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Abstract
We investigate the parameterized complexity of Binary CSP parameterized by the vertex cover
number and the treedepth of the constraint graph, as well as by a selection of related modulator-based
parameters. The main findings are as follows:

Binary CSP parameterized by the vertex cover number is W[3]-complete. More generally, for
every positive integer d, Binary CSP parameterized by the size of a modulator to a treedepth-d
graph is W[2d + 1]-complete. This provides a new family of natural problems that are complete
for odd levels of the W-hierarchy.
We introduce a new complexity class XSLP, defined so that Binary CSP parameterized by
treedepth is complete for this class. We provide two equivalent characterizations of XSLP: the
first one relates XSLP to a model of an alternating Turing machine with certain restrictions on
conondeterminism and space complexity, while the second one links XSLP to the problem of
model-checking first-order logic with suitably restricted universal quantification. Interestingly,
the proof of the machine characterization of XSLP uses the concept of universal trees, which are
prominently featured in the recent work on parity games.
We describe a new complexity hierarchy sandwiched between the W-hierarchy and the A-hierarchy:
For every odd t, we introduce a parameterized complexity class S[t] with W[t] ⊆ S[t] ⊆ A[t],
defined using a parameter that interpolates between the vertex cover number and the treedepth.

We expect that many of the studied classes will be useful in the future for pinpointing the complexity
of various structural parameterizations of graph problems.
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1 Introduction

The Binary Constraint Satisfaction Problem (BinCSP, for short) is a fundamental
problem defined as follows. We are given an undirected graph G = (V,E), called the primal
or the Gaifman graph, where V is a set of variables, each with a prescribed domain of possible
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values. Further, each edge uv of G corresponds to a binary constraint that restricts the
possible pairs of values that can be assigned to u and v. The task is to decide whether every
variable can be mapped to a value from its domain so that all the constraints are satisfied.

Due to immense modeling power, constraint satisfaction problems are of great importance
in multiple applications, and the theoretical study of their complexity is a field on its own.
In this work we are interested in parameterized algorithms for BinCSP, with a particular
focus on structural parameters of the Gaifman graph. An example of such a result is a classic
observation, usually attributed to Freuder [32]: using dynamic programming, BinCSP can
be solved in time nk+O(1), where n is the maximum size of a domain and k is the treewidth of
the Gaifman graph. In the language of parameterized complexity, this means that BinCSP
parameterized by treewidth is slice-wise polynomial, or in the complexity class XP.

The class XP is very general and just placing BinCSP parameterized by treewidth within
XP does not provide much insight into the actual complexity of the problem. A more detailed
study of the parameterizations of BinCSP by pathwidth and by treewidth was recently
performed by Bodlaender, Groenland, Nederlof, and Swennenhuis in [11], and by Bodlaender,
Groenland, Jacob, Pilipczuk, and Pilipczuk in [10]. In particular, as shown in [11], BinCSP
parameterized by pathwidth is complete for XNLP: the class of all parameterized problems
that can be solved by a nondeterministic Turing machine using f(k) logn space and f(k)·nO(1)

time, where k is the parameter and f is a computable function. A “tree variant” of XNLP,
called XALP, was studied in [10]; it can be defined using the same model of a Turing
machine, except that the machine additionally has access to a stack of unbounded size that
can be manipulated by pushing and popping. As proved in [10], BinCSP parameterized by
treewidth is complete for XALP. All in all, the recent works [7, 9, 10, 11, 26] present a variety
of problems on graphs with linear or tree-like structure that are complete for XNLP and
XALP, respectively. This is an evidence that XNLP and XALP capture certain fundamental
varieties of computational problems: those amenable to linearly and tree-structured dynamic
programming with state space of slice-wise polynomial size.

The contemporary research in parameterized algorithms features many more structural
parameters of graphs, besides treewidth and pathwidth. In this work we explore the
complexity of BinCSP parameterized by the following parameters of the Gaifman graph:
(1) the vertex cover number, (2) the treedepth, and (3) a selection of related modulator-based
parameters lying between the vertex cover number and the treedepth.

New completeness results for the W-hierarchy. The W-hierarchy was introduced around
thirty years ago in the work by Downey and Fellows that founded the field of parameterized
algorithms and complexity. In this hierarchy, we have a collection of classes, including
W[1] ⊆ W[2] ⊆ . . . ⊆ W[SAT] ⊆ W[P]; see [20, 21, 30] for an overview and for bibliographic
references. A large variety of problems are known to be complete (under fpt reductions) for
W[1] and for W[2]. However, for classes W[t] with t ⩾ 3, there is so far only a handful of
examples of natural problems known to be complete [1, 5, 6, 14, 15, 36]. Our first contribution
is to give new examples of complete problems for W[t] for all odd t ⩾ 3.

Our first example concerns BinCSP parameterized by the vertex cover number: the
minimum size of a vertex cover in the Gaifman graph.

▶ Theorem 1. BinCSP parameterized by the vertex cover number of the Gaifman graph is
complete for the class W[3].

It was known that BinCSP parameterized by the vertex cover number is W[1]-hard [29, 44].
The W[3]-completeness is surprising, not only due to the small number of examples of natural
W[3]-complete problems, but also because many problems appear to be fixed-parameter
tractable or even have a kernel of polynomial size, when the vertex cover number is used as
the parameter (e.g., [28, 29, 31, 34]).
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For a graph G and a graph class C, a modulator to C in G is a set of vertices W such
that G−W ∈ C. For instance, vertex covers are modulators to the class of edgeless graphs.
A feedback vertex set is another type of a modulator, now to graphs without cycles, i.e., to
forests. The feedback vertex number of a graph G is the minimum size of a feedback vertex
set in G. We prove that the parameterization by the feedback vertex number yields a much
harder problem.

▶ Theorem 2. BinCSP parameterized by the feedback vertex number of the Gaifman graph
is W[SAT]-hard and in W[P].

Finally, with similar techniques, we obtain the following completeness results for W[t] for
all odd t ⩾ 3. Here, treedepth is a structural parameter measuring the “depth” of a graph,
we will expand on it later on.

▶ Theorem 3. For each integer d ⩾ 1, BinCSP is complete for W[2d+1] when parameterized
by the minimum size of a modulator to a graph of treedepth at most d, and when parameterized
by the minimum size of a modulator to a forest of depth at most d.

Interestingly, each increase of the depth of the trees by one corresponds to an increase in the
W-hierarchy by two levels: this is because one level of depth in the tree or forest corresponds
to a conjunction (looking at all children of a node) with a disjunction (the choice of a value).
Theorem 3 can be seen as an interpolation between Theorems 1 and 2: by allowing the forest
to have larger and larger depth, we obtain harder and harder parameterized problems. This
yields a family of natural complete problems for the odd levels of the W-hierarchy.

