19 research outputs found

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin

    Design and Development of an Integrated Mobile Robot System for Use in Simple Formations

    Get PDF
    In recent years, formation control of autonomous unmanned vehicles has become an active area of research with its many broad applications in areas such as transportation and surveillance. The work presented in this thesis involves the design and implementation of small unmanned ground vehicles to be used in leader-follower formations. This mechatronics project involves breadth in areas of mechanical, electrical, and computer engineering design. A vehicle with a unicycle-type drive mechanism is designed in 3D CAD software and manufactured using 3D printing capabilities. The vehicle is then modeled using the unicycle kinematic equations of motion and simulated in MATLAB/Simulink. Simple motion tasks are then performed onboard the vehicle utilizing the vehicle model via software, and leader-follower formations are implemented with multiple vehicles

    Fault Detection and Isolation in Controlled Multi-Robot Systems

    Get PDF
    Multi-Agent Systems (MASs) have attracted much popularity, since the previous decade due to their potential wide range of applications. Indeed, connected MASs are deployed in order to achieve more complex objectives that could otherwise not be achievable by a single agent. In distributed schemes, agents must share their information with their neighbours, which are then used for common control and fault detection purposes, and thus do not require any central monitoring unit. This translates into the necessity to develop efficient distributed algorithms in terms of robustness and safety. Indeed, the problem of safety in connected cooperative MASs has arisen as a consequence of their complexity and the nature of their operations and wireless communication exchanges, which renders them vulnerable to not only physical faults, but also to cyber-attacks. The main focus of this thesis is the study of distributed fault and attack detection and isolation in connected MASs. First, a distributed methodology for global detection of actuator faults in a class of linear MASs with unknown disturbances is proposed using a cascade of fixed-time Sliding Mode Observers (SMOs), where each agent having access to their state, and neighbouring information exchanges, can give an exact estimate of the state of the overall MAS. An LMI-based approach is then applied to design distributed global robust residual signals at each agent capable of detecting faults anywhere in the network. This is then extended to agents with nonlinear nonholonomic dynamics where a new distributed robust Fault Detection and Isolation (FDI) scheme is proposed using predefined-time stability techniques to derive adequate distributed SMOs. This enables to reconstruct the global system state in a predefined-time and generate proper residual signals. The case of MASs with higher order integrator dynamics, where only the first state variable is measurable and the topology is switching is investigated, where a new approach to identify faults and deception attacks is introduced. The proposed protocol makes an agent act as a central node monitoring the whole system activities in a distributed fashion whereby a bank of distributed predefined-time SMOs for global state estimation are designed, which are then used to generate residual signals capable of identifying cyber-attacks despite the switching topology. The problem of attack and FDI in connected heterogeneous MASs with directed graphs, is then studied. First, the problem of distributed fault detection for a team of heterogeneous MASs with linear dynamics is investigated, where a new output observer scheme is proposed which is effective for both directed and undirected topologies. The main advantage of this approach is that the design, being dependant only on the input-output relations, renders the computational cost, information exchange and scalability very effective compared to other FDI approaches that employ the whole state estimation of the agents and their neighbours as a basis for their design. A more general model is then studied, where actuator, sensor and communication faults/attacks are considered in the robust detection and isolation process for nonlinear heterogeneous MASs with measurement noise, dynamic disturbances and communication parameter uncertainties, where the topology is not required to be undirected. This is done using a distributed finite-frequency mixed H_/H1 nonlinear UIO-based approach. Simulation examples are given for each of the proposed algorithms to show their effectiveness and robustness

    Decentralized finite-time adaptive consensus of multiagent systems with fixed and switching network topologies

