ... +z_k={). (6.17) 

18 



Equality (6.17) obviously implies that (z0, ... ,zk_1) =I= 0. Then defining (po, ... ,pK) by 
(6.16), we deduce from (6.13) and (6.17) that there is an adjoint discrete trajectory p = 
(po, ... ,PK) =I= 0 satisfying all the conclusions of the theorem with (po, ... ,pK) =I= 0 in the 
nontriviality condition ·(6.5). 

Finally, let us show that the relationships (6.2)-(6.4) hold with the enhanced transver
sality condition (6.6) under the additional assumptions imposed in the theorem. It will 
follow from the implication 

PK ===?.[Pi= 0 for all j = 0, ... , K- 1] (6.18) 

that is fulfilled along the trajectory p = (po, ... ,pK) of the Euler-Lagrange inclusion (6.2) 
provided that the mappings Fj are Lipschitz-like around (xj, XjH) and strongly coderiva
tively normal at these points for all j = 0, ... , K -1. It is sufficient to justify that PK-1 = 0 
whenever PK = 0 under the above assumptions imposed at the point (XK-1,XK); the other 
relationships in (6.18) are proved similarly. 

To proceed, we get -PK-1 E Dj..,FK-I(XK-1, XK)(O) from the Euler-Lagrange inclusion 
(6.2) asj = K -1 andpK =().Since FK-1 is strongly coderivatively normal at (XK-bXK), 

Dj..,FK-1(XK-I,XK)(O) = DMFK-1(XK-bXK)(O), 

while DMFK-l(XK-l,~K)(O) = {0} by the coderivative characterization (3.3) of Lipschitz
like mappings. Thus PK..:..1 = 0, which completes the proof of the theorem. 6. 

As a consequence of Theorem 6.1, we derive next necessary optimality conditions for the 
discrete optimal control problem (6.1) in the form of the discrete maximum principle. It is 
well known that maximum-type conditions require certain convexity assumptions, which are 
generally unavoidable even for systems with smooth dynamics; cf. the abstract framework 
of constrained optimization in Corollary 4.4. The following corollary lists the precise re
quirements that ensure the fulfillment of the discrete maximum principle in the constrained 
Mayer problem (6.1) for discrete-time evolution inclusions. 

Recall [20] that a set-valued mapping F: X =t Y between Banach spaces is inner 
semicontinuous at x if for every fj E F(x) and every sequence Xk -t x with F'(xk) =I= 0 there 
is a sequence of Yk E F(xk) converging to y as k -t oo. 

Corollary 6;2 (discrete maximum principle for constrained evolution inclusions). 
Let, in addition to the assumptions imposed in the first part of Theorem 6.1, the map
pings Fj be inner semicontinuous at (xj, xi+I) and convex-valued around these points for 
all j = 0, ... , K - 1. Then there are multipliers ( >.o, ... , Am+r) and an adjoint discrete 
tmjectory (po, ... ,PK) satisfying relationships (6.2)-(6.5) and the maXimum condition 

(Pj+l, Xj+l} = m~ (pi+b y} for all j = 0, ... , K- 1. 
~F~) . 

(6.19) 

Proof. It follows from [16, Theorem 1.34] that, under the convexity and inner semiconti
nuity assumptions imposed on Fj, one has 

Thus the discrete maximum condition (6.19) readily follows from the Euler-Lagrange inclu
sion (6.2) under the additional assumptionS of the corollary. 6. 
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Finally, let us consider the following Mayer-type problem for parametric discrete-time 
· evolution inclusions: 

minimize cpo(xo, XK) subject to 

Xj+l E Xj + hFj(Xj) for j = 0, ... ,K -1, 

cpi(xo,xK)~O for i=l, ... ,m, (6.20) 

cpi(xo,xK) =0 for i=m+1, ... ,m+r, 

with general endpoint constraints, where Fj and cpi are as in (6.1), while h > 0 is a parame
ter. Problems of type (6.20) particularly arise from discrete/finite-difference approximations 
of constrained optimal control systems governed by differential inclusions: 

minimize cp(x(a),x(b)) subject to x(t) E F(x(t),t) a.e. t E [a,bj 

under the endpoint constraints; see [1 7, Chapter 6] for more details and references. 
The next result, which is a consequence of Theorem 6.1 and certain rules of generalized 

differential and SNC calculi, provides necessary optimality conditions of the extended Euler
Lagrange type for problem (6.20) in Asplund spaces under minimal assumptions on the 
initial data; see the discussions below. 