Theorem 1 is proved in Section 3, while Theorems 2 and 3 are proved in the full version [12].

Treedepth parameterization: class XSLP. As we argued, the classes XNLP and XALP
can be seen as the “natural home” for BinCSP parameterized by pathwidth and treewidth
respectively, and for many other problems on “path-like” or “tree-like” graphs. We introduce
a new parameterized complexity class XSLP which is the “natural home” for the parameter
treedepth instead, reflecting “shallow” graphs (this is what the letter S stands for).

The treedepth of a graph G is the minimum depth of a rooted forest F on the same
vertex set as G such that every edge of G connects a vertex with its ancestor in F ; thus, it
is a measure of shallowness of a graph. While treedepth is never smaller than pathwidth,
it can be arbitrarily large even on graphs of bounded pathwidth: a path on n vertices
has pathwidth 1 and treedepth ⌈log2(n + 1)⌉. Despite being relatively lesser known than
treewidth or pathwidth, treedepth appears naturally in many seemingly disconnected areas.
For instance, it features a prominent role in the theory of Sparsity (see [43, Chapters 6
and 7] for an overview), has interesting combinatorics of its own (see e.g. [16, 19, 22, 39]),
corresponds to important dividing lines in finite model theory (see e.g. [25, 40]), and governs
the parameterized complexity of block-structured integer programming (see [24] for an
overview). More importantly for us, a line of work [33, 37, 41, 42, 45, 46] uncovered that for
many classic problems, on graphs of low treedepth one can design fixed-parameter algorithms
that are both time- and space-efficient, which is conjectured not to be possible for the
pathwidth or treewidth parameterizations [46]. This makes treedepth a prime candidate for
a parameter that can be interesting from the point of view of BinCSP.

And so, we define two complexity classes: XSLP consists of all parameterized problems
that can be reduced to BinCSP parameterized by treedepth in parameterized logspace (that
is, in deterministic space f(k) + O(logn) for a computable f), while XSLP+ has the same
definition, except we consider fpt reductions. This distinction is of technical nature: on one
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hand we use parameterized logspace reductions to match the definitions of XALP and XNLP
and retain the inclusion XSLP ⊆ XNLP ⊆ XALP, and on the other hand we would like to
compare XSLP with the W-hierarchy, which requires closure under fpt reductions. In fact,
XSLP+ ⊇ W[t] for every integer t (this will follows from Proposition 4).

We prove two alternative characterizations of XSLP. The first one is through a machine
model: we prove that XSLP can be equivalently defined as problems that can be solved
by an alternating Turing machine with the following resource bounds: (1) f(k) logn bits
of nondeterminism, (2) f(k) + O(logn) bits of conondeterminism, (3) alternation at most
f(k), and (4) working space f(k) + O(logn) plus a read-once stack of size f(k) logn that
can be only pushed upon and read only at the end of the computation. See Theorem 10
in Section 4.1 for a formal statement. This reflects the characterization of XALP through
alternating Turing machines with different bounds on conondeterminism and the size of a
computation tree, see [10, Theorem 1].

The main step in the proof of our machine characterization of XSLP is a regularization
lemma for the considered machine model, allowing us to assume that the computation tree has
always a very concrete shape. Interestingly, this step crucially uses the existence of fpt-sized
universal trees, a tool fundamentally underlying the recent advances in the complexity of
parity games. While universal trees can be seen only implicitly in the breakthrough work of
Calude et al. [13], their central role in the approach was exposed in subsequent works [18, 38].

The second characterization is through model-checking first-order logic, and is inspired
by the definition of the A-hierarchy; see [30, Chapter 8]. In essence, we provide a complete
problem for XSLP, which amounts to model-checking first-order sentences in which universal
quantification must follow a root-to-leaf path in a rooted forest present in the structure.
Details and formal statements can be found in Section 4.2.

d-fold vertex cover and the S-hierarchy. We “project” the class XSLP closer to lower
levels of the W-hierarchy, thus obtaining a new hierarchy of parameterized classes sandwiched
between the W-hierarchy and the A-hierarchy. For this, we introduce the following parameter.

The 1-fold vertex cover number of a graph G is simply the number of vertices of G.
Inductively, for d ⩾ 2, the d-fold vertex cover number is the smallest integer k with
the following property: there is a subset of vertices U ⊆ V (G) with |U | ⩽ k such that
every connected component of G − U has (d − 1)-fold vertex cover number at most k.
Alternatively, we can also define the parameter using a “fattened” variant of elimination
trees (the decomposition notion underlying treedepth). Namely, G has d-fold vertex cover
number at most k if and only if there is a rooted tree T of depth at most d, and a vertex
partition {Vt : t ∈ V (T )} of V (G) such that |Vt| ⩽ k for all t ∈ V (T ), and edges in G between
vertices of Vs and Vt are only allowed when s and t are equal or are in an ancestor-descendant
relationship in T .

We now define the parameterized complexity class1 S[2d−1] as the fpt-closure of BinCSP
parameterized by the d-fold vertex cover number, for all integers d ⩾ 1. The following result
relates the introduced classes to the W-hierarchy, the A-hierarchy, and the class XSLP+.

▶ Proposition 4. For every integer d ⩾ 1, we have W[2d− 1] ⊆ S[2d− 1] ⊆ A[2d− 1] and
S[2d− 1] ⊆ XSLP+.

The proof is straightforward and is given in the full version [12].

1 We remark that there is an already existing concept called the S-hierarchy, related to subexponential
parameterized algorithms; see [30, Definition 16.9]. Since we are not aware of any subsequent work on
the structure of this hierarchy, we took the liberty of using the same naming scheme for our classes.
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While the definition of d-fold vertex cover seems not to have been discussed explicitly
in the literature, the idea of alternating deletions of batches of vertices and splitting into
connected components is not entirely new, as similar parameters that interpolate between
vertex cover and treedepth have previously been studied. For example, 2-fold vertex cover is
within a multiplicative factor of two of vertex integrity, a parameter that was introduced
by Barefoot, Entringer and Swart [4] in 1987 (see [2] for a survey). In the context of
block-structure integer programs, the fracture number [23] can be seen as an analogue of
2-fold vertex cover, while the concept of topological height [24] serves a role similar to that
of d in the definition of d-fold vertex cover.