    Get PDF
    In this paper, finite-time adaptive consensus problem is investigated for first-order multiagent systems with unknown nonlinear dynamics. Linearly parameterized method is introduced to model unknown nonlinear dynamics of the systems. By only utilizing the local relative position state information between each agent and its neighbors, decentralized finite-time adaptive consensus algorithms are presented with directed fixed and switching network topologies which satisfy detailed balance condition. Based on classical Lyapunov analysis techniques, both finite-time stability and finite-time parameter convergence are guaranteed by making use of the proposed control algorithms. Finally, the results in Simulations part are presented to validate our main results.This work is supported in part by National Natural Science Foundation (NNSF) of China (61273183, 61174216, 61374028 and 61304162).http://www.elsevier.com/locate/neucomhj2018Electrical, Electronic and Computer Engineerin

    Design, testing and validation of model predictive control for an unmanned ground vehicle

    Full text link
    The rapid increase in designing, manufacturing, and using autonomous robots has attracted numerous researchers and industries in recent decades. The logical motivation behind this interest is the wide range of applications. For instance, perimeter surveillance, search and rescue missions, agriculture, and construction. In this thesis, motion planning and control based on model predictive control (MPC) for unmanned ground vehicles (UGVs) is tackled. In addition, different variants of MPC are designed, analysed, and implemented for such non-holonomic systems. It is imperative to focus on the ability of MPC to handle constraints as one of the motivations. Furthermore, the proliferation of computer processing enables these systems to work in a real-time scenario. The controller's responsibility is to guarantee an accurate trajectory tracking process to deal with other specifications usually not considered or solved by the planner. However, the separation between planner and controller is not necessarily defined uniquely, even though it can be a hybrid process, as seen in part of this thesis. Firstly, a robust MPC is designed and implemented for a small-scale autonomous bulldozer in the presence of uncertainties, which uses an optimal control action and a feed-forward controller to suppress these uncertainties. More precisely, a linearised variant of MPC is deployed to solve the trajectory tracking problem of the vehicle. Afterwards, a nonlinear MPC is designed and implemented to solve the path-following problem of the UGV for masonry in a construction context, where longitudinal velocity and yaw rate are employed as control inputs to the platform. For both the control techniques, several experiments are performed to validate the robustness and accuracy of the proposed scheme. Those experiments are performed under realistic localisation accuracy, provided by a typical localiser. Most conspicuously, a novel proximal planning and control strategy is implemented in the presence of skid-slip and dynamic and static collision avoidance for the posture control and tracking control problems. The ability to operate in moving objects is critical for UGVs to function well. The approach offers specific planning capabilities, able to deal at high frequency with context characteristics, which the higher-level planner may not well solve. Those context characteristics are related to dynamic objects and other terrain details detected by the platform's onboard perception capabilities. In the control context, proximal and interior-point optimisation methods are used for MPC. Relevant attention is given to the processing time required by the MPC process to obtain the control actions at each actual control time. This concern is due to the need to optimise each control action, which must be calculated and applied in real-time. Because the length of a prediction horizon is critical in practical applications, it is worth looking into in further detail. In another study, the accuracies of robust and nonlinear model predictive controllers are compared. Finally, a hybrid controller is proposed and implemented. This approach exploits the availability of a simplified cost-to-go function (which is provided by a higher-level planner); thus, the hybrid approach fuses, in real-time, the nominal CTG function (nominal terrain map) with the rest of the critical constraints, which the planner usually ignores. The conducted research fills necessary gaps in the application areas of MPC and UGVs. Both theoretical and practical contributions have been made in this thesis. Moreover, extensive simulations and experiments are performed to test and verify the working of MPC with a reasonable processing capability of the onboard process

    Backstepping control with fixed-time prescribed performance for fixed wing UAV under model uncertainties and external disturbances

    Get PDF
    In this paper, a novel backstepping control scheme with fixed-time prescribed performance is proposed for the longitudinal model of fixed wing UAV subject to model uncertainties and external disturbances. The novel performance function with arbitrarily preassigned fixed-time convergence property is developed, which imposes priori performance envelops on both altitude and airspeed tracking errors. By using error transformed technology, the constrained fixed-time performance envelops are changed into unconstrained equivalent errors. Based on modified error compensation mechanism, a novel backstepping approach is proposed to guarantee altitude tracking equivalent error converges to the specified small neighborhood and presents excellent robustness against model uncertainties and external disturbances, and airspeed controller with fixed-time prescribed performance is designed. The proposed methodology guarantees the transient and steady-state performance of altitude and airspeed tracking errors within constrained fixed-time performance envelops in spite of lumped disturbances. Finally, numerical simulations are used to verify the effectiveness of the proposed control schem

