14 research outputs found

    Automated Reasoning in Deontic Logic

    Full text link
    Deontic logic is a very well researched branch of mathematical logic and philosophy. Various kinds of deontic logics are discussed for different application domains like argumentation theory, legal reasoning, and acts in multi-agent systems. In this paper, we show how standard deontic logic can be stepwise transformed into description logic and DL- clauses, such that it can be processed by Hyper, a high performance theorem prover which uses a hypertableau calculus. Two use cases, one from multi-agent research and one from the development of normative system are investigated

    Modal satisfiability via SMT solving

    Get PDF
    Modal logics extend classical propositional logic, and they are robustly decidable. Whereas most existing decision procedures for modal logics are based on tableau constructions, we propose a framework for obtaining decision procedures by adding instantiation rules to standard SAT and SMT solvers. Soundness, completeness, and termination of the procedures can be proved in a uniform and elementary way for the basic modal logic and some extensions.Fil: Areces, Carlos Eduardo. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía y Física; Argentina.Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina.Fil: Fontaine, Pascal. Université de Lorraine; Francia.Fil: Fontaine, Pascal. National Institute for Research in Digital Science and Technology; Francia.Fil: Merz, Stephan. Université de Lorraine; Francia.Fil: Merz, Stephan. National Institute for Research in Digital Science and Technology; Francia.Ciencias de la Computació

    Designing Normative Theories for Ethical and Legal Reasoning: LogiKEy Framework, Methodology, and Tool Support

    Full text link
    A framework and methodology---termed LogiKEy---for the design and engineering of ethical reasoners, normative theories and deontic logics is presented. The overall motivation is the development of suitable means for the control and governance of intelligent autonomous systems. LogiKEy's unifying formal framework is based on semantical embeddings of deontic logics, logic combinations and ethico-legal domain theories in expressive classic higher-order logic (HOL). This meta-logical approach enables the provision of powerful tool support in LogiKEy: off-the-shelf theorem provers and model finders for HOL are assisting the LogiKEy designer of ethical intelligent agents to flexibly experiment with underlying logics and their combinations, with ethico-legal domain theories, and with concrete examples---all at the same time. Continuous improvements of these off-the-shelf provers, without further ado, leverage the reasoning performance in LogiKEy. Case studies, in which the LogiKEy framework and methodology has been applied and tested, give evidence that HOL's undecidability often does not hinder efficient experimentation.Comment: 50 pages; 10 figure

    Proof Complexity of Modal Resolution Systems

    Get PDF
    In this thesis we initiate the study of the proof complexity of modal resolution systems. To our knowledge there is no previous work on the proof complexity of such systems. This is in sharp contrast to the situation for propositional logic where resolution is the most studied proof system, in part due to its close links with satisfiability solving. We focus primarily on the proof complexity of two recently proposed modal resolution systems of Nalon, Hustadt and Dixon, one of which forms the basis of an existing modal theorem prover. We begin by showing that not only are these two proof systems equivalent in terms of their proof complexity, they are also equivalent to a number of natural refinements. We further compare the proof complexity of these systems with an older, more complicated modal resolution system of Enjalbert and Farinas del Cerro, showing that this older system p-simulates the more streamlined calculi. We then investigate lower bound techniques for modal resolution. Here we see that whilst some propositional lower bound techniques (i.e. feasible interpolation) can be lifted to the modal setting with only minor modifications, other propositional techniques (i.e. size-width) fail completely. We further develop a new lower bound technique for modal resolution using Prover-Delayer games. This technique can be used to establish "genuine" modal lower bounds (i.e lower bounds on the number of modal inferences) for the size of tree-like modal resolution proofs. We apply this technique to a new family of modal formulas, called the modal pigeonhole principle to demonstrate that these formulas require exponential size modal resolution proofs. Finally we compare the proof complexity of tree-like modal resolution systems with that of modal Frege systems, using our modal pigeonhole principle to obtain a "genuinely" modal separation between them

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic

    Mechanised Uniform Interpolation for Modal Logics K, GL, and iSL

    Get PDF
    The uniform interpolation property in a given logic can be understood as the definability of propositional quantifiers. We mechanise the computation of these quantifiers and prove correctness in the Coq proof assistant for three modal logics, namely: (1) the modal logic K, for which a pen-and-paper proof exists; (2) Gödel-Löb logic GL, for which our formalisation clarifies an important point in an existing, but incomplete, sequent-style proof; and (3) intuitionistic strong Löb logic iSL, for which this is the first proof-theoretic construction of uniform interpolants. Our work also yields verified programs that allow one to compute the propositional quantifiers on any formula in this logic

    Pseudo-contractions as Gentle Repairs

    Get PDF
    Updating a knowledge base to remove an unwanted consequence is a challenging task. Some of the original sentences must be either deleted or weakened in such a way that the sentence to be removed is no longer entailed by the resulting set. On the other hand, it is desirable that the existing knowledge be preserved as much as possible, minimising the loss of information. Several approaches to this problem can be found in the literature. In particular, when the knowledge is represented by an ontology, two different families of frameworks have been developed in the literature in the past decades with numerous ideas in common but with little interaction between the communities: applications of AGM-like Belief Change and justification-based Ontology Repair. In this paper, we investigate the relationship between pseudo-contraction operations and gentle repairs. Both aim to avoid the complete deletion of sentences when replacing them with weaker versions is enough to prevent the entailment of the unwanted formula. We show the correspondence between concepts on both sides and investigate under which conditions they are equivalent. Furthermore, we propose a unified notation for the two approaches, which might contribute to the integration of the two areas

    Automated Deduction – CADE 28

    Get PDF
    This open access book constitutes the proceeding of the 28th International Conference on Automated Deduction, CADE 28, held virtually in July 2021. The 29 full papers and 7 system descriptions presented together with 2 invited papers were carefully reviewed and selected from 76 submissions. CADE is the major forum for the presentation of research in all aspects of automated deduction, including foundations, applications, implementations, and practical experience. The papers are organized in the following topics: Logical foundations; theory and principles; implementation and application; ATP and AI; and system descriptions
    corecore