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ABSTRACT
In this paper, a novel backstepping control scheme with fixed-time prescribed per-
formance is proposed for the longitudinal model of fixed wing UAV subject to model
uncertainties and external disturbances. The novel performance function with ar-
bitrarily preassigned fixed-time convergence property is developed, which imposes
priori performance envelops on both altitude and airspeed tracking errors. By using
error transformed technology, the constrained fixed-time performance envelops are
changed into unconstrained equivalent errors. Based on modified error compensa-
tion mechanism, a novel backstepping approach is proposed to guarantee altitude
tracking equivalent error converges to the specified small neighborhood and presents
excellent robustness against model uncertainties and external disturbances, and air-
speed controller with fixed-time prescribed performance is designed. The proposed
methodology guarantees the transient and steady-state performance of altitude and
airspeed tracking errors within constrained fixed-time performance envelops in spite
of lumped disturbances. Finally, numerical simulations are used to verify the effec-
tiveness of the proposed control scheme.
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1. Introduction

Lately, unmanned aerial vehicles (UAVs) are popular autonomous platforms for
various flying missions ranging from exploration, surveillance, fire-fighting, traf-
fic monitoring, weather research, rescue of people, power lines and oil pipelines
inspection (Castañeda, Salas-Peña, & de León-Morales, 2017). The remark-
able military and commercial values of UAV render them a research hotspot
(Al Younes, Drak, Noura, Rabhi, & El Hajjaji, 2016; Mofid & Mobayen, 2018;
Poultney, Gong, & Ashrafiuon, 2019). Therefore, it is important to design robust
and high-performance control strategy with fast convergence characteristic for
improving the reliability and safety of the UAV control system. During the past
decades, various types of finite-time (Mobayen, 2015; Pukdeboon & Siricharuanun,
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2014; Sun, Yun, & Li, 2017; Xi, Mobayen, Ren, & Jafari, 2018) and fixed-
time (Espitia, Polyakov, Efimov, & Perruquetti, 2019; Gao & Guo, 2020;
Polyakov, Efimov, & Brogliato, 2019) control methods have been developed for
various nonlinear systems. In Haghighi and Mobayen (2018), a novel adaptive ter-
minal sliding mode control scheme is proposed to realize the finite-time convergence
for both subsystems of the fourth-order system. In the pioneering work of fixed-time
control (Polyakov, 2012), two fixed-time control algorithms developed by Polyakov
provide fixed-time stability of the closed-loop systems independent of initial con-
ditions. In Gao and Guo (2019), a novel fixed-time command filtered backstepping
control scheme is proposed for surface vehicle, which ensures the trajectory tracking
control can be achieved in fixed-time. Comprehensive analysis of the above control
methods, although all have the characteristics of rapid convergence, but for certain
flight phases of fixed wing UAVs, such as formation flight and landing phase, the flight
control system needs to achieve high-performance precise tracking control of altitude
and airspeed command with satisfactory transient and steady-state performance in
specified fixed-time. The longitudinal dynamical model of the fixed wing UAV is
featured with strong couplings, serious nonlinearities and high uncertainties. Actually,
it is a challenging task to ensure that the altitude and airspeed tracking of the fixed
wing UAV meet the prescribed transient and steady-state performance in fixed-time.

