8 research outputs found

    Neural dynamics of social behavior : An evolutionary and mechanistic perspective on communication, cooperation, and competition among situated agents

    Get PDF
    Social behavior can be found on almost every level of life, ranging from microorganisms to human societies. However, explaining the evolutionary emergence of cooperation, communication, or competition still challenges modern biology. The most common approaches to this problem are based on game-theoretic models. The problem is that these models often assume fixed and limited rules and actions that individual agents can choose from, which excludes the dynamical nature of the mechanisms that underlie the behavior of living systems. So far, there exists a lack of convincing modeling approaches to investigate the emergence of social behavior from a mechanistic and evolutionary perspective. Instead of studying animals, the methodology employed in this thesis combines several aspects from alternative approaches to study behavior in a rather novel way. Robotic models are considered as individual agents which are controlled by recurrent neural networks representing non-linear dynamical system. The topology and parameters of these networks are evolved following an open-ended evolution approach, that is, individuals are not evaluated on high-level goals or optimized for specific functions. Instead, agents compete for limited resources to enhance their chance of survival. Further, there is no restriction with respect to how individuals interact with their environment or with each other. As its main objective, this thesis aims at a complementary approach for studying not only the evolution, but also the mechanisms of basic forms of communication. For this purpose it can be shown that a robot does not necessarily have to be as complex as a human, not even as complex as a bacterium. The strength of this approach is that it deals with rather simple, yet complete and situated systems, facing similar real world problems as animals do, such as sensory noise or dynamically changing environments. The experimental part of this thesis is substantiated in a five-part examination. First, self-organized aggregation patterns are discussed. Second, the advantages of evolving decentralized control with respect to behavioral robustness and flexibility is demonstrated. Third, it is shown that only minimalistic local acoustic communication is required to coordinate the behavior of large groups. This is followed by investigations of the evolutionary emergence of communication. Finally, it is shown how already evolved communicative behavior changes during further evolution when a population is confronted with competition about limited environmental resources. All presented experiments entail thorough analysis of the dynamical mechanisms that underlie evolved communication systems, which has not been done so far in the context of cooperative behavior. This framework leads to a better understanding of the relation between intrinsic neurodynamics and observable agent-environment interactions. The results discussed here provide a new perspective on the evolution of cooperation because they deal with aspects largely neglected in traditional approaches, aspects such as embodiment, situatedness, and the dynamical nature of the mechanisms that underlie behavior. For the first time, it can be demonstrated how noise influences specific signaling strategies and that versatile dynamics of very small-scale neural networks embedded in sensory-motor feedback loops give rise to sophisticated forms of communication such as signal coordination, cooperative intraspecific communication, and, most intriguingly, aggressive interspecific signaling. Further, the results demonstrate the development of counteractive niche construction based on a modification of communication strategies which generates an evolutionary feedback resulting in an active reduction of selection pressure, which has not been shown so far. Thus, the novel findings presented here strongly support the complementary nature of robotic experiments to study the evolution and mechanisms of communication and cooperation.</p

    Engineering limit cycle systems:adaptive frequency oscillators and applications to adaptive locomotion control of compliant robots

