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ABSTRACT This paper studies the problem of disturbance attenuation and rejection for switched systems
with nonlinear uncertainty and input saturation via composite anti-disturbance control technique, in which
the exosystem-generated disturbance and Hj-norm-bounded disturbance are considered. For switched
systems, the switching law and input saturation increase the difficulty for the design of the disturbance
observer and the composite control scheme. A switching disturbance observer is designed to obtain the
estimation of the matched disturbance, and a novel switching composite controller is further constructed
based on the estimated value. By proposing a state-dependent switching law and utilizing the multiple
Lyapunov function technology, the criteria are presented to ensure the local asymptotic stability with an
H, performance level for the closed-loop system. Furthermore, two optimal algorithms of the design of the
controller are put forward to maximize the estimation of the domain of attraction of the closed-loop and the
upper bound on the Hy-norm of the disturbance, respectively. The effectiveness of the proposed technique
is illustrated via the numerical examples.

INDEX TERMS Switched systems, nonlinear uncertainties, multiple disturbances, input saturation, com-

posite anti-disturbance control.

I. INTRODUCTION

As we all know that disturbance and uncertainty are important
factors resulting in the performance degradation or stability
loss for the controlled systems, which are inevitable in the
actual engineering systems due in particular to load chang-
ing, external surroundings and modeling error [1]. Therefore,
the Disturbance attenuation and rejection for uncertain sys-
tems become crucial in practice, which can be efficiently
achieved by some classical control techniques, such as robust
adaptive control [2], robust sliding mode control [3], robust
Ho control [4], and so on. As one class of the advanced
control methods, composite anti-disturbance control based on
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disturbance observation and compensation has attracted great
attentions recently [5]-[8]. In [5], the problem of disturbance
observer based control for a nonlinear uncertain system with
an exosystem generated disturbance is investigated, and both
reduced-order and full-order observers are designed for the
composite system based on whether states of a system be
available or not. Based on the above results, some new anti-
disturbance control schemes are investigated for sorts and
kinds of the controlled systems with multiple disturbances.
In [6], a composite control strategy based on extended state
observer is given for a class of nonlinear systems with mis-
matching disturbances, in which disturbance compensation
gain matrix has been added in contrast to the composite con-
troller in [5]. In [9], a composite hierarchical anti-disturbance
control (CHADC) scheme has been put forward for the sys-
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tem, in which multiple disturbances are classified and mod-
eled respectively. In recent ten years, the CHADC technique
has been widely researched and generalized [10]-[14].

Due to physical and technical constraint of the input
channel of the controlled systems, the phenomena of input
saturation cannot be avoided in practical engineering which
generally bring adverse effects of control performance [15].
Therefore, it is of great importance to consider the exis-
tence of saturation in the control process. For the last
decades, there have existed several fundamental methods
proposed for tackling control problem of the system subject
to saturation, mainly including anti-windup compensation
[16], “one-step” design method [17] and model predictive
control [18]. Generally, saturation nonlinearity is treated
locally as sector nonlinearity model or polytopic differential
inclusion [15], [19].

Switched system is constituted by a family of continuous-
time subsystems (or discrete-time subsystems) together with
a switching signal that orchestrates the switching between
them, which is widely used to model the physical systems
with switching features, such as mechanical systems, air-
craft and air traffic control systems, power and electron-
ics systems [20]. For the study of control problem of the
switched systems, not only the control scheme but also
switching signal needs to be designed [21]-[26]. Recently,
more attentions have been paid for the control problems
of switched systems subject to input saturation [27]-[32].
Based on the minimum dwell time switching, a synthesis
method of saturated feedbacks has been proposed, in which
some sufficient design conditions for stabilizing controller
are presented in term of linear matrix inequalities in [28].
In [29] and [21], the finite-time control problems are con-
sidered for the switched systems with saturating inputs, and
event-triggered control for switched systems with saturating
actuators is studied in [31]. In [32], the synthesis of feedback
control laws to achieve disturbance attenuation and rejection
has been studied for a singular switched systems subject to
input saturation and H>-norm bounded disturbance. Although
many advanced control methods have been developed for
the switched systems with saturation and single disturbance,
the adverse effects from various disturbances have not been
full considered. When the switched system is with uncer-
tainties, input saturation and multiple disturbances, the sys-
tem should be more complicated and the design of control
schemes would be more difficult due to the interconnection
between switching, saturation on whole input channel and
multiple disturbances.

