25,351 research outputs found

    Model-Checking Problems as a Basis for Parameterized Intractability

    Full text link
    Most parameterized complexity classes are defined in terms of a parameterized version of the Boolean satisfiability problem (the so-called weighted satisfiability problem). For example, Downey and Fellow's W-hierarchy is of this form. But there are also classes, for example, the A-hierarchy, that are more naturally characterised in terms of model-checking problems for certain fragments of first-order logic. Downey, Fellows, and Regan were the first to establish a connection between the two formalisms by giving a characterisation of the W-hierarchy in terms of first-order model-checking problems. We improve their result and then prove a similar correspondence between weighted satisfiability and model-checking problems for the A-hierarchy and the W^*-hierarchy. Thus we obtain very uniform characterisations of many of the most important parameterized complexity classes in both formalisms. Our results can be used to give new, simple proofs of some of the core results of structural parameterized complexity theory.Comment: Changes in since v2: Metadata update

    Expanding the expressive power of Monadic Second-Order logic on restricted graph classes

    Full text link
    We combine integer linear programming and recent advances in Monadic Second-Order model checking to obtain two new algorithmic meta-theorems for graphs of bounded vertex-cover. The first shows that cardMSO1, an extension of the well-known Monadic Second-Order logic by the addition of cardinality constraints, can be solved in FPT time parameterized by vertex cover. The second meta-theorem shows that the MSO partitioning problems introduced by Rao can also be solved in FPT time with the same parameter. The significance of our contribution stems from the fact that these formalisms can describe problems which are W[1]-hard and even NP-hard on graphs of bounded tree-width. Additionally, our algorithms have only an elementary dependence on the parameter and formula. We also show that both results are easily extended from vertex cover to neighborhood diversity.Comment: Accepted for IWOCA 201

    Parameterized Complexity of Binary CSP: Vertex Cover, Treedepth, and Related Parameters

    Get PDF
    We investigate the parameterized complexity of Binary CSP parameterized by the vertex cover number and the treedepth of the constraint graph, as well as by a selection of related modulator-based parameters. The main findings are as follows: - Binary CSP parameterized by the vertex cover number is W[3]-complete. More generally, for every positive integer d, Binary CSP parameterized by the size of a modulator to a treedepth-d graph is W[2d+1]-complete. This provides a new family of natural problems that are complete for odd levels of the W-hierarchy. - We introduce a new complexity class XSLP, defined so that Binary CSP parameterized by treedepth is complete for this class. We provide two equivalent characterizations of XSLP: the first one relates XSLP to a model of an alternating Turing machine with certain restrictions on conondeterminism and space complexity, while the second one links XSLP to the problem of model-checking first-order logic with suitably restricted universal quantification. Interestingly, the proof of the machine characterization of XSLP uses the concept of universal trees, which are prominently featured in the recent work on parity games. - We describe a new complexity hierarchy sandwiched between the W-hierarchy and the A-hierarchy: For every odd t, we introduce a parameterized complexity class S[t] with W[t] ? S[t] ? A[t], defined using a parameter that interpolates between the vertex cover number and the treedepth. We expect that many of the studied classes will be useful in the future for pinpointing the complexity of various structural parameterizations of graph problems

    The parameterized complexity of positional games

    Get PDF
    We study the parameterized complexity of several positional games. Our main result is that Short Generalized Hex is W[1]-complete parameterized by the number of moves. This solves an open problem from Downey and Fellows’ influential list of open problems from 1999. Previously, the problem was thought of as a natural candidate for AW[*]-completeness. Our main tool is a new fragment of first-order logic where universally quantified variables only occur in inequalities. We show that model-checking on arbitrary relational structures for a formula in this fragment is W[1]-complete when parameterized by formula size. We also consider a general framework where a positional game is represented as a hypergraph and two players alternately pick vertices. In a Maker-Maker game, the first player to have picked all the vertices of some hyperedge wins the game. In a Maker-Breaker game, the first player wins if she picks all the vertices of some hyperedge, and the second player wins otherwise. In an Enforcer-Avoider game, the first player wins if the second player picks all the vertices of some hyperedge, and the second player wins otherwise. Short Maker-Maker, Short Maker-Breaker, and Short Enforcer-Avoider are respectively AW[*]-, W[1]-, and co-W[1]-complete parameterized by the number of moves. This suggests a rough parameterized complexity categorization into positional games that are complete for the first level of the W-hierarchy when the winning condition only depends on which vertices one player has been able to pick, but AW[*]-complete when it depends on which vertices both players have picked. However, some positional games with highly structured board and winning configurations are fixed-parameter tractable. We give another example of such a game, Short k-Connect, which is fixed-parameter tractable when parameterized by the number of moves

