408 research outputs found

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    Feedback Control Stabilization of the No-Motion State of a Fluid Confined in a Horizontal Porous Layer Heated From Below

    Get PDF
    We consider a horizontal three-dimensional saturated porous layer, confined in an upright cubic box, heated from below and cooled from above. In the absence of a controller, the fluid maintains a no-motion state for subcritical Rayleigh numbers R \u3c Rc, where Rc, depends on the box’s aspect ratio. Once this critical number is exceeded, fluid motion ensues. We demonstrate that, with the use of feedback control strategies which suppress flow instabilities, one can maintain a stable no-motion state for Rayleigh numbers far exceeding the classical critical one for the onset of convection. To preserve the equilibrium no-motion state of the classical problem, the controller alters the system’s dynamics so as to stabilize an otherwise non-stable state

    Finite-Time H

    Get PDF
    This paper investigates the finite-time control problem for discrete-time Markov jump systems subject to saturating actuators. A finite-state Markovian process is given to govern the transition of the jumping parameters. The finite-time H∞ controller via state feedback is designed to guarantee that the resulting system is mean-square locally asymptotically finite-time stabilizable. Based on stochastic finite-time stability analysis, sufficient conditions that ensure stochastic control performance of discrete-time Markov jump systems are derived in the form of linear matrix inequalities. Finally, a numerical example is provided to illustrate the effectiveness of the proposed approach

    robust stabilization using a sampled-data strategy of uncertain neutral state-delayed systems subject to input limitations

    Get PDF
    Producción CientíficaStabilization of neutral systems with state delay is considered in the presence of uncertainty and input limitations in magnitude. The proposed solution is based on simultaneously characterizing a set of stabilizing controllers and the associated admissible initial conditions through the use of a free weighting matrix approach. From this mathematical characterization, state feedback gains that ensure a large set of admissible initial conditions are calculated by solving an optimization problem with LMI constraints. Some examples are presented to compare the results with previous approaches in the literature.MICINnn DPI2014-54530-

    Local stabilization of an unstable parabolic equation via saturated controls

    Full text link
    We derive a saturated feedback control, which locally stabilizes a linear reaction-diffusion equation. In contrast to most other works on this topic, we do not assume the Lyapunov stability of the uncontrolled system and consider general unstable systems. Using Lyapunov methods, we provide estimates for the region of attraction for the closed-loop system, given in terms of linear and bilinear matrix inequalities. We show that our results can be used with distributed as well as scalar boundary control, and with different types of saturations. The efficiency of the proposed method is demonstrated by means of numerical simulations

    Robust H

    Get PDF

    Switching Control in the Presence of Constraints and Unmodeled Dynamics

    Get PDF
    corecore