2,908 research outputs found

    Flame Detection for Video-based Early Fire Warning Systems and 3D Visualization of Fire Propagation

    Get PDF
    Early and accurate detection and localization of flame is an essential requirement of modern early fire warning systems. Video-based systems can be used for this purpose; however, flame detection remains a challenging issue due to the fact that many natural objects have similar characteristics with fire. In this paper, we present a new algorithm for video based flame detection, which employs various spatio-temporal features such as colour probability, contour irregularity, spatial energy, flickering and spatio-temporal energy. Various background subtraction algorithms are tested and comparative results in terms of computational efficiency and accuracy are presented. Experimental results with two classification methods show that the proposed methodology provides high fire detection rates with a reasonable false alarm ratio. Finally, a 3D visualization tool for the estimation of the fire propagation is outlined and simulation results are presented and discussed.The original article was published by ACTAPRESS and is available here: http://www.actapress.com/Content_of_Proceeding.aspx?proceedingid=73

    Project RISE: Recognizing Industrial Smoke Emissions

    Full text link
    Industrial smoke emissions pose a significant concern to human health. Prior works have shown that using Computer Vision (CV) techniques to identify smoke as visual evidence can influence the attitude of regulators and empower citizens to pursue environmental justice. However, existing datasets are not of sufficient quality nor quantity to train the robust CV models needed to support air quality advocacy. We introduce RISE, the first large-scale video dataset for Recognizing Industrial Smoke Emissions. We adopted a citizen science approach to collaborate with local community members to annotate whether a video clip has smoke emissions. Our dataset contains 12,567 clips from 19 distinct views from cameras that monitored three industrial facilities. These daytime clips span 30 days over two years, including all four seasons. We ran experiments using deep neural networks to establish a strong performance baseline and reveal smoke recognition challenges. Our survey study discussed community feedback, and our data analysis displayed opportunities for integrating citizen scientists and crowd workers into the application of Artificial Intelligence for social good.Comment: Technical repor

    Video-based Smoke Detection Algorithms: A Chronological Survey

    Get PDF
    Over the past decade, several vision-based algorithms proposed in literature have resulted into development of a large number of techniques for detection of smoke and fire from video images. Video-based smoke detection approaches are becoming practical alternatives to the conventional fire detection methods due to their numerous advantages such as early fire detection, fast response, non-contact, absence of spatial limits, ability to provide live video that conveys fire progress information, and capability to provide forensic evidence for fire investigations. This paper provides a chronological survey of different video-based smoke detection methods that are available in literatures from 1998 to 2014.Though the paper is not aimed at performing comparative analysis of the surveyed methods, perceived strengths and weakness of the different methods are identified as this will be useful for future research in video-based smoke or fire detection. Keywords: Early fire detection, video-based smoke detection, algorithms, computer vision, image processing

    Multi-modal video analysis for early fire detection

    Get PDF
    In dit proefschrift worden verschillende aspecten van een intelligent videogebaseerd branddetectiesysteem onderzocht. In een eerste luik ligt de nadruk op de multimodale verwerking van visuele, infrarood en time-of-flight videobeelden, die de louter visuele detectie verbetert. Om de verwerkingskost zo minimaal mogelijk te houden, met het oog op real-time detectie, is er voor elk van het type sensoren een set ’low-cost’ brandkarakteristieken geselecteerd die vuur en vlammen uniek beschrijven. Door het samenvoegen van de verschillende typen informatie kunnen het aantal gemiste detecties en valse alarmen worden gereduceerd, wat resulteert in een significante verbetering van videogebaseerde branddetectie. Om de multimodale detectieresultaten te kunnen combineren, dienen de multimodale beelden wel geregistreerd (~gealigneerd) te zijn. Het tweede luik van dit proefschrift focust zich hoofdzakelijk op dit samenvoegen van multimodale data en behandelt een nieuwe silhouet gebaseerde registratiemethode. In het derde en tevens laatste luik van dit proefschrift worden methodes voorgesteld om videogebaseerde brandanalyse, en in een latere fase ook brandmodellering, uit te voeren. Elk van de voorgestelde technieken voor multimodale detectie en multi-view lokalisatie zijn uitvoerig getest in de praktijk. Zo werden onder andere succesvolle testen uitgevoerd voor de vroegtijdige detectie van wagenbranden in ondergrondse parkeergarages

    Video fire detection - Review

    Get PDF
    Cataloged from PDF version of article.This is a review article describing the recent developments in Video based Fire Detection (VFD). Video surveillance cameras and computer vision methods are widely used in many security applications. It is also possible to use security cameras and special purpose infrared surveillance cameras for fire detection. This requires intelligent video processing techniques for detection and analysis of uncontrolled fire behavior. VFD may help reduce the detection time compared to the currently available sensors in both indoors and outdoors because cameras can monitor “volumes” and do not have transport delay that the traditional “point” sensors suffer from. It is possible to cover an area of 100 km2 using a single pan-tiltzoom camera placed on a hilltop for wildfire detection. Another benefit of the VFD systems is that they can provide crucial information about the size and growth of the fire, direction of smoke propagation. © 2013 Elsevier Inc. All rights reserve

    A framework based on Gaussian mixture models and Kalman filters for the segmentation and tracking of anomalous events in shipboard video

    Get PDF
    Anomalous indications in monitoring equipment on board U.S. Navy vessels must be handled in a timely manner to prevent catastrophic system failure. The development of sensor data analysis techniques to assist a ship\u27s crew in monitoring machinery and summon required ship-to-shore assistance is of considerable benefit to the Navy. In addition, the Navy has a large interest in the development of distance support technology in its ongoing efforts to reduce manning on ships. In this thesis, algorithms have been developed for the detection of anomalous events that can be identified from the analysis of monochromatic stationary ship surveillance video streams. The specific anomalies that we have focused on are the presence and growth of smoke and fire events inside the frames of the video stream. The algorithm consists of the following steps. First, a foreground segmentation algorithm based on adaptive Gaussian mixture models is employed to detect the presence of motion in a scene. The algorithm is adapted to emphasize gray-level characteristics related to smoke and fire events in the frame. Next, shape discriminant features in the foreground are enhanced using morphological operations. Following this step, the anomalous indication is tracked between frames using Kalman filtering. Finally, gray level shape and motion features corresponding to the anomaly are subjected to principal component analysis and classified using a multilayer perceptron neural network. The algorithm is exercised on 68 video streams that include the presence of anomalous events (such as fire and smoke) and benign/nuisance events (such as humans walking the field of view). Initial results show that the algorithm is successful in detecting anomalies in video streams, and is suitable for application in shipboard environments
    • …
    corecore