    The parameterized complexity of positional games

    Get PDF
    We study the parameterized complexity of several positional games. Our main result is that Short Generalized Hex is W[1]-complete parameterized by the number of moves. This solves an open problem from Downey and Fellows’ influential list of open problems from 1999. Previously, the problem was thought of as a natural candidate for AW[*]-completeness. Our main tool is a new fragment of first-order logic where universally quantified variables only occur in inequalities. We show that model-checking on arbitrary relational structures for a formula in this fragment is W[1]-complete when parameterized by formula size. We also consider a general framework where a positional game is represented as a hypergraph and two players alternately pick vertices. In a Maker-Maker game, the first player to have picked all the vertices of some hyperedge wins the game. In a Maker-Breaker game, the first player wins if she picks all the vertices of some hyperedge, and the second player wins otherwise. In an Enforcer-Avoider game, the first player wins if the second player picks all the vertices of some hyperedge, and the second player wins otherwise. Short Maker-Maker, Short Maker-Breaker, and Short Enforcer-Avoider are respectively AW[*]-, W[1]-, and co-W[1]-complete parameterized by the number of moves. This suggests a rough parameterized complexity categorization into positional games that are complete for the first level of the W-hierarchy when the winning condition only depends on which vertices one player has been able to pick, but AW[*]-complete when it depends on which vertices both players have picked. However, some positional games with highly structured board and winning configurations are fixed-parameter tractable. We give another example of such a game, Short k-Connect, which is fixed-parameter tractable when parameterized by the number of moves

    First-Order Model-Checking in Random Graphs and Complex Networks

    Get PDF
    Complex networks are everywhere. They appear for example in the form of biological networks, social networks, or computer networks and have been studied extensively. Efficient algorithms to solve problems on complex networks play a central role in today's society. Algorithmic meta-theorems show that many problems can be solved efficiently. Since logic is a powerful tool to model problems, it has been used to obtain very general meta-theorems. In this work, we consider all problems definable in first-order logic and analyze which properties of complex networks allow them to be solved efficiently. The mathematical tool to describe complex networks are random graph models. We define a property of random graph models called α\alpha-power-law-boundedness. Roughly speaking, a random graph is α\alpha-power-law-bounded if it does not admit strong clustering and its degree sequence is bounded by a power-law distribution with exponent at least α\alpha (i.e. the fraction of vertices with degree kk is roughly O(k−α)O(k^{-\alpha})). We solve the first-order model-checking problem (parameterized by the length of the formula) in almost linear FPT time on random graph models satisfying this property with α≥3\alpha \ge 3. This means in particular that one can solve every problem expressible in first-order logic in almost linear expected time on these random graph models. This includes for example preferential attachment graphs, Chung-Lu graphs, configuration graphs, and sparse Erd\H{o}s-R\'{e}nyi graphs. Our results match known hardness results and generalize previous tractability results on this topic

    Parameterized Complexity of Binary CSP: Vertex Cover, Treedepth, and Related Parameters

    Get PDF
    We investigate the parameterized complexity of Binary CSP parameterized by the vertex cover number and the treedepth of the constraint graph, as well as by a selection of related modulator-based parameters. The main findings are as follows: Binary CSP parameterized by the vertex cover number is W[3]-complete. More generally, for every positive integer d, Binary CSP parameterized by the size of a modulator to a treedepth-d graph is W[2d + 1]-complete. This provides a new family of natural problems that are complete for odd levels of the W-hierarchy. We introduce a new complexity class XSLP, defined so that Binary CSP parameterized by treedepth is complete for this class. We provide two equivalent characterizations of XSLP: the first one relates XSLP to a model of an alternating Turing machine with certain restrictions on conondeterminism and space complexity, while the second one links XSLP to the problem of model-checking first-order logic with suitably restricted universal quantification. Interestingly, the proof of the machine characterization of XSLP uses the concept of universal trees, which are prominently featured in the recent work on parity games. We describe a new complexity hierarchy sandwiched between the W-hierarchy and the A-hierarchy: For every odd t, we introduce a parameterized complexity class S[t] with W[t] ⊆ S[t] ⊆ A[t], defined using a parameter that interpolates between the vertex cover number and the treedepth. We expect that many of the studied classes will be useful in the future for pinpointing the complexity of various structural parameterizations of graph problems