Comparison to List Coloring. The classic List Coloring problem can be interpreted as
the special case of BinCSP where every constraint just stipulates that the values assigned
to adjacent variables are different from each other. Therefore, a hardness result for List
Coloring implies one for BinCSP. Vice versa, we can attempt to turn an instance of
BinCSP on graph G into an instance of List Coloring by adding, for each edge uv in G

and each forbidden pair of values (a, b), a vertex to G adjacent to u and v with color list
{a, b}. This transformation does not significantly affect graph parameters such as treedepth,
treewidth or pathwidth, so hardness and completeness results of BinCSP may also be
inherited to List Coloring. However, the transformation may make dramatic changes to
other parameters such as vertex cover and vertex modulator to a graph of treedepth at most
d, where we can only easily deduce W[2d− 1]-hardness from our W[2d+ 1]-hardness results.
In fact, we separate the two problems with the following result, proved in the full version [12].

▶ Theorem 5. List Coloring is in W[2] when parameterized by the vertex cover number
and in W[2d] when parameterized by the size of a modulator to a treedepth-d graph.

We believe that due to its robustness, BinCSP better suited to measure the complexity of
parameters than List Coloring is. This is also witnessed by the (nearly) tight completeness
results presented in Theorems 1, 2, and 3. Table 1 below presents a comparison of the
parameterized complexity landscapes of BinCSP and of List Coloring under various
structural parameterizations. We discuss this table in the full version [12].

2 Preliminaries

For integers a ⩽ b, we write [a, b] for {a, a+ 1, . . . , b}.

Graphs and their parameters. In this paper, we denote the depth of a rooted tree as the
maximum number of vertices on a path from root to leaf. A rooted forest is a collection of
rooted trees. The depth of a rooted forest is the maximum depth of the trees in the forest.2

We use standard graph notation. An elimination forest of a graph G, is a rooted forest
F with the same vertex set as G, such that for each edge uv of G, u is an ancestor of v or v
is an ancestor of u in F . (Note that the forest can contain edges that are not in G.) The
treedepth of a graph G is the minimum depth of of rooted forest embedding of G.

Let C be a class of graphs. A modulator to C in a graph G is a set of vertices W ⊆ V (G),
such that the graph G−W belongs to C. A vertex cover of a graph G is a set of vertices
W ⊆ V (G), such that every edge of G has at least one endpoint in W . Note that a set of

2 The definitions of depth of a tree used in the literature can differ by one. Here we count the number of
vertices, e.g., a tree consisting of a single vertex has depth 1.

ICALP 2023



27:6 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

Table 1 Complexity of BinCSP and List Coloring. Results marked with ∗ are shown in this
paper. Some results without a reference are easy to obtain.

Parameter Binary CSP List Coloring
number of vertices W[1]-complete [27, 44] poly-kernel

vertex cover W[3]-complete ∗ W[1]-hard [29], in W[2] ∗
feedback vertex set W[SAT]-hard, in W[P] ∗ W[3]-hard, in W[P] ∗

modulator to treedepth-d W[2d + 1]-complete ∗ W[2d − 1]-hard, in W[2d] ∗
modulator to depth d-forest W[2d + 1]-complete ∗ W[2d − 1]-hard, in W[2d] ∗

modulator to clique para-NP-complete FPT, poly-kernel [3, 35]
treedepth XSLP-complete ∗ XSLP-complete ∗

tree partition width XALP-complete [10] W[1]-hard, in XL [8]
tree partition width + degree XALP-complete [10] FPT

pathwidth XNLP-complete [11] XNLP-complete [11]
bandwidth XNLP-complete [11] FPT
treewidth XALP-complete [10] XALP-complete [10]

treewidth + degree XALP-complete [10] FPT

vertices is a vertex cover if and only if it is a modulator to the class of edgeless graphs, or,
equivalently, to the class of graphs with treedepth at most 1. A feedback vertex set in a graph
G is a modulator to a forest, or, equivalently, a set of vertices that intersects each cycle in G.

Constraint satisfaction problems. We consider the BinCSP problem defined as follows.
An instance of BinCSP is a triple

I = (G, {D(u) : u ∈ V (G)}, {C(u, v) : uv ∈ E(G)}),

where
G is an undirected graph, called the Gaifman graph of the instance;
for each u ∈ V (G), D(u) is a finite set called the domain of u; and
for each uv ∈ E(G), C(u, v) ⊆ D(u) × D(v) is a binary relation called the constraint
at uv. Note that C(u, v) is not necessarily symmetric; throughout this paper, we apply
the convention that C(v, u) = {(b, a) | (a, b) ∈ C(u, v)}.

In the context of a BinCSP instance, we may sometimes call vertices variables. A satisfying
assignment for an instance I is a function η that maps every variable u to a value η(u) ∈ D(u)
such that for every edge uv of G, we have (η(u), η(v)) ∈ C(u, v). The BinCSP problem asks,
for a given instance I, whether I is satisfiable, that is, there is a satisfying assignment for I.

The List Coloring problem is a special case of BinCSP defined as follows. An instance
consists of a graph G and, for every vertex u of G, a set (list) of colors L(u). The question
is whether there is a mapping f of vertices to colors such that for every vertex u we have
f(u) ∈ L(u), and for each edge uv of G, we have f(u) ̸= f(v). Note that this is equivalent to
a BinCSP instance where lists L(u) are the domains, and all constraints are non-equalities:
C(u, v) = {(a, b) ∈ L(u) × L(v) | a ̸= b} for every edge uv.

Complexity theory. We assume the reader to be familiar with standard notions of the
parameterized complexity theory, such as the W-hierarchy or parameterized reductions. For
more background, see [17, 20, 21, 30]. Let us recall concepts directly used in this paper.
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We say that a parameterized problem Q is in parameterized logspace if Q can be decided
in (deterministic) space f(k) + O(logn), for some computable function f . Note that every
problem in parameterized logspace is fixed-parameter tractable, because a Turing machine
working in space f(k) + O(logn) has 2O(f(k)) ·nO(1) configurations, and hence its acceptance
can be decided in fixed-parameter time.

An fpt-reduction is a parameterized reduction that works in fixed-parameter time. A
pl-reduction is a parameterized reduction that works in parameterized logspace, that is, can
be computed in (deterministic) space f(k) + O(logn), for some computable function f .

A Boolean formula is said to be t-normalized when it is the conjunction of disjunctions of
conjunctions of . . . of literals, with t levels of conjunctions or disjunctions. We only consider
the case where t ⩾ 2, and assume that we start by conjunctions. Note that 2-normalized
Boolean formulas are in Conjunctive Normal Form.

In the Weighted t-Normalized Satisfiability problem, we are given a t-normalized
Boolean formula F on n variables, and an integer k, and ask if we can satisfy F by setting
exactly k of the variables to true, and all other variables to false. This problem is complete
for W[t], see e.g. [20, 21]. A t-normalized expression is said to be anti-monotone if each
literal is the negation of a variable. We use the following result to simplify our proofs.

▶ Theorem 6 (Downey and Fellows, see [20, 21]). For every odd t ⩾ 3, Weighted Anti-
Monotone t-Normalized Satisfiability is complete for W [t].

