7 research outputs found

    Petri Net Reachability Graphs: Decidability Status of FO Properties

    Get PDF
    We investigate the decidability and complexity status of model-checking problems on unlabelled reachability graphs of Petri nets by considering first-order, modal and pattern-based languages without labels on transitions or atomic propositions on markings. We consider several parameters to separate decidable problems from undecidable ones. Not only are we able to provide precise borders and a systematic analysis, but we also demonstrate the robustness of our proof techniques

    Petri Net Reachability Graphs: Decidability Status of FO Properties

    Get PDF
    International audienceWe investigate the decidability and complexity status of model-checking problems on unlabelled reachability graphs of Petri nets by considering first-order, modal and pattern-based languages without labels on transitions or atomic propositions on markings. We consider several parameters to separate decidable problems from undecidable ones. Not only are we able to provide precise borders and a systematic analysis, but we also demonstrate the robustness of our proof techniques

    First-Order Logic with Reachability Predicates on Infinite Systems

    Get PDF
    This paper focuses on first-order logic (FO) extended by reachability predicates such that the expressiveness and hence decidability properties lie between FO and monadic second-order logic (MSO): in FO(R) one can demand that a node is reachably from another by some sequence of edges, whereas in FO(Reg) a regular set of allowed edge sequences can be given additionally. We study FO(Reg) logic in infinite grid-like structures which are important in verification. The decidability of logics between FO and MSO on those simple structures turns out to be sensitive to various parameters. Furthermore we introduce a transformation for infinite graphs called setbased unfolding which is based on an idea of Lohrey and Ondrusch. It allows to transfer the decidability of MSO to FO(Reg) onto the class of transformed structures. Finally we extend regular ground tree rewriting with a skeleton tree. We show that graphs specified in this way coincide with those expressible by vertex replacement and product operators. This allows to extend decidability results of Colcombet for FO(R) to those graphs

    The word problem and combinatorial methods for groups and semigroups

    Get PDF
    The subject matter of this thesis is combinatorial semigroup theory. It includes material, in no particular order, from combinatorial and geometric group theory, formal language theory, theoretical computer science, the history of mathematics, formal logic, model theory, graph theory, and decidability theory. In Chapter 1, we will give an overview of the mathematical background required to state the results of the remaining chapters. The only originality therein lies in the exposition of special monoids presented in §1.3, which uni.es the approaches by several authors. In Chapter 2, we introduce some general algebraic and language-theoretic constructions which will be useful in subsequent chapters. As a corollary of these general methods, we recover and generalise a recent result by Brough, Cain & Pfei.er that the class of monoids with context-free word problem is closed under taking free products. In Chapter 3, we study language-theoretic and algebraic properties of special monoids, and completely classify this theory in terms of the group of units. As a result, we generalise the Muller-Schupp theorem to special monoids, and answer a question posed by Zhang in 1992. In Chapter 4, we give a similar treatment to weakly compressible monoids, and characterise their language-theoretic properties. As a corollary, we deduce many new results for one-relation monoids, including solving the rational subset membership problem for many such monoids. We also prove, among many other results, that it is decidable whether a one-relation monoid containing a non-trivial idempotent has context-free word problem. In Chapter 5, we study context-free graphs, and connect the algebraic theory of special monoids with the geometric behaviour of their Cayley graphs. This generalises the geometric aspects of the Muller-Schupp theorem for groups to special monoids. We study the growth rate of special monoids, and prove that a special monoid of intermediate growth is a group
    corecore