Motivated by the above-mentioned literature, this paper
investigates the problem of disturbance attenuation and rejec-
tion for switched nonlinear systems with actuator satura-
tion and multiple disturbances. The main contribution and
innovation are included as: Firstly, a disturbance observer is
designed to estimate the matched disturbance, based on which
a novel composite controller is further constructed. It need
to notice that the observer and controller are depended on
a proposed state-dependent switching law. Secondly, by the
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multiple Lyapunov function technology, the design condi-
tions of the controller ensuring the robust local asymptotic
stability of the closed-loop system without taking account of
external disturbances are established. The domain of attrac-
tion is estimated and optimized. Thirdly, an algorithm for the
largest disturbance is proposed such that the H, performance
can be further achieved for the closed-loop system subject to
the external disturbances.

Il. PRELIMINARIES AND PROBLEM STATEMENT
Consider a class of switched nonlinear systems, the dynamics
of which can be expressed as

x(t) = Apryx(t) + By (u(t) + (1))
+E1o(nd1(t) + Foinf (x(1)), (1)

where x(f) € R" is the system state, u(f) € R™ is the
continuous control input. The standard saturation function
: R™ — R™ is defined as:

sat(u) = [sat(u)) sat(uz) --- sat(um)]’,

where (4;) = (u;) min{1, |u;|}.

di(t) is the external Hp-norm bounded disturbance. the
disturbance w(#) € R™ is matched with control inputs, which
generated by an exogenous system as follows:

B(t) = Wy (1) + Ezo(nda(t),
w(t) = Vg(t)ﬂ(t). 2)

where d»(t) is the additional H-norm bounded disturbance.
The switched law is described as piecewise constant func-
tion o(¢) taking values in finite set I[1,N] = {1,2,---N},
and the iy, subsystem is activated when o(t) =i € I[1, N].
Remark 1: For i € I[1,N], the system (2) can gener-
ate various disturbance signals by choosing different system
matrices W; and V;, such as constant disturbance, harmonics
and so on [35] [36]. This paper describes the exogenous
disturbance system as the switching system (2), the reason
of which is that the disturbance should be different for each
of subsystems and dependent on the switching law in engi-
neering.
The function f (x(#)) satisfying the following assumption is
used to model the nonlinear dynamics of the system.
Assumption 1: The nonlinear function f(x(¢)) satisfies

If 1) —fG2) 1=l Ulxr — x2) I,

where U is a given constant weighting matrix.

In what follows, the following assumption on the system
(1) and the disturbance dynamic system (2) is made

Assumption 2: For o(t) = i, (A;, B;) is controllable and
(W;, V;) is observable.

By introducing the nonlinear function 6(v) = v — sat(v)
and disturbance dynamic (2), system (1) can be rewritten as

Vxi,x € R". (3)

X(1) = Agpyx(t) + Booyu(t) + Bor) Vo) (1)
+ Eondi(t) + Fonf (x(1))
— Bo)0(u(®) + Vo)1 (2)), @
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In order to derive the results of this paper, the following
lemma is referred as:

Lemma 1 [19]: Consider the function 8(v) defined above.
If x € L(K, H), then the relation

0T (Kx)T[0(Kx) — Hx] < 0, ®)

holds for any diagonal and positive definite matrix 7 €
R™*™M where

LK,H)={x e R": |(K' —HYx| < 1,1 € I[1, m]},

with H' is the /th row of the matrix H € m x n.