We use the following result as starting point for membership proofs.

▶ Theorem 7 (Downey and Fellows, see [20, 21]). For every t ⩾ 2, Weighted t-Normalized
Satisfiability is complete for W[t].

3 W[3]-completeness for BinCSP parameterized by vertex cover

In this section, we prove Theorem 1. We prove the hardness below and refer to the full
version [12] for the proof of membership.

▶ Lemma 8. BinCSP with vertex cover as parameter is W[3]-hard.

Proof. Take an instance of Weighted 3-Normalized Anti-Monotone Satisfiability,
i.e., we have a Boolean formula F that is a conjunction of disjunctions of conjunctions of
negative literals, and ask if we can satisfy it by setting exactly k variables to true. Suppose
x1, . . . , xn are the variables used by F . Suppose F is the conjunction of r disjunctions of
conjunctions of negative literals.

We build a graph G as follows. The vertex set V (G) consists of a set W = {w1, . . . , wk}
of size k, and a set S = {v1, v2, . . . , vr} of size r. The set W will be the vertex cover of G,
and S will form an independent set. We add edges from each vertex in W to each other
vertex in the graph.

The domain of a vertex w ∈ W is D(w) = {x1, . . . , xn}. For distinct w,w′ ∈ W , w′ ≠ w′,
we set C(w,w′) = {(xi, xj) | i ≠ j}. This enforces that all vertices in W are assigned a
different value – this corresponds to setting exactly k variables to true.

Now consider a vertex vi ∈ S for i ∈ [1, r]. We say that vi represents the ith disjunction
of conjunctions of literals in F , i.e., each of the disjunctions in the formula is represented by
one vertex in the independent set. Suppose that this disjunction has ti terms (each term
is a conjunction of negative literals). We set D(vi) = [1, ti], that is, each value for vi is an
integer in [1, ti].

ICALP 2023



27:8 Binary CSP: Vertex Cover, Treedepth, and Related Parameters

The intuition is as follows. We set a variable xi to true, if and only if exactly one vertex
in W is assigned xi. As all vertices in W will get a different value, we set in this way
exactly k variables to true. The formula F is the conjunction of r disjunctions; each of
these disjunctions is represented by one of the vertices vi ∈ S. For each vi, the disjunction
represented by vi must be satisfied, so one of its terms must be satisfied. The value of vi

tells a satisfied term, i.e., if the value of vi is j ∈ [1, ti], then the jth term is satisfied. This is
checked by looking at the edges from vi to the vertices in W .

We now give the constraints that ensure the term is satisfied. Consider a vertex vi ∈ S

and w ∈ W . Recall that the value of vi is an integer in [1, ti] which represents one term in
the ith disjunction of F , and that term is a conjunction of a number of negative literals. For
j ∈ [1, ti] and j′ ∈ [1, n], we have (j, xj′) ∈ C(vi, w) if and only if for each literal ¬xj′′ that
appears in the jth term of the ith disjunction of F , j′′ ̸= j′.

We call the constructed graph G and write I for the corresponding instance of BinCSP.

▷ Claim 9. F can be satisfied by setting exactly k variables to true, if and only if I has a
satisfying assignment.

Proof of Claim 9. Suppose F can be satisfied by making xi1 , . . . , xik
true, and all other literals

false. Then assign the vertices in W the values xi1 , . . . , xik
successively. The constraints

between vertices in W are thus satisfied.
Now consider a vertex vi ∈ S. Consider the ith term Fi of the (upper level) conjunction

of F . This term must be satisfied by the truth assignment. Suppose the term is Fi =
Fi,1 ∨ · · · ∨Fi,ti . At least one of the Fij ’s must be satisfied by the truth assignment, say Fi,j′ .
Then assign vi the value j′.

We can verify that the constraints for edges between vi and each wj are fulfilled. By
assumption, Fi,j′ holds. It thus cannot contain a negative literal ¬xα, where xα is set to
true. So wj cannot be assigned xα when ¬xα is a literal in Fi,j′ . Thus we found a satisfying
assignment for I.

Now, suppose that I has a satisfying assignment. From the constraints between vertices
in W , we see that all vertices in W have a different value. Set a variable xi to true, if and
only if a vertex in W has value xi, and otherwise, set it to false. We have thus set exactly k
variables to true.

Consider the ith term of the upper level conjunction of F . Suppose this term is Fi,1 ∨ . . .∨
Fi,ti . Suppose vi is assigned value j. For each negative literal ¬xα in the conjunction Fi,j ,
by the constraints, we cannot have a vertex in W that is assigned xα, and thus xα is set to
false. Thus, the term Fi,j is satisfied by the truth assignment, and thus Fi is satisfied. As
this holds for all conjuncts of F , F is satisfied by the specified assignment. ◁

From Claim 9, we see that we have a parameterized reduction from Weighted Anti-
Monotone 3-Normalized Satisfiability to BinCSP with vertex cover as parameter. The
result now follows from the W[3]-hardness of Weighted Anti-Monotone 3-Normalized
Satisfiability (Theorem 6). ◀

4 XSLP and treedepth

In this section we discuss the class XSLP and its various characterizations. As discussed in
Section 1, we actually define two variants of this class, depending on the kind of reductions
that we would like to speak about. Let BinCSP/td denote the following parameterized problem.
We are given a BinCSP instance I and an elimination forest of the Gaifman graph of I
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of depth at most k, which is the parameter. The task is to decide whether I is satisfiable.
Then the two variants of XSLP are defined as the closures of this problem under pl- and
fpt-reductions, respectively:

XSLP = [BinCSP/td]pl and XSLP+ = [BinCSP/td]fpt
.

That is, XSLP consists of all parameterized problems that are pl-reducible to BinCSP/td, and
XSLP+ is defined similarly, but with fpt-reductions in mind.

Note that in the BinCSP/td problem we assume that a suitable elimination forest is provided
on input. This is to abstract away the need of computing such an elimination forest; the
complexity of this task is also an interesting question, but lies beyond the scope of this work.

4.1 A machine characterization
We first give a machine characterization of XSLP. We will use a model of an alternating
read-once stack machine, or AROSM for brevity, which we now define. We assume familiarity
with standard Turing machines, on which we build our model.

An alternating read-once stack machine M is a Turing machine that has access to three
types of memory, each using {0, 1} as the alphabet:

a read-only input tape;
a working tape; and
a read-once stack.

The input tape and the working tape are accessed and manipulated as usual, by a head
that may move, read, and (in the case of the working tape) write on the tape. The input
to the machine is provided on the input tape. On the other hand, the stack is initially
empty and the machine may, upon any transition, push a single symbol onto the stack. It
cannot, however, read the stack until the final step of the computation. More precisely,
the acceptance condition is as follows: The machine has a specified final state. Once it is
reached, the computation finishes and the machine reads the ith bit of the stack, where i is
the number whose binary encoding is the current content of the working tape. If this bit is 1,
then M accepts, and otherwise it rejects.