Due to the flexibility, systematic design process and good extensibility
(Nikdel, Badamchizadeh, Azimirad, & Nazari, 2016), the backstepping control is a
commonly used method in the field on control of aircraft and especially UAV
(Chen, Jiang, Zhang, Jiang, & Tao, 2016). Based on the Lyapunov stability the-
ory, the conventional backstepping control provides a gradually recursive method
to design virtual control signal from the top to the bottom, and the actual con-
trol law is designed at the last step to make the whole closed-loop system sta-
ble. In this process, the virtual control signals need to be repeatedly differenti-
ated. As the system order and model complexity increase, the control law be-
comes more and more complicated, which leads to the phenomenon of “explo-
sion of complexity” (Swaroop, Hedrick, Yip, & Gerdes, 2000; J. Yu, Shi, & Zhao,
2018). To address the above issue, the dynamic surface control (DSC) approach
has been proposed by introducing a first-order filter in each step of the design
process (Qiao, Meng, Wang, Ke, & Sun, 2019; Qiu, Liang, Dai, Cao, & Chen, 2015;
Tong, Sui, & Li, 2014; J. Yu, Shi, Dong, & Yu, 2015). Command filtered backstep-
ping control is another improved backstepping control method, which obtains the
derivative of virtual control signal through command filter, and introduces error com-
pensation mechanism to reduce the influence of the errors caused by the command
filters (Farrell, Polycarpou, Sharma, & Dong, 2009). However, most of the backstep-
ping control methods and error compensation mechanisms are all asymptotically sta-
ble, which means that infinite time is required to achieve closed-loop system stability
(J. Yu, Zhao, Yu, Lin, & Dong, 2017). As an effective strategy to solve the tracking
control problems of high-order nonlinear systems, how to ensure the finite-time conver-
gence of the command filtered backstepping control is an important and challenging
task.

It should be pointed out that the backstepping control methods are not di-
rect and fast enough to handle the effect of the disturbances. In order to enhance
the robustness of the control system, the neuro/fuzzy technique is combined with
command filtered backstepping control to eliminate the influence of uncertain non-
linearities by employing neuro/fuzzy approximating structures (Li & Tong, 2016;
Peydayesh, Arefi, & Modares, 2018). However, as extra adaptive parameters have to
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be updated, the introduction of neuro/fuzzy approximating structures increases the
complexity and extra calculations of the backstepping control schemes, thus mak-
ing their implementation difficult in engineering practice (Bechlioulis & Rovithakis,
2016). On disturbance rejection tracking control problem, active anti-disturbance con-
trol based on disturbance observer has an inherent superiority in handling uncer-
tainties (Wang, Yu, Li, & Liu, 2019). That is, according to known model and dy-
namic information of system, the disturbance observer is constructed to estimate
and compensate the uncertain disturbances. Due to its powerful disturbance rejec-
tion capability, active anti-disturbance control methods based on disturbance ob-
server have been utilized for many nonlinear systems with disturbances (Back & Kim,
2015; Besnard, Shtessel, & Landrum, 2012; Gao & Guo, 2020; Lu, Liu, Guo, & Chen,
2015).

Although the above control strategies provide excellent results in terms of refer-
ence trajectory tracking performance, it is worth noting that all of them can only
guarantee the stability of the system. Unfortunately, the prescribed transient perfor-
mance (overshoot and convergence rate of the tracking errors) and steady tracking
accuracy are difficult to guarantee due to the lack of suitable tools. As the pioneer-
ing work to handle this problem, prescribed performance control (PPC) proposed by
Bechlioulis and Rovithakis is an effective way (Bechlioulis, Doulgeri, & Rovithakis,
2012; Bechlioulis & Rovithakis, 2014). By designing decaying performance func-
tion, PPC framework can quantitatively characterize both transient and steady-
state performance of the controlled systems. Due to the prominent advantages,
PPC methods attract extensive attention in application of various nonlinear sys-
tems (Bu, 2018; Tooranjipour, Vatankhah, & Arefi, 2019), and a few PPC meth-
ods are presented to solve the flight control problem. In Bu, Wu, Huang, and Wei
(2016), a novel estimation-free prescribed performance backstepping controller is con-
structed directly using a non-affine model of air-breathing hypersonic vehicle. In
Hua, Chen, and Guan (2018), for the quadrotor UAVs with time-varying payloads and
wind gust disturbances, a robust adaptive prescribed performance controller is pro-
posed. In Y. Zhang, Wang, Chang, and Wu (2019), for the carrier-based UAV subject
to uncertainties, input constraints and unknown disturbances, adaptive constrained
backstepping controller with prescribed performance methodology is proposed.

Although the transient performance of the convergence process can be specified in
advance, however, the conventional PPC methods usually use exponentially decaying
performance functions (Hua et al., 2018; Kostarigka, Doulgeri, & Rovithakis, 2013),
which can only guarantee the system states converge at the exponential rate, in other
words, the system states converge to its prescribed arbitrarily small residual set only
when time approaches positive infinity. For the flight control system of UAV, it is usu-
ally expected that the system states reach target commands in fixed-time. Therefore,
novel fixed-time PPC framework needs to be explored to overcome the shortcomings
of conventional PPC methods.