Lemma 2 [33]: Let D, S and F be real matrices of appro-
priate dimensions with F TF < I.Then, for any scalar A > 0,
we have

DFS + (DFS)T < »7'DDT + ASTS. (6)

Lemma 3 [34]: For Vx,y € R" and any positive definite
matrix P € R"*", we have

Ty <xTPx+yTP7ly. @)

In what follows, we suppose that f'(x(¢)) is given which sat-
isfies Assumption 1 and all states of the system (1) are avail-
able. Under Assumption 2, a switching disturbance observer
is constructed to estimate the exosystem generated distur-
bance w(t) as follows:

(1) = VoD (@),
(1) = ¢(1) — Lx(2),
¢(t) = Woa) + LBo) Vo) (9(1) — Lx(1))
+ L[Ag0)x(1) + Booyu(t) + Fof (x(1))]. - (8)

Based on (8), a composite controller can be formulated as
U= Kox(t) — (1) ©)

After defining the error ey (1) = 9 (1) — 19([), an augmented
closed-loop system can be obtained from (4), (8) and (9) as

() =Aoeyn(1)+ Forf 1)+ By (Kooyn()+ Egyd(t)
(10)

where 7(1) = [x" (1) e (O)1", f(n(1)) = f(x(¢)) and

Ay = [ Aoy + Boy Kot Bow)Vow
¢ L 0 Wou) + LBow)Vow) |
- [ —B - E 0
B oy | g —| Eleo ’
o0 = | ~LByay ¢O 7| LEiowy  Esp
- rF -
Fo = %m] . Koy =Koty Vo |-

Assumption 3: Inthis paper, the energy of the disturbances
di(t) and d(¢) is bounded by a given value, i.e.,

My = {di(t):/ df (dind < S.i=1.2} (D)
0

for some @ > 0.
The objective of this paper is to design a switching law and
obtain some design conditions of the composite controller (9)
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based on the disturbance observer (8), such that the distur-
bances can be rejected and attenuated under the guarantee of
stability of the argument system (10).

llIl. MAIN RESULTS
Before presenting the main results, an abbreviation need to
be made as

Q(P,0)={x e R : x"Px < o}, (12)

where o € R.

In this section, we will establish two theorems to achieve
the required control performance along with disturbance
attenuation and rejection for the closed-loop system (10).

Theorem 1: Under the assumption d(¢) = 0, if there exist
matrices X1; > 0, P>, > 0,7Y, U;, Z;, Hy;, diagonal matrices
Q; > 0 and scalars §; > 0, i, r € I[1, N], such that

1 Ul -z vI—H, 0
VX1 3
* erﬁi %ir)X1i 0 Dil S0, 13)
* * P> 0
* * * ZD';‘
and (14),
! BVi -BiQi+7z] XuUT o}
* 7 —YBQi+H] 0 0
* * —20; 0 0 <0, (14)
* * * —el O

I
where Zil, Hél. are the [y, row of Z;, Hy; respectively and
@} = HelA; + B;U;} + e\, FiF] — Z&‘rxli»

r#i
w? = He{P,W; + YB;V;},

@} = Vo1 Vi Vo VoK

w,-4 = Xit, -, X1i=1, X1it+1, -+ » Xim-
then, under the switching law
o = argmin{n" Pin, i € Iy}, (15)

system (10) is locally asymptotically stable with an estima-
tion of the domain of attraction as

UL QP N g, (16)

where ¢; = {n(t) : n”" (P, — Py = 0,Yr € Iy, r # i},

P; = dig{P;, P2} and H; = [Hy; Hy;] with P1; = X;;' and

Hy; = Z;Py,. The control law (9) based on (8) can be designed
asKj; = UiPj;and L = P;'Y .