    Finite-time consensus of multiple nonholonomic chained-form systems based on recursive distributed observer

    No full text
    The consensus tracking problem of multiple nonholonomic high-order chained-form systems is considered in this paper. A finite-time observer-based distributed control strategy is proposed. At the first step, a distributed finite-time convergent observer is proposed for each agent to estimate the leader's state in a finite time. Then, a finite-time tracking controller is designed to track the estimated state and the leader's attitude in a finite time. As an application of the proposed results, finite-time formation control of multiple wheeled mobile robots is studied and a finite-time formation control algorithm is proposed. To show effectiveness of the proposed approach, a simulation example is given

    Cooperative Control and Fault Recovery for Network of Heterogeneous Autonomous Underwater Vehicles

    Get PDF
    The purpose of this thesis is to develop cooperative recovery control schemes for a team of heterogeneous autonomous underwater vehicles (AUV). The objective is to have the network of autonomous underwater vehicles follow a desired trajectory while agents maintain a desired formation. It is assumed that the model parameters associated with each vehicle is different although the order of the vehicles are the same. Three cooperative control schemes based on dynamic surface control (DSC) technique are developed. First, a DSC-based centralized scheme is presented in which there is a central controller that has access to information of all agents at the same time and designs the optimal solution for this cooperative problem. This scheme is used as a benchmark to evaluate the performance of other schemes developed in this thesis. Second, a DSC-based decentralized scheme is presented in which each agent designs its controller based on only its information and the information of its desired trajectory. In this scheme, there is no information exchange among the agents in the team. This scheme is also developed for the purpose of comparative studies. Third, two different semi-decentralized or distributed schemes for the network of heterogeneous autonomous underwater vehicles are proposed. These schemes are a synthesis of a consensus-based algorithm and the dynamic surface control technique with the difference that in one of them the desired trajectories of agents are used in the consensus algorithm while in the other the actual states of the agents are used. In the former scheme, the agents communicate their desired relative distances with the agents within their set of nearest neighbors and each agent determines its own control trajectory. In this semi-decentralized scheme, the velocity measurements of the virtual leader and all the followers are not required to reach the consensus formation. However, in the latter, agents communicate their relative distances and velocities with the agents within their set of nearest neighbors. In both semi-decentralized schemes only a subset of agents has access to information of a virtual leader. The comparative studies between these two semi-decentralized schemes are provided which show the superiority of the former semi-decentralized scheme over latter. Furthermore, to evaluate the efficiency of the proposed DSC-based semi-decentralized scheme with consensus algorithm using desired trajectories, a comparative study is performed between this scheme and three cooperative schemes of model-dependent coordinated tracking algorithm, namely the centralized, decentralized, and semi-decentralized schemes. Given that the dynamics of autonomous underwater vehicles are inevitably subjected to system faults, and in particular the actuator faults, to improve the performance of the network of agents, active fault-tolerant control strategies corresponding to the three developed schemes are also designed to recover the team from the loss-of-effectiveness in the actuators and to ensure that the closed-loop signals remain bounded and the team of heterogeneous autonomous underwater vehicles satisfy the overall design specifications and requirements. The results of this research can potentially be used in various marine applications such as underwater oil and gas pipeline inspection and repairing, monitoring oil and gas pipelines, detecting and preventing any oil and gas leakages. However, the applications of the proposed cooperative control and its fault-tolerant scheme are not limited to underwater formation path-tracking and can be applied to any other multi-vehicle systems that are characterized by Euler–Lagrange equations
    corecore