Motivated by the above discussions, in this paper, we aim at achieving arbitrarily
fixed-time prescribed performance control for the longitudinal model of fixed wing
UAV subject to model uncertainties and external disturbances. Compared to the ex-
isting research results, the main contributions of this paper are summarized as follows:

(1) The proposed fixed-time performance function converges to any expected track-
ing accuracy at arbitrarily preassigned fixed-time, with which the preassigned
fixed-time performance envelops are strictly constructed for altitude and air-
speed tracking errors.
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(2) In order to quickly approach the final value, the conventional PPC usually
chooses large exponential convergence rate, which cause the magnitude of con-
trol input to be large or even saturation at the initial time. Compared with
PPC, the magnitude of control input under fixed-time prescribed performance
control (FTPPC) at the initial time is small, which can effectively avoid control
input saturation at the initial time.

(3) A novel fixed-time control scheme is proposed based on the fixed-time prescribed
performance methodology and backstepping control. By using error transformed
technology, the equivalent error system is stabilized based on backstepping ap-
proach, which ensures the transient and steady-state performance of tracking
error within constrained fixed-time performance envelops. The novel fixed-time
control scheme of this paper not only guarantee the stability of the system in
fixed-time, but also meet the prescribed transient and steady-state performance.

The structure of the paper is organized as follows. Section 2 gives the longitudinal
model of fixed wing UAV and reviews necessary preliminary knowledges throughout
the paper. In Section 3, the novel performance function with arbitrarily preassigned
fixed-time convergence property is developed, and the equivalent error transformation
technology for fixed-time prescribed performance control is introduced. In Section
4, a novel backstepping altitude controller with fixed-time prescribed performance is
proposed, and airspeed controller with fixed-time prescribed performance is designed
in Section 5. Section 6 uses two simulation examples to verify the effectiveness of the
proposed control scheme. Section 7 gives some conclusions.

2. Problem formulation and necessary preliminaries

2.1. Model description

The longitudinal dynamical model of fixed wing UAV can be formulated as follows:

V̇ =
T cosα−D

m
− g sin γ (1)

ḣ = V sin γ (2)

γ̇ =
L+ T sinα

mV
− g

V
cos γ (3)

α̇ = q − γ̇ (4)

q̇ =
M

Iyy
(5)

The above longitudinal model of UAV is composed of five states (i.e., airspeed V ,
altitude h, flight-path angle γ, angle of attack α, and pitch rate q), which are available
for measurement and control law design. m represents the mass of the UAV; Iyy
represents the moment of inertia; g denotes the gravity acceleration. The engine thrust
T = TmaxδT acting on the UAV is along the body axis; Tmax and δT denote maximum
of the engine thrust force and instantaneous thrust throttle setting, respectively. The
aerodynamic force/torque acting on UAV are synthesized as drag component D, lift
component L and pitch moment component M . The aerodynamics force and torque
of the UAV can be calculated from the dimensionless aerodynamic coefficients and
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have the following expressions

L = 0.5ρV 2SCL (6)

D = 0.5ρV 2SCD (7)

M = 0.5ρV 2ScCm (8)

where CL, CD, Cm denote lift coefficient, drag coefficient and pitching moment coeffi-
cient, respectively. ρ is the air density. The reference area S and the mean aerodynamic
chord of the wing c are considered as constant parameters. The dimensionless aerody-
namic coefficients in the force/torque expressions can be decomposed in the following
equations

CL = CLαα+ CL0 + CLδeδe (9)

CD = CDα2α2 + CDαα+ CD0 (10)

Cm = Cmαα+ Cm0 +
cq

2V
Cmq + Cmδeδe (11)

where δe denotes the elevator deflection. Other related variables and vehicle parame-
ters can be found in Z. Yu, Qu, and Zhang (2018). Therefore, the longitudinal model
has two control inputs, throttle setting δT and elevator deflection δe, and the outputs
to be controlled are selected as y = [V, h]T . The control objective of this study is
to design a control scheme to guarantee altitude and airspeed tracking errors within
constrained fixed-time performance envelops in spite of lumped disturbances.