Proof: Choose the multiple Lyapunov function as
V() = n" (0)Pouyn(t) (17)
For o(t) = i € I[1, N], under the assumption of d(t) = 0,
computing the time derivative of V(¢) in (17) yields
V(n(1) = 2n" (0)P(1)
= 0" (O(PA; + AiPn(t) + 20" (1)P;
x Fif (1)) + 20" ()P;Bi6(Kin(t)).  (18)
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Under Assumption 1, using Lemma 2 to (18) leads to

V) < 0" (OPA; + AiPn(t) + 217 ()PBif (Kin(t))

+n" (Oley; U] Ui + eniPiFF] Piln(e). (19)
where ¢1; is any positive scalar and Ui = [U; 0] with a given
matrix U;. By choosing Pj; = Xl_l.l, H = PZ, K =
U,;P1; and using the Schur complement, (13) can be rewritten
as:

! ! ! I
1 Ky — Hy; Vi — Hy,
* P+ Zr#i 3ir(P1i — P1r) 0 >0, (20)
* * Py

which is equivalent to

(K= H)(P;i= > 8ir(P,— P) 'K/ - H) <1. (@1

r#i
On the hand, for 5(t) € Q(P;, 1) N ¢;, one has
n"(OP; =Y 8ir(Pr — P)n(t) < 1. (22)
r#i

Resorting to Lemma 3 with (21) and (22), it follows n(¢) €
L(Ki, H)). B o
For n(t) € Q(P;, 1) N g; C L(K;, H;), applying Lemma 1
and recalling (19) yield
V() < 0" (OPA; + AP+ 6, UTU
+e1PiFFL Pon(t) 4 20" (0)PiBi6(Kin (1))
— 207 (Kin()Ti[0(Kin(1)) — Hin(1)], (23)
where U = [UT 0T]T.
Based on the Schur complement and matrix congruence
transformation, (13) can be rewritten as

[”111‘1 Piéi+I:IiTii|<07

% 2T 24

where
T; =07,
1 _ e —1 7T p.0.Tp.
7y = He{PiAi} + ¢, U U + 1,PiFiF; P
+ Z(Sir(i)r - I_)l)
r#i
For any (1) = [T (1) 6T (Kin(t))T # 0, it is the fact that
" (t)(PiA; + A;P; + 81_,-1 UTU + ey iPiFF] Pn(t)
+ 20" (1)PBi6 (Kin(1)) — 207 (Kin(t))Ti[6(Kin (1))

—HinO1+ Y 8irln” (6)(Pr — POn(t)] < 0. (25)
r#i

Under switching law (15), when n(1) € Q(P;,1)Ng; C
L(K;, H;), one has o(¢) =i and

n ()(Py — Pn(t) >0, r#i. (26)

Combining _(23), (25) and (%6) y_ields that V(n(t)) < 0 for
any n(t) € Q(P;, 1) N g; C L(K;, Hp).
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At a switching instant ¢ = #;, under switching law (15),
we have V(n(tx)) = 07 (ti)Poun(te) < TIT(fk)pQ(,k—)U(fk) =
T () Pon(ty) = V(). .

For any ¢ € [#, tx+1), integrating V(¢) < O from O to ¢
results in

t
0>/ V(t)dt
0

11 A %) . 179 .
=/ V(t)dr—i—/ V(r)dr—i-m—l—/ V(r)dt
0 f t

i
t
+ / V(r)dt
173

= V@) = V) + Vn(,)) — Vinn))
+ -+ V@) = V@) + V(n() — V(n(u))
= V@) = V) + Vn(, ) — Vn))
+ -+ V@) — V() > V() — V(n0))
27)

It follows V(n(#)) < V(n(0)), which implies that
() € QP )Ngp, C UL (QPLDNG) if n(0) €
UL (Q(Pi, D) N 6i).

Consequently, system (10) under composite controller (9)
and switching law (15) is locally asymptotically stable with
the estimation of the domain of attraction (16). This com-
pletes the proof. [ ]

Remark 2: In Theorem 1, we have designed a state-
dependent switching law and a switching DOB controller,
under which system (10) with d(¢) = 0 can be local asymptot-
ically stable, even though all of subsystems of (10) are unsta-
ble. It means that the estimation of the exosystem generated
disturbance w(¢) and the stabilization of system (1) cannot be
implemented effectively without switching law (15).