    Get PDF
    In this thesis, we present a dynamical systems approach to adaptive controllers for locomotion control. The approach is based on a rigorous mathematical framework using nonlinear dynamical systems and is inspired by theories of self-organization. Nonlinear dynamical systems such as coupled oscillators are an interesting approach for the on-line generation of trajectories for robots with many degrees of freedom (e.g. legged locomotion). However, designing a nonlinear dynamical system to satisfy a given specification and goal is not an easy task, and, hitherto no methodology exists to approach this problem in a unified way. Nature presents us with satisfactory solutions for the coordination of many degrees of freedom. One central feature observed in biological subjects is the ability of the neural systems to exploit natural dynamics of the body to achieve efficient locomotion. In order to be able to exploit the body properties, adaptive mechanisms must be at work. Recent work has pointed out the importance of the mechanical system for efficient locomotion. Even more interestingly, such well suited mechanical systems do not need complicated control. Yet, in robotics, in most approaches, adaptive mechanisms are either missing or they are not based on a rigorous framework, i.e. they are based on heuristics and ad-hoc approaches. Over the last three decades there has been enormous progress in describing movement coordination with the help of Synergetic approaches. This has led to the formulation of a theoretical framework: the theory of dynamic patterns. This framework is mathematically rigorous and at the same time fully operational. However, it does not provide any guidelines for synthetic approaches as needed for the engineering of robots with many degrees of freedom, nor does it directly help to explain adaptive systems. We will show how we can extend the theoretical framework to build adaptive systems. For this purpose, we propose the use of multi-scale dynamical systems. The basic idea behind multi-scale dynamical systems is that a given dynamical system gets extended by additional slow dynamics of its parameters, i.e. some of the parameters become state variables. The advantages of the framework of multi-scale dynamical systems for adaptive controllers are 1) fully dynamic description, 2) no separation of learning algorithm and learning substrate, 3) no separation of learning trials or time windows, 4) mathematically rigorous, 5) low dimensional systems. However, in order to fully exploit the framework important questions have to be solved. Most importantly, methodologies for designing the feedback loops have to be found and important theoretical questions about stability and convergence properties of the devised systems have to be answered. In order to tackle this challenge, we first introduce an engineering view on designing nonlinear dynamical systems and especially oscillators. We will highlight the important differences and freedom that this engineering view introduces as opposed to a modeling one. We then apply this approach by first proposing a very simple adaptive toy-system, consisting of a dynamical system coupled to a spring-mass system. Due to its spring-mass dynamics, this system contains clear natural dynamics in the form of resonant frequencies. We propose a prototype adaptive multi-scale system, the adaptive frequency oscillator, which is able to adapt its intrinsic frequency to the resonant frequency of the body dynamics. After a small sidetrack to show that we can use adaptive frequency oscillators also for other applications than for adaptive controllers, namely for frequency analysis, we then come back to further investigation of the adaptive controller. We apply the same controller concept to a simple spring-mass hopper system. The spring-mass system consists of a body with two legs attached by rotational joints. The legs contain spring-damper elements. Finally, we present results of the implementation of the controller on a real robot, the experimental robot PUPPY II. This robot is a under-actuated robot with spring dynamics in the knee joints. It will be shown, that due to the appropriate simplification and concentration on relevant features in the toy-system the controller concepts works without a fundamental change on all systems from the toy system up to the real robot

    Proceedings of the 8th international conference on disability, virtual reality and associated technologies (ICDVRAT 2010)

    Get PDF
    The proceedings of the conferenc

    Shortest Route at Dynamic Location with Node Combination-Dijkstra Algorithm

    Get PDF
    Abstract— Online transportation has become a basic requirement of the general public in support of all activities to go to work, school or vacation to the sights. Public transportation services compete to provide the best service so that consumers feel comfortable using the services offered, so that all activities are noticed, one of them is the search for the shortest route in picking the buyer or delivering to the destination. Node Combination method can minimize memory usage and this methode is more optimal when compared to A* and Ant Colony in the shortest route search like Dijkstra algorithm, but can’t store the history node that has been passed. Therefore, using node combination algorithm is very good in searching the shortest distance is not the shortest route. This paper is structured to modify the node combination algorithm to solve the problem of finding the shortest route at the dynamic location obtained from the transport fleet by displaying the nodes that have the shortest distance and will be implemented in the geographic information system in the form of map to facilitate the use of the system. Keywords— Shortest Path, Algorithm Dijkstra, Node Combination, Dynamic Location (key words

    CIMODE 2016: 3Âș Congresso Internacional de Moda e Design: proceedings

    Get PDF
    O CIMODE 2016 Ă© o terceiro Congresso Internacional de Moda e Design, a decorrer de 9 a 12 de maio de 2016 na cidade de Buenos Aires, subordinado ao tema : EM--‐TRAMAS. A presente edição Ă© organizada pela Faculdade de Arquitetura, Desenho e Urbanismo da Universidade de Buenos Aires, em conjunto com o Departamento de Engenharia TĂȘxtil da Universidade do Minho e com a ABEPEM – Associação Brasileira de Estudos e Pesquisa em Moda.info:eu-repo/semantics/publishedVersio
    corecore