Theorem 6.3 (extended Euler-Lagrange conditions for discrete approximations). 
Let { Xj I j = 0, ... , K} be a local optimal solution to problem (6.20) with the Asplund state 
space X. Assume that n and gph Fj are locally closed while cpi are locally Lipschitzian 
around (xo,XK) and (xj,(Xj+l- Xj)/h), respectively, for every i = O, ... ,m +rand 
j = 0, ... , K- 1. Assume also that all but one of the sets n and gph Fj are SNC at the cor
responding points (xo, XK) and (xi, (Xj+l -xj)/h), j = 0, ... , K-1. Then there exist multi
pliers ( .Ao, ... , Am+r) E JRm+r+l and an adjoint discrete trajectory {Pj E X* I"J = 0, ... , K}, 
not simultaneously zero, satisfying the extended Euler-Lagrange inclusion 

PHI- Pj ED* P.(- . . Xj+l- Xj) ( _ . ) h N 3 XJ, h PJ+l , J = o, ... ,K -1, (6.21) 

accompanied by the transversality inclusion (6.3) together with the sign and complementary 
slackness conditions ( 6.4) . 

Proof. Problem (6.20) can be considered as a particular case of the general discrete-time 
Mayer problem (6.1) governed by the discrete inclusions 

Xj+l E Gj(Xj) with Gj(x) := x + hFj(x), j = 0, ... , K- 1, (6.22) 

subject to the above endpoint constraints. Applying Theorem 6.1 to this form of .(6.20), we 
need to present the assumptions and necessary optimality conditions therein in terms of the 
initial data of (6.20). First check that, for each j = 0, ... , K -1, the SNC property of Gj at 
(xj,Xj+l) is equivalent to this property of Fj (xj, (xj+1 - Xj)/h). In fact, this equivalence 
follows directly from the SNC calculus result of {16, Theorem 1.70] applied to the mapping 
addition in (6.22). 
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Furthermore, applying the Euler-Lagrange inclusion (6.2) to Gj and using the coderiva
tive sum rulefrom [16, Theorem 1.62(ii)] with taking into account the obvious relationship 
Df.:(hF)(·) = hDf.:F(:) held for any mapping F and number h > 0, we readily deduce 
(6.21) from (6.2) and thus complete the proof of the theorem. !:::,. 

The results and methods developed in this section can be similarly applied to the so
called Bolza-type problems for discrete-time inclusions and discrete approximations. In the 
latter case the cost functional is given by 

K-1 
. . . ( ) h ~ {) ( Xj+l - Xj) . m1mm1ze cpo xo, XK + L.r j Xj, h , 

j=O· 

(6.23) 

which comes, in particular, from the classical Euler finite-difference replacement of the 
time-derivative in the Bolza functional 

minimize·cpo(x(a),x(b)) + 1b 'l?(x(t),x)(t),t) dt 

for differential inclusions; see [17, Chapter 6] for more details. 
In [17, Subsection 6.1.4], we studied the Bolza problem for discrete approximations 

of differential inclusions in Asplund spaces with geometric endpoint constraints by using 
its reduction to infinite-dimensional problems of mathematical programming with operator 
constraints of Fredholm type. Such an approach allowed us to establish extended Euler
Lagrange. conditions in the form of Theorem 6.3 but under more restrictive assumptions 
requiring that all the sets n and gph Fj for j = 0, ... , K - 1 are SNC at the correspond
ing points. In this paper we achieve, using another. approach, significant improvements 
of the previous results requiring the SNC property of all but one of the above sets. This 
particularly allows us to fully avoid any SNC/finite codimension type assumptions on the 
constraint/target set n providing that all the mapping Fj, j = 0, ... , K- 1, are SNC at the 
corresponding points. It covers, e.g., the case of two-point constraints with fixed endpoints 
xo and XK, which has always been troublesome in infinite-dimensional optimal control; cf. 
the books by Fattorini [6] and Li and Yong [14], and Mordukhovich [17]. 
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