Remark 3: The conditions in Theorem 1 are sufficient for
the local stability of system (10). Therefore, it is important to
calculate the gains of controller (9) and disturbance observer
(8) based on (13) and (14) such that the estimation of the
domain of attraction is as large as possible.

Based on the discussion in Remark 3, the following itera-
tive algorithm is proposed:

Remark 4: For the implementation of Algorithm 1, the ini-
tialization of matrix Y can be set based on the solution of the
following LMIs:

He{PW; + YB;V;} <0, iel[l,N],

which are the conditions of the stability of the stability of
the disturbance dynamic error system: éy(t) = (Wy) +
LBy(1)Vo(1))¥(t) under the arbitrary switching signal with L =
rly.

In this paper, the reference output is set to be

2(t) = Cin(1), (28)

where C,' = [C]i 0].
The augmented closed-loop system (10) is called to have a
restricted Ly-gain less than or equal to y, if under zero initial

VOLUME 7, 2019



Y. Wei et al.: Disturbance Attenuation and Rejection for Nonlinear Uncertain Switched Systems Subject to Input Saturation

IEEE Access

Algorithm 1 The Optimizing Algorithm of Estimation of the

Domain of Attraction

Step 1: Choose the appropriate matrices R, ¥ and scalars
8,-, > 0.

Step 2: Solve linear matrix inequalities (LMIs) (13) and
(14) for Q;.

Step 3: For obtained Q; in Step 2, Solve the following prob-
lem for Y and pu:

infy,;>0,P,>0,U;,2;, Hyi I

UR 0 1
s.t. a) * UR—Py 0O > 0,
* * X1

b) inequalities (13) and (14) hold.

Step 4: If ’unew — Mold| < €, where ¢ > 0 is a fixed
small number, stop the iteration; otherwise, go back
to Step 2 with Y obtained from Step 3.

condition, the following performance inequality holds

1ZOl2 < yld®ll2, V: d@) € .

Theorem 2: If for prescribed scalars y > 0, there exist
X1 > 0,P, > 0,Y, U, Z;, Hy;, diagonal matrices Q; > 0
and scalars €;; > 0, 8; >, i,r € I[1, N], such that

1 Ul -z avi—Hl, 0
* _(1 + Z 3ir)X1i 0 7'[,‘3 =0
* P 0
* * * ot
(29)

and (30) in the top of next page with Zl, 21, w? zzr3 w4

s
defined in Theorem 1, and

n! = HelA; + B;U;} + 1, FiF! — Z&'rxli + EyEL,

r#i
811 Si—1 [81im i
7113:[/3.../?7 /éTJr... Mix;,

then, under the switching law (15), the restricted L, gain from
d(t) to z(t) for system (10) is less than or equal to y within
U?’zl(Q(I_Ji, o) N ¢i), the control law (9) based on (8) and Hy
controller can be designed as Ky; = U;Py;, L = P, 'y and
H; = Z;Py; with Py; = Xl_i]'

Proof: Setting Pi; = X;.',0; = T, ', Ki; = UiPy;, L =
Py 'y and H; = P1;Z; and applying the Schur complement for
inequalities (29) yields that

(K! - Fli’)[l(i),» =Y 8Py — PO N(K] —HD < 1.
o r#i
(31)
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Under tpe switching law (15), for o(¢) = i € I[1, N] and
n() € QP;, @) N ¢, we have
" (OP; =Y 8ir(Pr — P)N() < v, (32)
r#i
which can be rewritten as
1 - _
" (OI=P;i =) 8ir(P;
o r#i
By Lemma 3, it then follows from (31) and (34) that

— P)In(n) < 1. (33)

2K! — Hn@) < 2, (34)

which implies that 5(t) € Q(P;, @) N ¢; € L(K;, H)).
Define a multiple Lypunonv function as

V(n@®) = n" ()Poeyn(t) 35)

where PQ(,«) = Pio@), P2.