A configuration of M is a 5-tuple consisting of the state, the content of the working tape,
the content of the stack, and the positions of the heads on the input and the working tape.

Further, M is an alternating machine, which means that its states are partitioned into
three types: existential states, universal states, and deterministic states. A configuration
of a machine is existential/universal/deterministic if its state is so. When the state of the
machine is deterministic, there is exactly one transition allowed. At existential and universal
states, there are always two transitions allowed; these will be named the 0-transition and
the 1-transition. The acceptance is defined as usual in alternating machines: when in an
existential state, M may accept if at least one allowed transition leads to a configuration
from which it may accept, and in a universal state we require that both transitions lead to
configurations from which M may accept. The notion of a machine deciding a (parameterized)
problem is as usual.

The ∀ computation tree of M for input x is defined as a tree of configurations with the
following properties:

the root is the initial configuration with input x;
the leaves are configurations with the final state;
every deterministic and every existential configuration has exactly one child, which is the
unique, respectively any of the two configurations to which the machine may transit;
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every universal configuration has exactly two children, corresponding to the two
configurations to which the machine may transit.

It follows that M accepts input x if there is a ∀ computation tree for input x where every
leaf is a configuration in which M accepts. We call such ∀ computation trees accepting.

A branch of a (rooted) tree is a root-to-leaf path. For a ∀ computation tree T of
machine M , we define the following quantities:

The working space of T is the minimum number i such among configurations present
in T , the head on the working tape is never beyond the ith cell.
The stack size of T is the maximum size of the stack among all configurations in T .
The nondeterminism of T is the maximum number of existential configurations on any
branch of T .
The conondeterminism of T is the maximum number of universal configurations on any
branch of T .
The alternation of a branch of T is the minimum number of blocks into which the branch
can be partitioned so that each of the blocks does not simultaneously contain an existential
and a universal configuration. The alternation of T is the maximum alternation on any
branch of T .

We say that a machine M decides a parameterized problem Q using certain resources among
those described above, if for any input (x, k), we have (x, k) ∈ Q if and only if there is an
accepting ∀ computation tree for (x, k) that has the resources bounded as prescribed.

Having all the necessary definitions in place, we can state the main result of this section.

▶ Theorem 10. The following conditions are equivalent for a parameterized problem Q.
(1) Q ∈ XSLP;
(2) Q can be decided by an alternating read-once stack machine that for input (x, k) with

|x| = n, uses working space at most f(k)+O(logn), stack size f(k) logn, nondeterminism
f(k) logn, co-nondeterminism f(k)+O(logn), and alternation f(k), for some computable
function f .

Before we proceed to the proof of Theorem 10, let us discuss the necessity of different
resource restrictions described in (2):

Increasing the working space to f(k) logn (and thus rendering the stack, the non-
determinism and the co-nondeterminism unnecessary) would make the machine model at
least as powerful (and in fact, equivalently powerful) as deterministic Turing machines with
f(k) logn space; this corresponds to a class called XL. As XL+ (the closure of XL under
fpt reductions) contains AW[SAT] [30, Exercise 8.39], the supposition that the amended
model is still equivalent to XSLP would imply the inclusion AW[⋆] ⊆ AW[SAT] ⊆ XSLP+.
From the logic characterization that will be provided in Section 4.2 it follows that
AW[⋆] ⊇ XSLP+, so in fact we would obtain a collapse AW[⋆] = AW[SAT] = XSLP+.
If we increase the bound on allowed co-nondeterminism to f(k) logn, thus matching the
bound on the allowed nondeterminism, then it is not hard to see that the obtained machine
model would be able to solve the model-checking problem for first-order logic on general
relational structures, which is AW[⋆]-complete. Consequently, if the amended machine
model was still equivalent to XSLP, we would again obtain equality AW[⋆] = XSLP+,
which we consider unlikely.
If we let the machine use unbounded nondeterminism, then already for k constant
and assuming no use of co-nondeterminism, our machines would be able to solve every
problem in NL, including Directed Reachability. If the obtained machine model was
still equivalent to XSLP, then Directed Reachability would be reducible (in L) to
BinCSP on graphs of constant treedepth. But the latter problem is actually in L, so we
would obtain L = NL.
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We believe that increasing the alternation from f(k) to f(k) + O(logn) yields a strictly
more powerful machine model, though at this point we cannot pinpoint any concrete
collapse that would be implied by the converse. However, it is not hard to check that an
AROSM with resource bounds as in Theorem 10, but alternation f(k) + O(logn), is able
to solve BinCSP instances with Gaifman graphs of treedepth as large as logn, but with
all domains of size at most k. We do not see how to reduce this problem to BinCSP
with domains of unbounded size, but treedepth bounded by f(k).
It is an interesting question whether the f(k) logn bound on the stack size can be
lifted; that is, whether allowing unbounded stack size strictly increases the power of the
considered machine model. On one hand, in all our proofs, the stack is essentially only
used to store nondeterministic bits, and in any run there are at most f(k) logn of them
anyway. So if the stack is used only for this purpose, then it is immaterial whether its size
is bounded by f(k) logn or unbounded. On the other hand, the restriction on the stack
size plays an important role in the proof of the implication (2) ⇒ (1) of Theorem 10. We
leave resolving this question open.

The remainder of this section is devoted to the proof of Theorem 10. Naturally, the
argument is split into the forward and the backward implication.

We refer to the full version [12] for the proof of the simpler implication (1) ⇒ (2), but
briefly sketch it here. We use an AROSM to guess a satisfying assignment to the given
BinCSP/td instance, by going top-down through the associated forest. We use nondeterminism
to guess the assignment for the next vertex u, and conondeterminism to verify whether
the currently guessed partial assignment can be extended to all the subtrees rooted at the
children of u.

We now proceed to the more difficult implication (2) ⇒ (1) of Theorem 10. The main
idea is that we introduce a restricted variant of a regular AROSM, which is an AROSM
whose ∀ computation tree has a very specific shape, computable from k and the length of the
input. We will then show two lemmas: (i) for every AROSM there is an equivalent regular
one, and (ii) acceptance of a regular AROSM can be reduced to BinCSP/td. The main point
in this strategy is that the assumption that the computation tree is fixed allows us to fix it
as the elimination tree of the Gaifman graph of the constructed BinCSP instance.