Remark 1: From equations (1)-(5), it can be seen that the airspeed of the UAV is
controlled by the thrust throttle setting and the altitude is controlled by the elevator.
Therefore, equation (1) can be defined as the airspeed subsystem, and equations (2)-
(5) are defined as the altitude subsystem.

2.2. Necessary preliminaries

Consider the robust exact first-order differentiator (Angulo, Moreno, & Fridman,
2013) as follows

ψ̇1 = −k1ϑsig(ψ1 − xd)
1/2 − k3(1− ϑ)sig(ψ1 − xd)

(2+τ)/2 + ψ2

ψ̇2 = −k2ϑsign(ψ1 − xd)− k4(1− ϑ)sig(ψ1 − xd)
1+τ

(12)

where sig(·)τ = |·|τ sign(·), sign(·) is the standard sign function. xd is the input signal.
k1, k2 are selected based on the original first-order sliding mode differentiator (Levant,
2003); k3, k4 are selected as k3 > 0, k4 > 0 and τ is chosen small enough, the function
ϑ : [0,∞) → {0, 1} is selected as

ϑ(t) =

{
0, T ≤ Tϑ
1, T > Tϑ

(13)

with some arbitrarily chosen Tϑ > 0. Then the following lemmas hold:
Lemma 1 (Angulo et al., 2013): The parameter τ > 0 is sufficiently small and

k1, k2, k3, k4 being properly chosen, the following equalities will be established in the
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absence of input noises after finite-time transient process.

ψ1 = xd, ψ2 = ẋd (14)

Note that Lemma 1 is given provided that the input of differentiator is not affected
by noise, if the input is affected by noise, then we have the following lemma.

Lemma 2 (Angulo et al., 2013): When the input signal xd is measured with additive
noise uniformly bounded satisfying |xd − xd0| < ι, then the following accuracy is
obtained after finite-time.

|ψ1 − xd| = 0(L1/3ι2/3) = ν (15)

Lemma 3 (Zuo, 2015): For any nonnegative real numbers ξi ≥ 0, i = 1, . . . , N and
0 < p < 1. Then

N∑
i=1

ξpi ≥
(

N∑
i=1

ξi

)p

(16)

Lemma 4 (Mobayen & Ma, 2018): Consider the continuously differentiable bounded
positive definite function V (t), the following inequality exists

V̇ (t) ≤ −λ1V − λ2V
γ (17)

where λ1 > 0, λ2 > 0, 0 < γ < 1, then, the equilibrium point of system is globally
finite-time stable with the settling time upper bounded by

Tr ≤ 1

λ1(1− γ)
ln
λ1V (0)

1−γ
+ λ2

λ2
(18)

3. Fixed-time prescribed performance control

3.1. Novel fixed-time performance function design

In the conventional PPC, the exponentially decaying performance function is usually
used to construct the performance envelopes. Therefore, the tracking error converges
to the steady-state error bounds only when time approaches positive infinity. In practi-
cal engineering, the system states are expected to reach the control command in fixed-
time in order to meet specific control requirements. In this section, a novel fixed-time
performance function is presented. Inspired by the definition of exponentially decay-
ing performance function in Bechlioulis and Rovithakis (2008), the definition of the
fixed-time performance function is given as follows.

Definition 1: For a fixed-time performance function σ(t), the following generalized
properties hold.

(1) σ(t) is Cn(n ≥ 1) continuous function on [0,+∞).
(2) σ(t) is positive and non-increasing function from initial value σ(0) = σ0 > 0

to terminal value σ(T ) = σ∞ > 0, where σ0 > σ∞ are positive constants,
0 < T < +∞ is arbitrarily preassigned fixed-time.

(3) σ̇(T ) = 0.
(4) When t > T, σ(t) = σ∞.
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To better illustrate the above properties, a detailed example of fixed-time perfor-
mance function is presented, i.e.

