51,798 research outputs found

    Biological applications of the theory of birth-and-death processes

    Full text link
    In this review, we discuss the applications of the theory of birth-and-death processes to problems in biology, primarily, those of evolutionary genomics. The mathematical principles of the theory of these processes are briefly described. Birth-and-death processes, with some straightforward additions such as innovation, are a simple, natural formal framework for modeling a vast variety of biological processes such as population dynamics, speciation, genome evolution, including growth of paralogous gene families and horizontal gene transfer, and somatic evolution of cancers. We further describe how empirical data, e.g., distributions of paralogous gene family size, can be used to choose the model that best reflects the actual course of evolution among different versions of birth-death-and-innovation models. It is concluded that birth-and-death processes, thanks to their mathematical transparency, flexibility and relevance to fundamental biological process, are going to be an indispensable mathematical tool for the burgeoning field of systems biology.Comment: 29 pages, 4 figures; submitted to "Briefings in Bioinformatics

    Some asymptotic properties of duplication graphs

    Full text link
    Duplication graphs are graphs that grow by duplication of existing vertices, and are important models of biological networks, including protein-protein interaction networks and gene regulatory networks. Three models of graph growth are studied: pure duplication growth, and two two-parameter models in which duplication forms one element of the growth dynamics. A power-law degree distribution is found to emerge in all three models. However, the parameter space of the latter two models is characterized by a range of parameter values for which duplication is the predominant mechanism of graph growth. For parameter values that lie in this ``duplication-dominated'' regime, it is shown that the degree distribution either approaches zero asymptotically, or approaches a non-zero power-law degree distribution very slowly. In either case, the approach to the true asymptotic degree distribution is characterized by a dependence of the scaling exponent on properties of the initial degree distribution. It is therefore conjectured that duplication-dominated, scale-free networks may contain identifiable remnants of their early structure. This feature is inherited from the idealized model of pure duplication growth, for which the exact finite-size degree distribution is found and its asymptotic properties studied.Comment: 19 pages, including 3 figure

    A common and unstable copy number variant is associated with differences in Glo1 expression and anxiety-like behavior

    Get PDF
    Glyoxalase 1 (Glo1) has been implicated in anxiety-like behavior in mice and in multiple psychiatric diseases in humans. We used mouse Affymetrix exon arrays to detect copy number variants (CNV) among inbred mouse strains and thereby identified a approximately 475 kb tandem duplication on chromosome 17 that includes Glo1 (30,174,390-30,651,226 Mb; mouse genome build 36). We developed a PCR-based strategy and used it to detect this duplication in 23 of 71 inbred strains tested, and in various outbred and wild-caught mice. Presence of the duplication is associated with a cis-acting expression QTL for Glo1 (LOD>30) in BXD recombinant inbred strains. However, evidence for an eQTL for Glo1 was not obtained when we analyzed single SNPs or 3-SNP haplotypes in a panel of 27 inbred strains. We conclude that association analysis in the inbred strain panel failed to detect an eQTL because the duplication was present on multiple highly divergent haplotypes. Furthermore, we suggest that non-allelic homologous recombination has led to multiple reversions to the non-duplicated state among inbred strains. We show associations between multiple duplication-containing haplotypes, Glo1 expression and anxiety-like behavior in both inbred strain panels and outbred CD-1 mice. Our findings provide a molecular basis for differential expression of Glo1 and further implicate Glo1 in anxiety-like behavior. More broadly, these results identify problems with commonly employed tests for association in inbred strains when CNVs are present. Finally, these data provide an example of biologically significant phenotypic variability in model organisms that can be attributed to CNVs.These studies were funded by MH070933, MH79103 and MH020065

    Scale relativity and fractal space-time: theory and applications

    Full text link
    In the first part of this contribution, we review the development of the theory of scale relativity and its geometric framework constructed in terms of a fractal and nondifferentiable continuous space-time. This theory leads (i) to a generalization of possible physically relevant fractal laws, written as partial differential equation acting in the space of scales, and (ii) to a new geometric foundation of quantum mechanics and gauge field theories and their possible generalisations. In the second part, we discuss some examples of application of the theory to various sciences, in particular in cases when the theoretical predictions have been validated by new or updated observational and experimental data. This includes predictions in physics and cosmology (value of the QCD coupling and of the cosmological constant), to astrophysics and gravitational structure formation (distances of extrasolar planets to their stars, of Kuiper belt objects, value of solar and solar-like star cycles), to sciences of life (log-periodic law for species punctuated evolution, human development and society evolution), to Earth sciences (log-periodic deceleration of the rate of California earthquakes and of Sichuan earthquake replicas, critical law for the arctic sea ice extent) and tentative applications to system biology.Comment: 63 pages, 14 figures. In : First International Conference on the Evolution and Development of the Universe,8th - 9th October 2008, Paris, Franc

    Influence of homology and node-age on the growth of protein-protein interaction networks

    Get PDF
    Proteins participating in a protein-protein interaction network can be grouped into homology classes following their common ancestry. Proteins added to the network correspond to genes added to the classes, so that the dynamics of the two objects are intrinsically linked. Here, we first introduce a statistical model describing the joint growth of the network and the partitioning of nodes into classes, which is studied through a combined mean-field and simulation approach. We then employ this unified framework to address the specific issue of the age dependence of protein interactions, through the definition of three different node wiring/divergence schemes. Comparison with empirical data indicates that an age-dependent divergence move is necessary in order to reproduce the basic topological observables together with the age correlation between interacting nodes visible in empirical data. We also discuss the possibility of nontrivial joint partition/topology observables.Comment: 14 pages, 7 figures [accepted for publication in PRE

    Efficient design and evaluation of countermeasures against fault attacks using formal verification

    Get PDF
    This paper presents a formal verification framework and tool that evaluates the robustness of software countermeasures against fault-injection attacks. By modeling reference assembly code and its protected variant as automata, the framework can generate a set of equations for an SMT solver, the solutions of which represent possible attack paths. Using the tool we developed, we evaluated the robustness of state-of-the-art countermeasures against fault injection attacks. Based on insights gathered from this evaluation, we analyze any remaining weaknesses and propose applications of these countermeasures that are more robust
    • …
    corecore