127 research outputs found

    The Next-Generation Surgical Robots

    Get PDF
    The chronicle of surgical robots is short but remarkable. Within 20 years since the regulatory approval of the first surgical robot, more than 3,000 units were installed worldwide, and more than half a million robotic surgical procedures were carried out in the past year alone. The exceptionally high speeds of market penetration and expansion to new surgical areas had raised technical, clinical, and ethical concerns. However, from a technological perspective, surgical robots today are far from perfect, with a list of improvements expected for the next-generation systems. On the other hand, robotic technologies are flourishing at ever-faster paces. Without the inherent conservation and safety requirements in medicine, general robotic research could be substantially more agile and explorative. As a result, various technical innovations in robotics developed in recent years could potentially be grafted into surgical applications and ignite the next major advancement in robotic surgery. In this article, the current generation of surgical robots is reviewed from a technological point of view, including three of possibly the most debated technical topics in surgical robotics: vision, haptics, and accessibility. Further to that, several emerging robotic technologies are highlighted for their potential applications in next-generation robotic surgery

    The design and fabrication of a meso scale minimally invasive surgical robot

    Get PDF
    Minimally invasive robotic Single Port Laparoscopic Surgery (SPLS) is of high importance, due to its ability to reduce operation times, recovery times, postoperative infection rates and improve cosmesis while providing surgeons with greater dexterity and precision than traditional SPLS techniques. Previous approaches to robotic SPLS rely on modifications to devices meant for multi-port procedures. These approaches suffer from larger port sizes and triangulation problems. Here, we propose a scheme for SPLS involving 6 degree-of-freedom robot manipulators and lumen design that translates the dexterity and triangulation capabilities of the human arm to the internal operating field using an insertion scheme where four 9 mm tools can be passed through a single 18 mm lumen

    Designing a robotic port system for laparo-endoscopic single-site surgery

    Get PDF
    Current research and development in the field of surgical interventions aim to reduce the invasiveness by using few incisions or natural orifices in the body to access the surgical site. Considering surgeries in the abdominal cavity, the Laparo-Endoscopic Single-site Surgery (LESS) can be performed through a single incision in the navel, reducing blood loss, post-operative trauma, and improving the cosmetic outcome. However, LESS results in less intuitive instrument control, impaired ergonomic, loss of depth and haptic perception, and restriction of instrument positioning by a single incision. Robot-assisted surgery addresses these shortcomings, by introducing highly articulated, flexible robotic instruments, ergonomic control consoles with 3D visualization, and intuitive instrument control algorithms. The flexible robotic instruments are usually introduced into the abdomen via a rigid straight port, such that the positioning of the tools and therefore the accessibility of anatomical structures is still constrained by the incision location. To address this limitation, articulated ports for LESS are proposed by recent research works. However, they focus on only a few aspects, which are relevant to the surgery, such that a design considering all requirements for LESS has not been proposed yet. This partially originates in the lack of anatomical data of specific applications. Further, no general design guidelines exist and only a few evaluation metrics are proposed. To target these challenges, this thesis focuses on the design of an articulated robotic port for LESS partial nephrectomy. A novel approach is introduced, acquiring the available abdominal workspace, integrated into the surgical workflow. Based on several generated patient datasets and developed metrics, design parameter optimization is conducted. Analyzing the surgical procedure, a comprehensive requirement list is established and applied to design a robotic system, proposing a tendon-driven continuum robot as the articulated port structure. Especially, the aspects of stiffening and sterile design are addressed. In various experimental evaluations, the reachability, the stiffness, and the overall design are evaluated. The findings identify layer jamming as the superior stiffening method. Further, the articulated port is proven to enhance the accessibility of anatomical structures and offer a patient and incision location independent design

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text

    Anthropomorphic surgical system for soft tissue robot-assisted surgery

    Get PDF
    Over the past century, abdominal surgery has seen a rapid transition from open procedures to less invasive methods such as laparoscopy and robot-assisted minimally invasive surgery (R-A MIS). These procedures have significantly decreased blood loss, postoperative morbidity and length of hospital stay in comparison with open surgery. R-A MIS has offered refined accuracy and more ergonomic instruments for surgeons, further minimising trauma to the patient.This thesis aims to investigate, design and prototype a novel system for R-A MIS that will provide more natural and intuitive manipulation of soft tissues and, at the same time, increase the surgeon's dexterity. The thesis reviews related work on surgical systems and discusses the requirements for designing surgical instrumentation. From the background research conducted in this thesis, it is clear that training surgeons in MIS procedures is becoming increasingly long and arduous. Furthermore, most available systems adopt a design similar to conventional laparoscopic instruments or focus on different techniques with debatable benefits. The system proposed in this thesis not only aims to reduce the training time for surgeons but also to improve the ergonomics of the procedure.In order to achieve this, a survey was conducted among surgeons, regarding their opinions on surgical training, surgical systems, how satisfied they are with them and how easy they are to use. A concept for MIS robotic instrumentation was then developed and a series of focus group meetings with surgeons were run to discuss it. The proposed system, named microAngelo, is an anthropomorphic master-slave system that comprises a three-digit miniature hand that can be controlled using the master, a three-digit sensory exoskeleton. While multi-fingered robotic hands have been developed for decades, none have been used for surgical operations. As the system has a human centred design, its relation to the human hand is discussed. Prototypes of both the master and the slave have been developed and their design and mechanisms is demonstrated. The accuracy and repeatability of the master as well as the accuracy and force capabilities of the slave are tested and discussed