σ(t) =

{
(σ0 − σ∞)

(
sin(2πt/T )

2π − t
T

)
+ σ0, 0 ≤ t ≤ T

σ∞, t > T
(19)

where σ0 > σ∞ > 0 are the initial value and terminal value of σ(t), respectively. The
fixed-time reachability and its C2 continuity are given by the following property:

Property 1: The fixed-time performance function (19) is positive, non-increasing
and C2 continuous function for any given fixed-time T and satisfies

σ(t) = σ∞, t ≥ T (20)

Proof: Take first-order and second-order time derivative of σ(t) yield that

σ̇(t) =

{
σ0−σ∞

T (cos(2πt/T )− 1) , 0 ≤ t ≤ T
0, t > T

(21)

σ̈(t) =

{
−2π(σ0−σ∞)

T 2 sin(2πt/T ), 0 ≤ t ≤ T
0, t > T

(22)

Obviously, σ̇(t) ≤ 0, for t ≥ 0, and σ(t) = σ∞, for t ≥ T , so the fixed-time
performance function (19) is positive and non-increasing. Since σ̇(T ) = σ̈(T ) = 0, the
fixed-time performance function (19) is C2 continuous function for t ∈ [0,+∞).

3.2. Equivalent error transformation

By fixed-time prescribed performance, it is meant that the tracking error e(t) evolves
strictly within predefined decaying envelops which converge to any expected tracking
accuracy at arbitrarily preassigned fixed-time. For ∀t ≥ 0, the mathematical expres-
sion of fixed-time prescribed performance can be formulated by the following inequal-
ity

− δminσ(t) ≤ e(t) ≤ δmaxσ(t) (23)

where δmin > 0, δmax > 0 are positive design parameters, and satisfy −δminσ(0) ≤
e(0) ≤ δmaxσ(0), the fixed-time performance function σ(t) is defined in (19).

It is difficult to devise the controller directly based on prescribed performance
inequality (23), the inequality constraint needs to be converted into an equality con-
straint. Thus, we introduce an equivalent error transformation for the tracking error
e(t) and performance function σ(t) as follows

e(t) = σ(t)s(ξ(t)) (24)

where ξ(t) is the transformed error, and s(ξ) : (−∞,+∞) → (−δmin, δmax) is the
strictly increasing smooth invertible function as follows

s(ξ) =
δmaxe

ξ − δmine
−ξ

eξ + e−ξ
(25)
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From the definition of s(ξ(t)) and (24), it can be known that

ξ(t) = s−1

(
e(t)

σ(t)

)
=

1

2
ln
δminσ(t) + e(t)

δmaxσ(t)− e(t)
(26)

From (26), the desired reference signal of transformed error ξ(t) is

ξc =
1

2
ln
δmin

δmax
(27)

Take the derivative of (26), yields

ξ̇(t) =
1

2

(
1

e(t) + δminσ(t)
− 1

e(t)− δmaxσ(t)

)(
ė(t)− σ̇(t)e(t)

σ(t)

)

= μ

(
ė(t)− σ̇(t)e(t)

σ(t)

) (28)

where

μ =
1

2

(
1

e(t) + δminσ(t)
− 1

e(t)− δmaxσ(t)

)
(29)

Remark 2: By using error transformed technology, the constrained fixed-time per-
formance envelops are transformed into unconstrained equivalent error. Therefore, the
controller can be designed using transformed error ξ(t) instead of tracking error e(t).

3.3. Comparison with conventional exponentially decaying PPC

Following the idea of Benchlioulis and Rovithakis (Bechlioulis et al., 2012;
Bechlioulis & Rovithakis, 2014), for ∀t ≥ 0, the conventional exponentially decaying
performance function (PPF) σ̄(t) is chosen as

σ̄(t) = (σ̄0 − σ̄∞)e−lt + σ̄∞ (30)

where σ̄0, σ̄∞, l are positive design parameters, σ̄0 = σ̄(0) is selected such that σ̄0 >
σ̄∞ > 0.