    One hierarchy spawns another: graph deconstructions and the complexity classification of conjunctive queries

    Get PDF
    We study the problem of conjunctive query evaluation relative to a class of queries. This problem is formulated here as the relational homomorphism problem relative to a class of structures A, in which each instance must be a pair of structures such that the first structure is an element of A. We present a comprehensive complexity classification of these problems, which strongly links graph-theoretic properties of A to the complexity of the corresponding homomorphism problem. In particular, we define a binary relation on graph classes, which is a preorder, and completely describe the resulting hierarchy given by this relation. This relation is defined in terms of a notion that we call graph deconstruction and that is a variant of the well-known notion of tree decomposition. We then use this hierarchy of graph classes to infer a complexity hierarchy of homomorphism problems that is comprehensive up to a computationally very weak notion of reduction, namely, a parameterized version of quantifier-free, first-order reduction. In doing so, we obtain a significantly refined complexity classification of homomorphism problems as well as a unifying, modular, and conceptually clean treatment of existing complexity classifications. We then present and develop the theory of Ehrenfeucht-Fraïssé-style pebble games, which solve the homomorphism problems where the cores of the structures in A have bounded tree depth. This condition characterizes those classical homomorphism problems decidable in logarithmic space, assuming a hypothesis from parameterized space complexity. Finally, we use our framework to classify the complexity of model checking existential sentences having bounded quantifier rank

    Fixed-parameter tractability, definability, and model checking

    Full text link
    In this article, we study parameterized complexity theory from the perspective of logic, or more specifically, descriptive complexity theory. We propose to consider parameterized model-checking problems for various fragments of first-order logic as generic parameterized problems and show how this approach can be useful in studying both fixed-parameter tractability and intractability. For example, we establish the equivalence between the model-checking for existential first-order logic, the homomorphism problem for relational structures, and the substructure isomorphism problem. Our main tractability result shows that model-checking for first-order formulas is fixed-parameter tractable when restricted to a class of input structures with an excluded minor. On the intractability side, for every t >= 0 we prove an equivalence between model-checking for first-order formulas with t quantifier alternations and the parameterized halting problem for alternating Turing machines with t alternations. We discuss the close connection between this alternation hierarchy and Downey and Fellows' W-hierarchy. On a more abstract level, we consider two forms of definability, called Fagin definability and slicewise definability, that are appropriate for describing parameterized problems. We give a characterization of the class FPT of all fixed-parameter tractable problems in terms of slicewise definability in finite variable least fixed-point logic, which is reminiscent of the Immerman-Vardi Theorem characterizing the class PTIME in terms of definability in least fixed-point logic.Comment: To appear in SIAM Journal on Computin

    Finite Model Finding for Parameterized Verification

    Get PDF
    In this paper we investigate to which extent a very simple and natural "reachability as deducibility" approach, originated in the research in formal methods in security, is applicable to the automated verification of large classes of infinite state and parameterized systems. The approach is based on modeling the reachability between (parameterized) states as deducibility between suitable encodings of states by formulas of first-order predicate logic. The verification of a safety property is reduced to a pure logical problem of finding a countermodel for a first-order formula. The later task is delegated then to the generic automated finite model building procedures. In this paper we first establish the relative completeness of the finite countermodel finding method (FCM) for a class of parameterized linear arrays of finite automata. The method is shown to be at least as powerful as known methods based on monotonic abstraction and symbolic backward reachability. Further, we extend the relative completeness of the approach and show that it can solve all safety verification problems which can be solved by the traditional regular model checking.Comment: 17 pages, slightly different version of the paper is submitted to TACAS 201
    • …
    corecore