    Cable-driven parallel mechanisms for minimally invasive robotic surgery

    Get PDF
    Minimally invasive surgery (MIS) has revolutionised surgery by providing faster recovery times, less post-operative complications, improved cosmesis and reduced pain for the patient. Surgical robotics are used to further decrease the invasiveness of procedures, by using yet smaller and fewer incisions or using natural orifices as entry point. However, many robotic systems still suffer from technical challenges such as sufficient instrument dexterity and payloads, leading to limited adoption in clinical practice. Cable-driven parallel mechanisms (CDPMs) have unique properties, which can be used to overcome existing challenges in surgical robotics. These beneficial properties include high end-effector payloads, efficient force transmission and a large configurable instrument workspace. However, the use of CDPMs in MIS is largely unexplored. This research presents the first structured exploration of CDPMs for MIS and demonstrates the potential of this type of mechanism through the development of multiple prototypes: the ESD CYCLOPS, CDAQS, SIMPLE, neuroCYCLOPS and microCYCLOPS. One key challenge for MIS is the access method used to introduce CDPMs into the body. Three different access methods are presented by the prototypes. By focusing on the minimally invasive access method in which CDPMs are introduced into the body, the thesis provides a framework, which can be used by researchers, engineers and clinicians to identify future opportunities of CDPMs in MIS. Additionally, through user studies and pre-clinical studies, these prototypes demonstrate that this type of mechanism has several key advantages for surgical applications in which haptic feedback, safe automation or a high payload are required. These advantages, combined with the different access methods, demonstrate that CDPMs can have a key role in the advancement of MIS technology.Open Acces

    Design-centric Method for an Augmented Reality Robotic Surgery

    Get PDF
    Master'sMASTER OF ENGINEERIN

    Recent Advances in Laparoscopic Surgery

    Get PDF
    The implementation of laparoscopy has revolutionized surgery over the past few years, incorporating significant benefits for the patient. However, this evolution has also entailed many technical obstacles for surgeons. This book is for readers wanting to learn more about recent surgical techniques and technologies. Topics cover novel sophisticated approaches for single-site surgery, natural orifice transluminal endoscopic surgery, and transanal surgery, among others. Also included are reviews of new innovative surgical devices, robotic platforms, and methodological guidelines for improving surgical performance and surgeon ergonomics

    Medical Robotics

    Get PDF
    The first generation of surgical robots are already being installed in a number of operating rooms around the world. Robotics is being introduced to medicine because it allows for unprecedented control and precision of surgical instruments in minimally invasive procedures. So far, robots have been used to position an endoscope, perform gallbladder surgery and correct gastroesophogeal reflux and heartburn. The ultimate goal of the robotic surgery field is to design a robot that can be used to perform closed-chest, beating-heart surgery. The use of robotics in surgery will expand over the next decades without any doubt. Minimally Invasive Surgery (MIS) is a revolutionary approach in surgery. In MIS, the operation is performed with instruments and viewing equipment inserted into the body through small incisions created by the surgeon, in contrast to open surgery with large incisions. This minimizes surgical trauma and damage to healthy tissue, resulting in shorter patient recovery time. The aim of this book is to provide an overview of the state-of-art, to present new ideas, original results and practical experiences in this expanding area. Nevertheless, many chapters in the book concern advanced research on this growing area. The book provides critical analysis of clinical trials, assessment of the benefits and risks of the application of these technologies. This book is certainly a small sample of the research activity on Medical Robotics going on around the globe as you read it, but it surely covers a good deal of what has been done in the field recently, and as such it works as a valuable source for researchers interested in the involved subjects, whether they are currently “medical roboticists” or not

    The future of robotic-assisted laparoscopic surgery

    Get PDF
    Introduction: Since the first revolution of robotic-assisted surgery officially happened in 2000, the healthcare service worldwide has transformed into a new era due to its superior technological advancements, particularly in laparoscopic surgery. Da Vinci which is seen as a master-slave system and Kymerax which is categorized as a hand-held device are commonly used in robotic-assisted laparoscopic surgery. Whilst a conventional or open method requires a large incision to perform a surgery, laparoscopy - a minimally invasive surgery (MIS) is an advantageous surgical method which reduces an abdominal incision to a minimum, and effectively exploited with robots. Methods: Based on available articles with the object of robotic surgical surgery, two SWOT analysis for Da Vinci and Kymerax were formulated to understand strengths, weaknesses, opportunities and threats of each system in comparison with the traditional laparoscopic surgery. From that, the future outlook is anticipated based on the scientific background. Results: Alongside technological advantages of Da Vinci mainly known as 6-degree of freedom, dexterity enhancement, stereovision, tremor filtering and especially minimal invasive surgery, it still has disadvantages that are not neglectable such as huge investment and lack of haptic feedback. Although the malfunction rate of Da Vinci is not significantly high, surgeons should be aware of it to fix or alter instruments in time. Kymerax is not as advanced as Da Vinci but it can fill in the gap of the Da Vinci which includes thelarge investment and bulky instruments. The Kymerax is the low-cost hand-held device allowing multiple degrees of freedom. It is an optimal combination between traditional performance and robotic performance allowing surgeons to manipulate in their hands and ensure haptic feedback. Conclusions: Both Da Vinci and Kymerax systems offer superior benefits for medical service due to the ongoing technological growth. The cost-effectiveness of Da Vinci system is currently a problematic issue when medical institutions consider to install them. The surgical instruments market, however, has become highly competitive which is likely leading to the decline of the costly investments. In the digital world nowadays, it will be a promising future for more integrated medical inventions
    corecore