The difference between PPF and final value has the following expression

Δσ̄(t) = σ̄(t)− σ̄∞ = (σ̄0 − σ̄∞)e−lt (31)

From (31), when t = T , we have

Δσ̄(T ) = (σ̄0 − σ̄∞)e−lT (32)

where 0 < T < +∞ is arbitrarily preassigned fixed-time defined in (19).
The simulation comparison results of conventional exponentially decaying PPF (30)

and FTPPF (19) proposed in this paper are shown in Fig. 1 with σ0 = σ̄0 = 1, σ∞ =
σ̄∞ = 0.1, T = 3s, and l = 0.4 for PPF 1, l = 0.7 for PPF 2, l = 1 for PPF 3,
respectively. That is, the initial value and final value of the two performance functions
are the same.
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Figure 1. The comparison of conventional exponentially decaying PPF and FTPPF.

It can be seen from Fig. 1 that FTPPF converges to the final value in fixed-time T.
From (32) and Fig. 1, as exponent l increases, the differences between PPF 1-3 and
final value become smaller, and only when exponent l approaches positive infinity,
the difference Δσ̄(T ) can approach zero. It is worth noting that if the conventional
PPC chooses large exponent l in order to quickly approach the final value, the absolute
value of lim

t→0+
˙̄σ(t) = −l(σ̄0− σ̄∞) is large. From (28), when conventional exponentially

decaying PPF σ̄(t) is adopted, the designed controller contains the item
˙̄σ(t)e(t)
σ̄(t) , which

could cause the magnitude of control input to be large or even saturation at the initial
time.

To better illustrate this issue, consider a simple dynamics system as an illustrative
example, i.e.

ẋ = u (33)

where x, u are the system state and control input, respectively.
The state tracking error is defined as

e(t) = x− xc (34)

where xc is the continuously differentiable reference command.
From (26) and (27), for FTPPF and PPF, the tracking errors of the transformed

system are defined as

z = ξ − ξc =
1

2
ln
δminσ(t) + e(t)

δmaxσ(t)− e(t)
− 1

2
ln
δmin

δmax

=
1

2
ln

(
δmax

δmin

δminσ(t) + e(t)

δmaxσ(t)− e(t)

) (35)
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and

z̄ =
1

2
ln

(
δmax

δmin

δminσ̄(t) + e(t)

δmaxσ̄(t)− e(t)

)
(36)

Then, according to (28), the FTPPC and PPC are designed as

u = ẋc +
σ̇(t)e(t)

σ(t)
− ηz

μ

= ẋc +
(σ0 − σ∞)e(t)

Tσ(t)

(
cos

(
2πt

T

)
− 1

)
− ηz

μ

(37)

and

ū = ẋc+
˙̄σ(t)e(t)

σ̄(t)
− ηz̄

μ̄

= ẋc − l(σ̄0 − σ̄∞)e−lte(t)

σ̄(t)
− ηz̄

μ̄

(38)

where η > 0 is design parameter.
From (29), we have μ > 0, μ̄ > 0. Then, according to the expression of z̄ in (36),

− l(σ̄0−σ̄∞)e−lte(t)
σ̄(t) and −ηz̄

μ̄ have the same sign. As − l(σ̄0−σ̄∞)e−lte(t)
σ̄(t) and −ηz̄

μ̄ are added

with the same sign, if PPC (38) selects large exponent l in order to quickly reach the

final value, lim
t→0+

˙̄σ(t)e(t)
σ̄(t) = − l(σ̄0−σ̄∞)e(0)

σ̄0
could cause the magnitude of control input

to be large or even saturation at the initial time, and may even result in failure

to achieve the prescribed performance. For FTPPC (37), we have lim
t→0+

σ̇(t)e(t)
σ(t) =

lim
t→0+

(σ0−σ∞)e(t)
Tσ(t)

(
cos
(
2πt
T

)− 1
)
= 0. Therefore, the magnitude of control input under

FTPPC at the initial time is smaller than PPC.
A set of simulation comparison results between FTPPC and PPC are shown in Figs.

2-3, where the simulation initial conditions and parameters are selected as x(0) =
0, xc = 8, σ0 = σ̄0 = 10, σ∞ = σ̄∞ = 0.01, δmin = 1, δmax = 1, T = 2s, η = 1, and
l = 0.8 for PPC 1, l = 1.6 for PPC 2, l = 2.4 for PPC 3, respectively. When the
exponent l is selected as 0.8,1.6,2.4, respectively, the system states under PPC 1-3
converge to final value in 3.9s, 2.7s, 2.1s, and the magnitude of control inputs under
PPC 1-3 at the initial time is 10.3, 16.7, 23.1, respectively. Based on FTPPC, the
system state converges to the final value in pre-specified 2s, and the magnitude of
control input under FTPPC at the initial time is only 4.0.