More precisely, we will be working with the contracted ∀ computation trees defined as
follows. Let T be a ∀ computation tree of an AROSM M , where without loss of generality we
assume that the starting state of M is universal. A universal block of T is an inclusion-wise
maximal subtree A of T such that the root of A is a universal configuration and A does
not contain existential configurations. Note that removing all universal blocks from T

breaks T into a collection of disjoint paths consisting only of deterministic and existential
configurations; these will be called existential blocks. The contraction of T is the tree T ′

whose nodes are universal blocks of T , where the ancestor order is naturally inherited from T :
one block is an ancestor of the other in T ′ if this holds for their roots in T . Note that a
universal block B is a child of a universal block A in T ′ if and only if there is an existential
block C that connects the root of B with a leaf of A. Thus, the edges of T ′ are in one-to-one
correspondence with the existential blocks of T .

▶ Definition 11. An AROSM M is regular if given (1n, k) one can in parameterized logspace
compute a rooted tree Tn,k with the following properties:

Tn,k has depth at most f(k), for some computable function f ; and
for any input (x, k) with |x| = n, if M accepts (x, k), then M has a ∀ computation tree
accepting (x, k) whose contraction is Tn,k.
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With this definition in place, we can state the two lemmas described before.

▶ Lemma 12. If a parameterized problem Q can be decided by an AROSM M using the
resource bounds stated in Theorem 10, then it can also be decided by a regular AROSM M ′

using such resource bounds.

▶ Lemma 13. If Q can be decided by a regular AROSM M using the resource bounds stated
in Theorem 10, then Q ∈ XSLP.

The (2) ⇒ (1) implication of Theorem 10 follows directly by combining the two lemmas
above. The proof of Lemma 13 is a conceptually straightforward, though technically a bit
involved encoding of a ∀ computation tree of the machine through an instance of BinCSP
whose elimination tree is (roughly) Tn,k. We give this proof in the full version [12]. The proof
of Lemma 12 is the interesting part of the argument, as it involves the notion of universal
trees.

Before we proceed, let us state a simple lemma that is used in our proofs several times.
We included a proof in the full version [12] for completeness.

▶ Lemma 14. Suppose T is a rooted tree with N leaves. Then there exists a labelling λ that
maps every edge e of T to a binary string λ(e) ∈ {0, 1}⋆ with the following properties:

For every node u, the labels of edges connecting u with its children are pairwise different.
For every leaf ℓ, the total length of labels on the root-to-ℓ path in T is at most ⌈logN⌉.

Moreover, given T the labelling λ can be computed in deterministic logarithmic space.

4.1.1 Regularization
We now prove Lemma 12. We need the following definitions. An ordered tree is a rooted tree
where for every vertex u there is a linear order ⪯ on the children of u. An embedding of an
ordered tree S into an ordered tree T is an injective mapping ϕ : V (S) → V (T ) such that

the root of S is mapped to the root of T , and
for every node u of S, the children of u in S are mapped to distinct children of ϕ(u) in T
in an order-preserving way: if v ≺ v′ are distinct children of u in S, then ϕ(v) ≺ ϕ(v′).

We will use the following result about the existence of universal trees.

▶ Lemma 15 (follows from Jurdziński and Lazić [38], see also Theorem 2.2 of [18]). For every
pair of integers n, k ∈ N there exists an ordered tree Un,k such that

Un,k has depth k;
Un,k has at most 2n ·

(⌈log n⌉+k+1
k

)
leaves; and

for every ordered tree T of depth at most k and with at most n leaves, there is an
embedding of T into Un,k.

Moreover, given (1n, k), the tree Un,k can be computed parameterized logspace.

We remark that the claim about the computability of Un,k in parameterized logspace
is not present in [18, 38], but follows directly from the recursive construction presented
there. In fact, we will also need the following property, which again follows directly from the
construction, and which strengthens the embedding property stated in Lemma 15.

▶ Lemma 16. For every node u of Un,k, the subtree of Un,k rooted at u is isomorphic to
Un′,k′ for some n′ ⩽ n and k′ ⩽ k; the labeling of nodes of Un,k with suitable numbers
n′, k′ can be computed along with Un,k within the algorithm of Lemma 15. Moreover, if
n1, . . . , np are nonnegative integers such that n1 + . . . + np ⩽ n, then there are distinct
children v1 ≺ v2 ≺ . . . ≺ vp of the root of Un,k such that for every i ∈ {1, . . . , p}, the subtree
of Un,k rooted at vi is isomorphic to Un′

i
,k−1 for some n′

i ⩾ ni.
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Finally, observe that

2n ·
(

⌈logn⌉ + k + 1
k

)
⩽ 2n · 2⌈log n⌉+k+1 ⩽ O(2k · n2),

hence Un,k has O(2k · n2) leaves.
We proceed to the proof of Lemma 12. Let us fix an AROSM M that on any input

(x, k) with |x| ⩽ n, uses f(k) logn nondeterminism, f(k) + d logn conondeterminism, f(k)
alternation, f(k) + d logn working space, and f(k) logn stack size, where f is a computable
function and d ∈ N is a constant. We may assume w.l.o.g. that the starting state of M is
universal. Denote K = f(k) and N = 2f(k)+⌈d log n⌉ ⩽ 2f(k)+1 ·nd; then K is an upper bound
on the depth and N is an upper bound on the total number of leaves of any ∀ computation
tree accepting (x, k) within the stipulated resources. By Lemma 15, we may compute the
universal tree UN,K in deterministic space h(k) + O(logn) for a computable function h.
Note that UN,K has N ′ = O(2K · N2) ⩽ O(23f(k) · n2d) leaves. The tree UN,K will serve
the role of Tn,k in the proof. Also, we use Lemma 14 to compute a suitable labeling λ of
the edges of UN,K in which the total length of labels on every branch of UN,K is at most
⌈logN ′⌉ ⩽ 3f(k) + 2d logn+ O(1).

We are left with designing an AROSM M ′ that is equivalent to M , in the sense that M ′

accepts input (x, k) if and only if M does, and in such case the contracted ∀ computation
tree of M ′ on (x, k) may be UN,K . The idea is that machine M ′ will simulate M while
inserting some dummy computation to “fill” the contracted ∀ computation tree of M to UN,K .
However, we will need to be very careful about how the conondeterminism of M is simulated.

A stackless configuration is a configuration of M , but without specifying the content
of the stack; that is, it consists of the state of M , the content of the working tape, and
the positions of the heads on the input and the working tapes. For a universal stackless
configuration c of M , we define the universal block rooted at c, denoted U(c), as a rooted
tree of stackless configurations that is obtained just as the ∀ computation tree, except that
M starts at c and we do not continue the simulation once the final state or any existential
configuration is reached. Note here since M cannot read the stack except for the end of
the computation, U(c) is uniquely defined for every stackless configuration c. Thus, the
leaves of U(c) are existential or final (stackless) configurations, and whenever c is present in
a ∀ computation tree T of M , T contains a copy of U(c) rooted at c as a subtree.