For t € [ty, ty+1) with switching instants #; and t;1, it is
assumed that o(t) =i € I[1,_N]. By Assumption 1, Lemma 1
and Lemma 2, for 5(t) € Q(P;, o) N ¢;, we have

V(t) < n"(OPiA; + AP+ &, UTT
+ e PiFiF] P+ Z 8ir(Pr — Pi))n(t)
r#i
T/ \p. 57T T T
+n" (OPEE] Pin(t) +d” (1)d (1)
+ 20" (OPBiO(Kin(1))
— 20T (Kin()T;[0(Kin(1)) — Hin(1))
= u OMyu@) +d" (0)d () (36)
where
My, = Nzlll f_’l’Bi + I:IiTT,'
! * —2Ti ’
with
1)} = HelPA} + &1,' UT U + e1;P;F,FT P;

+ ) 8u(Pr —

r#i

Pre- and post- multiplying (30) by {Py;, I, T;, I} and using
the Schur complement for (30) yields that

+ PEE!P;.

uy Lere, pE AT
m=| "2 T at t TR g (37)
* —2Ti
Firstly, (36) and (37) imply that
V() <d"(d(t), 1€ [t tig) (38)

Under the switching law (15) and the assumption of 7(0) =
0, integrating both sides of the above inequality from O to ¢
results in

t t
o> de(t)d(t)dr>/ V(t)dt
0 0

1 . 15 .
=/ V(t)dr~|—/ V(t)dr
0 131
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(7! BV,+E.ELYT -BQ;+Zf
* w? —YB;Q; + HJ.
* * —2Ql'
* * *
* * *
* * *

L * * *

X]l‘UT w’f Xl,-ClTi 0 7
0 0 0 PyE>;
0 0 0 0
—eil 0 0 0 <0, 30)
* wi4 0 0
* * —y2I 0
* * * -1 |

t t
+ .- +/k V(t)dt +/ V(t)dt
1 174
= V) —Vn0) + Vin,))

V@) +---+Vn@))

= V@) + Vn@) — Vnt))
= V(n@)), (39)

which means every trajectory of system (10) that starts from
a zero initial condition remains insides Uf.vz 1(§2(1_3,~, o) Ng)
for every d(t) € .

On the other hand, from (36) and (37), it follows that

. 1 o~
V() < ul(OMau(t) — ﬁnT(t)C,-TCm(t) +d”(t)d(1)
1 o~
- ﬁnT(t)C,»TCm(t) +dT(1)d(1)
1 T T
= - % 0)z(t) + dT (1)d(1). (40)

Similarly, we have

t t
0< V()< —%/ (D)z(r)dt +/ dT (t)d(v)dr,
0 0
(41)

It is obvious that (41) is equivalent to ||z(¢)]l2 < y [|[d(®)||2,
which implies that system (10) has a restricted L, gain less
than y. |

Remark 5: In Theorem 2, the conditions are presented
to guarantee the system (10) has a restricted Lp gain less
than or equal to y for any d(t) € IlI,. Therefore, it is
important to optimize the value of « to describe the largest
disturbances can be tolerated by the system (10) and estimate
the set UY_, (Q(P;, )N g;), in which the state trajectories with
zero initial condition are bounded.

In what follows, we will give an algorithm for the largest
« such that the results in Theorem 2 hold.

IV. NUMERICAL EXAMPLE

Let consider systems (1) and (2) including two subsystems
with the parameters as follows:

Mode 1:

0.1 0.5 0.1 0.2
A1 = [0.1 —0.2] B = [0.3}’ Fi1= [0.1}’

30 0.1 0.1
W = [0_3], En =|:0'1], Ey =|: 0 ]
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Algorithm 2 The Optimizing Algorithm for Largest Distur-

bance

Step 1: Choose the appropriate matrices Q; > 0 and scalars
(Sir > 0.

Step 2: Solve LMIs (29) and (30) for Y.

Step 3: For obtained Y in Step 2, Solve the following prob-
lem for Q; and «:

SUPx,;>0,P,>0,U;,Z; Hy &
s.t. inequalities (29) and (30) hold.

Step 4: If |otnew — a01d| < €, where € > 0 is a fixed small
number, stop the iteration; otherwise, go back to
Step 2 with Q; obtained from Step 3.

