7 research outputs found

    First Person Sketch-based Terrain Editing

    Get PDF
    International audienceWe present a new method for first person sketch-based editing of terrain models. As in usual artistic pictures, the input sketch depicts complex silhouettes with cusps and T-junctions, which typically correspond to non-planar curves in 3D. After analysing depth constraints in the sketch based on perceptual cues, our method best matches the sketched silhouettes with silhouettes or ridges of the input terrain. A specific deformation algorithm is then applied to the terrain, enabling it to exactly match the sketch from the given perspective view, while insuring that none of the user-defined silhouettes is hidden by another part of the terrain. As our results show, this method enables users to easily personalize an existing terrain, while preserving its plausibility and style

    StyleDEM: a Versatile Model for Authoring Terrains

    Full text link
    Many terrain modelling methods have been proposed for the past decades, providing efficient and often interactive authoring tools. However, they generally do not include any notion of style, which is a critical aspect for designers in the entertainment industry. We introduce StyleDEM, a new generative adversarial network method for terrain synthesis and authoring, with a versatile toolbox of authoring methods with style. This method starts from an input sketch or an existing terrain. It outputs a terrain with features that can be authored using interactive brushes and enhanced with additional tools such as style manipulation or super-resolution. The strength of our approach resides in the versatility and interoperability of the toolbox

    Large Scale Terrain Generation from Tectonic Uplift and Fluvial Erosion

    Get PDF
    International audienceAt large scale, landscapes result from the combination of two major processes: tectonics which generate the main relief through crust uplift, and weather which accounts for erosion. This paper presents the first method in computer graphics that combines uplift and hydraulic erosion to generate visually plausible terrains. Given a user-painted uplift map, we generate a stream graph over the entire domain embedding elevation information and stream flow. Our approach relies on the stream power equation introduced in geology for hydraulic erosion. By combining crust uplift and stream power erosion we generate large realistic terrains at a low computational cost. Finally, we convert this graph into a digital elevation model by blending landform feature kernels whose parameters are derived from the information in the graph. Our method gives high-level control over the large scale dendritic structures of the resulting river networks, watersheds, and mountains ridges

    A user interface for terrain modelling in virtual reality using a head mounted display

    Get PDF
    The increased commercial availability of virtual reality (VR) devices has resulted in more content being created for virtual environments (VEs). This content creation has mainly taken place using traditional desktop systems but certain applications are now integrating VR into the creation pipeline. Therefore we look at the effectiveness of creating content, specifically designing terrains, for use in immersive environments using VR technology. To do this, we develop a VR interface for terrain creation based on an existing desktop application. The interface incorporates a head-mounted display and 6 degree of freedom controllers. This allows the mapping of user controls to more natural movements compared to the abstract controls in mouse and keyboard based systems. It also means that users can view the terrain in full 3D due to the inherent stereoscopy of the VR display. The interface goes through three iterations of user centred design and testing. This results in paper and low fidelity prototypes being created before the final interface is developed. The performance of this final VR interface is then compared to the desktop interface on which it was based. We carry out user tests to assess the performance of each interface in terms of speed, accuracy and usability. From our results we find that there is no significant difference between the interfaces when it comes to accuracy but that the desktop interface is superior in terms of speed while the VR interface was rated as having higher usability. Some of the possible reasons for these results, such as users preferring the natural interactions offered by the VR interface but not having sufficient training to fully take advantage of it, are discussed. Finally, we conclude that while it was not shown that either interface is clearly superior, there is certainly room for further exploration of this research area. Recommendations for how to incorporate lessons learned during the creation of this dissertation into any further research are also made

    Fast, Realistic Terrain Synthesis

    Get PDF
    The authoring of realistic terrain models is necessary to generate immersive virtual environments for computer games and film visual effects. However, creating these landscapes is difficult – it usually involves an artist spending many hours sculpting a model in a 3D design program. Specialised terrain generation programs exist to rapidly create artificial terrains, such as Bryce (2013) and Terragen (2013). These make use of complex algorithms to pseudo-randomly generate the terrains, which can then be exported into a 3D editing program for fine tuning. Height-maps are a 2D data-structure, which stores elevation values, and can be used to represent terrain data. They are also a common format used with terrain generation and editing systems. Height-maps share the same storage design as image files, as such they can be viewed like any picture and image transformation algorithms can be applied to them. Early techniques for generating terrains include fractal generation and physical simulation. These methods proved difficult to use as the algorithms were manipulated with a set of parameters. However, the outcome from changing the values is not known, which results in the user changing values over several iterations to produce their desired terrain. An improved technique brings in a higher degree of user control as well as improved realism, known as texture-based terrain synthesis. This borrows techniques from texture synthesis, which is the process of algorithmically generating a larger image from a smaller sample image. Texture-based terrain synthesis makes use or real-world terrain data to produce highly realistic landscapes, which improves upon previous techniques. Recent work in texture-based synthesis has focused on improving both the realism and user control, through the use of sketching interfaces. We present a patch-based terrain synthesis system that utilises a user sketch to control the location of desired terrain features, such as ridges and valleys. Digital Elevation Models (DEMs) of real landscapes are used as exemplars, from which candidate patches of data are extracted and matched against the user’s sketch. The best candidates are merged seamlessly into the final terrain. Because real landscapes are used the resulting terrain appears highly realistic. Our research contributes a new version of this approach that employs multiple input terrains and acceleration using a modern Graphics Processing Unit (GPU). The use of multiple inputs increases the candidate pool of patches and thus the system is capable of producing more varied terrains. This addresses the limitation where supplying the wrong type of input terrain would fail to synthesise anything useful, for example supplying the system with a mountainous DEM and expecting deep valleys in the output. We developed a hybrid multithreaded CPU and GPU implementation that achieves a 45 times speedup

    Représentation, modélisation et génération procédurale de terrains

    Get PDF
    Slides disponiblesSoutenance oral (présentation + questions) disponible sur demandeThis PhD (entitled "Representation, modelisation and procedural generation of terrains") is related to movie and videogames digital content creation, especially natural scenes.Our work is dedicated to handle and to generate landscapes efficently. We propose a new model based on a construction tree inside which the user can handle parts of the terrain intuitively. We also present techniques to efficently visualize such model. Finally, we present a new algorithm for generating large-scale terrains exhibiting hierarchical structures based on their hydrographic networks: elevation is generated in a broad compliance to water-tansport principles without having to resort on costly hydraulic simulations.Cette thèse (qui a pour intitulé "Représentation, modélisation et génération procédurale de terrains") a pour cadre la génération de contenus numériques destinés aux films et aux jeux-vidéos, en particulier les scènes naturelles.Nos travaux visent à représenter et à générer des terrains. Nous proposons, en particulier, un nouveau modèle de représentation qui s'appuie sur un arbre de construction et qui va permettre à l'utilisateur de manipuler des morceaux de terrain de façon intuitive. Nous présentons également des techniques pour visualiser ce modèle avec un maximum d'efficacité. Enfin nous développons un nouvel algorithme de génération de terrains qui construit de très grands reliefs possédant des structures hiérarchiques découlant d'un réseau hydrographique : le relief généré est conforme aux grands principes d'écoulement des eaux sans avoir besoin d'utiliser de coûteuses simulations d'érosion hydrique
    corecore