Remark 3: For the conventional exponentially decaying PPC, although large ex-
ponent l can obtain fast convergence rate, large exponent l also causes the problem
of large magnitude of initial control input. According to the task requirements, the
FTPPC proposed in this paper can not only preset arbitrarily convergence time with-
out dependence on initial conditions, but also have small magnitude of initial control
input. Therefore, FTPPC is more conducive to preassign convergence time and avoid
saturation problem.
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Figure 2. The system state x under PPC and FTPPC.
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Figure 3. The control inputs of PPC and FTPPC.

4. Altitude tracking controller with fixed-time prescribed performance

4.1. Error transformed model

The altitude tracking error eh(t) = h − hc within the constrained fixed-time perfor-
mance envelops can be formulated by the following inequality

− δh,minσh(t) ≤ eh(t) ≤ δh,maxσh(t) (39)

where δh,min, δh,max are positive design parameters, the fixed-time performance func-
tion σh(t) and its parameters σh,0, σh,∞, Th are defined the same as (19) and satisfy
−δh,minσh(0) ≤ eh(0) ≤ δh,maxσh(0).

By applying the relationship sin γ ≈ γ, and take the derivative of altitude tracking
error eh(t), yields

ėh(t) = V sin γ − ḣc ≈ V γ − ḣc (40)

11



By introducing equivalent error transformation eh(t) = σh(t)sh(ξh(t)) for the alti-
tude tracking error, it can be obtained

ξ̇h(t) = μh

(
ėh(t)− σ̇h(t)eh(t)

σh(t)

)

= μh

(
V γ − ḣc − σ̇h(t)eh(t)

σh(t)

) (41)

where σh(t), sh(ξh(t)), μh are defined the similar as (19), (25) and (29).
In order to achieve altitude tracking control with fixed-time prescribed perfor-

mance, the equivalent error transformation need to be incorporated into the orig-
inal altitude dynamic model (1)-(5). Without loss of generality, the model uncer-
tainties and external disturbances are viewed as lumped disturbances. By replacing
the kinematics equation (2) with equivalent error transformation equation (41), let
x1 = ξh(t), x2 = γ, x3 = α, x4 = q, the governing equation for altitude tracking can
be equivalently rewritten as the following strict feedback form:

ẋ1 = f1 + g1x2 (42)

ẋ2 = f2 + g2x3 +Δ2 (43)

ẋ3 = f3 + g3x4 (44)

ẋ4 = f4 + g4δe +Δ4 (45)

where

f1 = −μh

(
ḣc+

σ̇h(t)eh(t)

σh(t)

)
g1 = μhV

f2 =
0.5ρV 2SCL0

mV
− g

V
cos γ

g2 =
0.5ρV 2SCLα + T

mV
f3 = −γ̇
g3 = 1

f4 = 0.5ρV 2Sc(Cmαα+ Cm0 +
cq

2V
Cmq)/Iyy

g4 = 0.5ρV 2ScCmδe/Iyy

(46)

In addition, Δ2,Δ4 are the lumped disturbances of the flight-path angle channel
and pitch rate channel in the transformed system. Now, the following assumption is
introduced.

Assumption 1: The lumped disturbances of the transformed system (42)-(45) are

continuously differentiable and the first-order derivatives are bounded, i.e.
∣∣∣Δ̇i

∣∣∣ ≤
Li, i = 2, 4, in which Li are known positive constants.
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4.2. Robust exact first-order differentiator and finite-time disturbance
observer

Most of the existing literatures on backstepping control select the following three
differentiators to obtain differential signals: novel tracking differentiator (TD) pro-
posed in Bu, Wu, Zhang, Ma, and Huang (2015), second-order low-pass differentia-
tor (Kalliny, Elbadawy, & Elkhamisy, 2018; Pan, Wang, Li, & Yu, 2018), first-order
Levant differentiator (J. Zhang, Xia, Sun, Wang, & Shen, 2019). The novel tracking
differentiator (TD) proposed in Bu et al. (2015) is formulated as

ψ̇1 = ψ2

ψ̇2 = −R2 [a1 sinh (l1 (ψ1 − xd)) + a2 sinh (l2ψ2/R)]
(47)

where R > 0, a1 > 0, a2 > 0, l1 > 0, l2 > 0 are design parameters. xd is the input
signal, ψ1 and ψ2 are the estimations of xd and ẋd.