Mode 2:

(03 0.05 02 0.5

=1 o 0.2]’ Bz:[o.l]’F2:[o.3]’
50 05 .

"2=1o —5]’ B2 = [0.5] B = [0.5
r T T
0.01 05

V2= _0.01} » Ci2= [0.5} '

With the above parameters, we specify initial conditions of
the Algorithm 1byR=Q01 = 0> =1,¢11 =0.1,¢12 =0.5,
812 = 0.5 and 671 = 1, the gains of the composite controller
(9) under the optimized parameter u = 0.7362 are obtained
as follows:

=)
|9}
| S|

[ [50994  —15.7605
T 15.1067 —15.7830 |’
Ky = [-12372 —22427],
Ky = [—-03321 —1.5341]. (42)

We conduct the simulation to verify our composite control
deign with the above parameters and the initial conditions
which are set as x(0) = [-0.3 — 0.1]7 and ey = [0.1 0.1]7.

Firstly, by supposing di(t) = da(t) = 0 and f(x) =
X e’ﬁ, under the switching law (15) and gains in (43), it can
be seen from Figs. 1-2 that the disturbance observer (8) can
estimate the exosystem generated disturbance w(¢) effectively
and the states of the closed-loop system are asymptotically
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dy () = dy(t) = 0.
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FIGURE 3. Curve of input signal u(t) + o(t) in the case of
dy(t) = dy(t) = 0.

convergent to zero. Moreover, the input signal of the sys-
tem including controlled and disturbance inputs is depicted
in Fig. 3.

Next, by solving the Algorithm 2 with the initial param-
eters 01 = O = R, ;1 = 0.1, 120 = 0.5, 61p = 0.5
and 821 = 1, a feasible solution of optimized parameters is
o = 42.6732, and the gains of the controller (9) can be further
presented as

I - —8.5421 —44.1503
| —8.5496 —44.1871 |’

Ky = [—5.3883 —6.1112],
Ky = [—2.9402 —6.2276 ]. (43)
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We suppose external disturbances di(r) = e 2 and

do(t) = e™!, the results in Theorem 2 are be confirmed in
the following simulation. Fig. 4 shows the trajectories of both
the disturbances w(¢) and the corresponding estimation @&(t)
based on the observer (9), which can demonstrate the effec-
tiveness of the disturbance observer. The curves of the closed-
loop system states are described in Fig. 5, which shows that
the system under multiple disturbances (1) can be controlled
by the designed controller (10). In Figs. 6-7, the control
input and output are described, respectively. It need to be
mentioned that the results of the simulations in Figs. 4-7 are
obtained under the switching law (15).

Remark 6: In [37], the robust stabilization of switched
systems with nonlinear uncertainty and actuator saturation
has been investigated. For the switched system under consid-
eration in this example, the gains of the controller in [37] can
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FIGURE 8. Response curves of the closed-loop system state under the
control scheme in [37] with disturbances w(t), d; () and d,(t).

be solved as

Ki = [-1.4290 -3.6721],

Ky = [—5.6722 —2.1417]. (44)

However, Fig. 8 shows that the capabilities of this con-
troller deteriorate seriously, when the switched system is
subject to both exosystem generated disturbance and Ho-
norm bounded disturbance. By the proposed control scheme
in this paper, the control performance of the system can be
achieved effectively from Fig. 5.

V. CONCLUSION

The problem of composite anti-disturbance control for a class
of switched nonlinear systems subject to input saturation and
multiple disturbances has been investigated. Based on the
switching signal, the novel disturbance observer and com-
posite controller have been proposed. By designing the state-
dependent switching law, some sufficient design conditions
for disturbance observer and switching based controller have
been given for ensuring the locally asymptotically stable of
the closed-loop system and achieving the H, performance
requirement. The domain of attraction of the stable closed-
loop system has been estimated and optimized, and an algo-
rithm for the largest disturbance has been proposed. Finally,
a simulation example is given to show the effectiveness of the
results in this paper.
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