The next claim shows that given a stackless configuration c, the universal block U(c) can
be computed within the allowed resources.

▷ Claim 17. Given a stackless configuration c of M , the universal block U(c), together
with a labelling of its edges with transitions taken, can be computed in deterministic space
h(k) + O(logn), for some computable h.

Proof. Let Z = f(k) + ⌊d logn⌋. Observe that for every binary string r ∈ {0, 1}Z , we
can compute the branch of U(c) that takes the consecutive conondeterministic choices as
prescribed by the consecutive bits of r. To do this, just simulate M starting from c and,
whenever a conondeterministic choice needs to be made, use the next bit of r to determine
how it is resolved. (This simulation stops when an existential or a final configuration is
encountered.) Having this subprocedure, the whole U(c) can be easily computed by iterating
through consecutive strings r ∈ {0, 1}Z and outputting the branches of U(c) one after the
other. (Strictly speaking, from every next branch we output only the part after diverging
from the previous branch.) Finally, note that r can be stored within the allowed space. ◁
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With Claim 17 established, we proceed to the construction of M ′. For the sake of the
proof, suppose M has a ∀ computation tree T that is accepting and uses the allowed resources.
Machine M ′ tries to verifies the existence of such T by traversing the universal tree UN,K

and guessing, along the way, how the contraction T ′ of T embeds into UN,K . By Lemma 15
we know that such an embedding always exists. The traversal of UN,K will be done in such
a way that the contracted ∀ computation tree of M ′ will be always UN,K .

At every point of computation, M ′ stores on its working tape a node u of UN,K and its
contracted ∀ computation tree from this point on should be the subtree of UN,K rooted at u.
Machine M ′ is always either in the real mode or in the dummy mode. In the real mode, M ′

is in the process of guessing a subtree of T . Therefore, then M ′ holds the following data:
On the working tape, M ′ stores a stackless configuration c of M . The reader should think
of c as of the configuration of M at the root of a universal block of T .
On its own stack, M ′ holds the content of the stack of M .
Additionally on the working tape, M ′ stores two integers a and b, denoting the total
number of nondeterministic and conondeterministic bits used by M so far, respectively.
(In other words, a and b are the total number of existential and universal configurations
visited so far on a branch of T .) We maintain the following invariant: the subtree of
UN,K rooted at u is UN ′,K′ for some K ′ ⩽ K and N ′ such that N ′ ⩾ N/2b.

Then the task of M ′ is to verify the existence of a subtree S of a ∀ computation tree of M
such that

S has c supplied with the current content of the stack at its root;
S embeds into the subtree of UN,K rooted at u;
the nondeterminism and the conondeterminism of S together with a and b add to at most
f(k) logn and f(k) + d logn, respectively; and
S is accepting, that is, every leaf of S is an accepting configuration.

In the dummy mode, M ′ is not guessing any part of T , so its task is to perform some
meaningless computation in order to make its contracted ∀ computation tree equal to the
subtree of UN,K rooted at u. So in this mode, M ′ holds on its working tape only the node u.

We now explain steps taken by M ′ in the real mode. Given c, M ′ applies the algorithm
of Claim 17 to compute the universal block U(c). (Formally speaking, U(c) is not computed
explicitly, as it would not fit within the working space, but at any point a bit from the
description of U(c) is needed, we run the algorithm of Claim 17 to compute this bit.) Let
ℓ1, . . . , ℓp be the leaves of U(c), in the order as they appear in the description of U(c).
Informally, we wish to fit in U(c) into the computation tree of M ′ while keeping enough
“space” for the remaining computations M may wish to perform, without knowing how the
computation will continue at the leaves. For every i ∈ {1, . . . , p}, let bi be total number of
universal configurations on the branch of U(c) finishing at ℓi. By assumption, the subtree of
UN,K rooted at u is isomorphic to UN ′,K′ for some N ′ ⩾ N/2b and K ′ ⩽ K. Similarly, we
would like to find children v1 ≺ v2 ≺ . . . ≺ vp of u in UN,K such that the subtree rooted at
each vi is isomorphic to UNi,K′−1 where Ni ⩾ N/2b+bi . This follows from Lemma 16: we
check that

p∑
i=1

N/2b+bi ⩽ N ′
p∑

i=1
2−bi = N ′,

where the last equality follows since U(c) is a binary tree. Note that given b1, . . . , bp, we may
compute the corresponding children v1, . . . , vp with sufficiently large subtrees in logarithmic
space greedily: having found vi, we can set vi+1 to be the ≺-smallest child v of u such that
vi ≺ v and the subtree rooted at v is isomorphic to UN ′′,K′−1 for some N ′′ ⩾ mi. Hence,
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from now on we assume that the children v1, . . . , vp are given to us. (Again, formally, when
we need any vi, we run the logarithmic space algorithm computing v1, . . . , vp to retrieve the
sought vi.)

Machine M ′ conondeterministically guesses the label λ(uv) of an edge uv connecting u
with a child v; this can be done using conondeterministic 2|λ(uv)| + 1 bits3. Noting that the
pair (u, λ(uv)) uniquely determines v, we can now compute v. We have two cases:

Suppose v = vi for some i ∈ {1, . . . , p}. Then M ′ simulates all transitions of M on the
path from c to the leaf ℓi in U(c) (this may include some push operations). If ℓi is a final
configuration, M ′ finishes the computation and verifies acceptance in the same way M
would do. Otherwise, if ℓi is an existential configuration, M ′ further nondeterministically
simulates M using its own nondeterminism, until a final or a universal configuration is
encountered, or the bound of f(k) logn on the total number of nondeterministic steps is
exceeded (together with a). In case of a final configuration, we do the same as before:
machine M ′ concludes the computation and verifies whether M accepts. In case of a
universal configuration, say c′, M ′ moves the currently considered node of UN,K from
u to v, and proceeds with working with c′ at v. The counters a and b are updated by
the total number of nondeterministic and conondeterminisitc bits used between ℓ and
c′ and between c and ℓ, respectively. Note here that the content of the stack has been
appropriately updated while simulating the transitions of M from c to c′.
Suppose v /∈ {v1, . . . , vp}. Then M ′ moves the currently considered node of UN,K from u

to v, but enters v in the dummy mode.
This concludes the description of the behavior of M ′ in the real mode.

Finally, when in the dummy mode, machine M ′ does as follows:
If u is a leaf, M ′ just accepts.
If u is not a leaf, M ′ conondeterministically chooses a label λ(uv) of an edge uv connecting
u with a child v, using 2|λ(u, v)|+1 conondeterminstic bits. Then M ′ computes v, performs
a trivial nondeterministic transition, and enters v, again in the dummy mode.

This completes the construction of M ′.
From the construction it follows that the contracted ∀ computation tree of M ′ on

(x, k) is always UN,K , hence M ′ is regular. Moreover, on every branch M ′ uses as much
nondeterminism as M , that is, at most f(k) logn, while the conondeterminism of M ′ is
bounded by 2⌈logN ′⌉ + k ⩽ 6f(k) + 4d logn+ k + O(1), by the assumed properties of the
labeling λ. The maximum stack length of M ′ is the same as that of M , while on its working
tape, M ′ holds always at most one configuration of M plus h(k) + O(logn) additional bits,
for some computable function h. Finally, since every contracted ∀ computation tree of M
accepting (x, k) within prescribed resources embeds into UN,K , it is straightforward to see
from the construction that M ′ accepts (x, k) within the prescribed resources if and only if M
does. This concludes the proof of Lemma 12, so the proof of Theorem 10 is also complete.

4.2 A logic characterization

We now provide another characterization of XSLP, by providing a complete problem related
to model-checking first-order logic. This reflects the definitions of classes AW[⋆] and of the
A-hierarchy, see [30, Chapter 8].

3 For instance, the machine can guess consecutive bits of λ(uv) interleaved with symbols 0 and 1, where 0
denotes “continue guessing” and 1 denotes “end of λ(uv)”.
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We use the standard terminology for relational structures. A (relational) signature is a
set Σ consisting of relation symbols, where each relation symbol R has a prescribed arity
ar(R) ∈ N. A Σ-structure A consists of a universe U and, for every relation symbol R ∈ Σ,
its interpretation RA ⊆ Uar(R) in A. In this paper we only consider binary signatures, that
is, signatures where every relation has arity at most 2.

For a signature Σ, we may consider standard first-order logic over Σ-structures. In
this logic there are variables for the elements of the universe. Atomic formulas are of the
form x = y and R(x1, . . . , xk) for some R ∈ Σ with k = ar(R), with the obvious semantics.
These can be used to form larger formulas by using Boolean connectives, negation, and
quantification (both existential and universal).

A Σ-structure A is called forest-shaped if Σ contains a binary relation parent such that
parentA is the parent relation on a rooted forest with the vertex set being the universe of A,
and a unary relation root such that rootA is the set of roots of this forest. We say that a
first-order sentence φ over Σ is ∀-guided if it is of the form:

φ = ∀x1 ∃y1 . . . ∀xk ∃yk (root(x1) ∧ parent(x1, x2) ∧ . . . ∧ parent(xk−1, xk)) ⇒
ψ(x1, y1, . . . , xk, yk)

where ψ is quantifier-free. In other words, φ is in a prenex form starting with a universal
quantifier, and moreover we require that the first universally quantified variable is a root
and every next universally quantified variable is a child of the previous one. Note that there
are no restrictions on existential quantification.

For a binary signature Σ, we consider the problem of model-checking ∀-guided formulas
on forest-shaped Σ-structures. In this problem we are given a forest-shaped Σ-structure A
and a ∀-guided sentence φ, and the question is whether φ holds in A. We consider this as a
parameterized problem where ∥φ∥ – the total length of an encoding of the sentence φ – is
the parameter.

The following statement provides a characterization of XSLP in terms of the model-
checking problem described above.

▶ Theorem 18. There exists a binary signature Σ such that the following conditions are
equivalent for a parameterized problem Q.
(1) Q ∈ XSLP;
(2) Q can be pl-reduced to the problem of model-checking ∀-guided sentences on forest-shaped

Σ-structures.
The proof of Theorem 18 can be found in the full version [12], but we sketch it here.
For the (1) ⇒ (2) implication, it suffices to pl-reduce BinCSP/td to the model-checking

problem for ∀-guided sentences on forest-shaped structures. This is a fairly straightforward
construction. Given an instance I of BinCSP/td, we build a relational structure A consisting
of the (given) elimination forest F of the Gaifman graph of I and the disjoint union of
domains D(u) of variables u of I. These domains are bound to respective variables using
a binary predicate, and there is another binary predicate encoding the constraints. Then
it is straightforward to write a ∀-guided sentence φ that checks the satisfiability of I in a
top-down manner on F : existential variables are used to guess the evaluation of variables
of I, while universal variables are used to verify the possibility of extending the current
partial evaluation further down.

For the (2) ⇒ (1) implication, by Theorem 10 it suffices to design an AROSM M that
solves the model-checking problem for ∀-guided sentences on forest-shaped Σ-structures
within the bounds stipulated in Theorem 10. Machine M uses its conondeterminism and
nondeterminism to universally and existentially guess the evaluations of consecutive variables
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x1, y1, . . . , xk, yk, within 2k rounds of alternation. Here, the assumption that the input
sentence is ∀-guided and the input structure is forest-shaped can be used in conjunction with
Lemma 14 to bound the total conondeterminism used by O(k + logn). Once all variables
are evaluated, satisfaction of ψ can be checked within 4 additional rounds of alternation by
assuming without loss of generality that ψ is in DNF.

5 Conclusion

In this paper we explored the parameterized complexity of BinCSP for a variety of relatively
strong structural parameters, including the vertex cover number, treedepth, and several
modulator-based parameters. We believe that together with the previous works on XALP and
XNLP [7, 9, 10, 11, 26], our work uncovers a rich complexity structure within the class XP,
which is worth further exploration. We selected concrete open questions below.

In [10, 11], several problems such as Independent Set or Dominating Set, which are
fixed-parameter tractable when parameterized by treewidth, were shown to be XALP-
and XNLP-complete when parameterized by the logarithmic treewidth and pathwidth,
which is at most k when the corresponding width measure is at most k logn. Can one
prove similar results for the class XSLP and parameterization by logarithmic treedepth?
Theorem 3 provides natural complete problems only for the odd levels of the W-hierarchy.
Similarly, we defined the S-hierarchy only for odd levels. It would be interesting to have
a natural description of the situation also for the even levels.
The characterizations of XSLP given by Theorems 10 and 18 can be “projected” to a
rough characterizations of classes S[d] for odd d by stipulating that the alternation is
at most d. Unfortunately, this projection turns out not to be completely faithful: the
obtained problems do not precisely characterize the class S[d], but lie somewhere between
S[d− O(1)] and S[d+ O(1)]. Can we provide a compelling description of the levels of the
S-hierarchy in terms of machine problems or in terms of model-checking first-order logic?
What is the complexity of List Coloring parameterized by the vertex cover number?
Currently, we know it is W[1]-hard and in W[2]. Similarly, what is the complexity of
List Coloring and Precoloring Extension with the minimum size of a modulator
to a treedepth-d graph as the parameter?
Can one obtain a better understanding of the complexity of BinCSP and List Coloring
parameterized by the feedback vertex number?
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