The second-order low-pass differentiator is formulated as

ψ̇1 = ψ2

ψ̇2 = −2ζωψ2 − ω2 (ψ1 − xd)
(48)

where ζ > 0, ω > 0 are design parameters.
The first-order Levant differentiator is formulated as

ψ̇1 = ι1

ι1 = −k1|ψ1 − xd|
1
2 sign(ψ1 − xd) + ψ2

ψ̇2 = −k2sign(ψ2 − ι1)

(49)

where k1 > 0, k2 > 0 are design parameters.
In this paper, the robust exact first-order differentiator (12) proposed in

Angulo et al. (2013) is used to obtain the differential signal in finite-time. A simu-
lation comparison research is conducted to test the superiority of the robust exact
first-order differentiator compared with the above three differentiators. The simula-
tion parameters are shown in Table 1. The input command signal xd is selected as the
following function appended with a random noise of variance 0.05.

xd =

{
0, 0 ≤ t < 0.1
1 + 1.2 sin(0.5t) + 1.6 cos(0.4t), t ≥ 0.1

(50)

Table 1. The simulation parameters of the four differentiators.

Differentiator The values of design parameters

Tracking Differentiator (47) R = 10, a1 = 5, a2 = 4, l1 = 1, l2 = 1
Second-order low-pass differentiator (48) ζ = 0.707, ω = 15
First-order Levant differentiator (49) k1 = 10, k2 = 12
Robust exact first-order differentiator (12) k1 = 10, k2 = 12, k3 = 20, k4 = 20, τ = 0.1, Tϑ = 0.3

The simulation results of the four differentiators are shown in Figs. 4-5. As shown
in Fig. 4, by selecting appropriate parameters, each differentiator can track the com-
mand signal in a short time. It can be seen from Fig. 5 that the four differentiators,
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especially the tracking differentiator, obtain smooth differential signals in a short time.
In the step phase where the input command signal changes rapidly, the maximum dif-
ferential tracking errors of the differentiators (47)-(49) are 26.2, 17.8, 2.5, respectively,
while the robust exact first-order differentiator is only 1.9, the maximum differential
tracking error of the robust exact first-order differentiator is smaller than the other
three differentiators. As can be seen from Fig. 4, the convergence rate of the robust
exact first-order differentiator is faster than first-order Levant differentiator. There-
fore, based on the robust exact first-order differentiator, the controller can obtain
high-quality command tracking signals and differential signals in finite-time.
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Figure 4. Tracking signals of the four differentiators.
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Figure 5. Differential signals of the four differentiators.

Moreover, based on the robust exact first-order differentiator, finite-time distur-
bance observers are designed to accurately estimate and compensate lumped distur-
bances in transformed system (42)-(45).

Theorem 1: For the transformed system (42)-(45) with lumped disturbances under

14



Assumption 1, construct the finite-time disturbance observers as follows

˙̂xi = fi + giui − ri,1ϑsig(x̂i − xi)
1/2 − ri,3(1− ϑ)sig(x̂i − xi)

(2+τ)/2 + Δ̂i

˙̂
Δi = −ri,2ϑsign(x̂i − xi)− ri,4(1− ϑ)sig(x̂i − xi)

1+τ
(51)

where i = 2, 4, u2 = x3, u4 = δe. x̂i and Δ̂i are the estimates of xi and Δi, respectively.
ri,1, ri,2 are positive design parameters which satisfy ri,1 ≥ 1.5

√
Li, ri,2 ≥ 1.1Li with

Li defined in Assumption 1. ri,3, ri,4 are selected as ri,3 > 0, ri,4 > 0 and τ is chosen
small enough. The function ϑ : [0,∞) → {0, 1} is defined by ϑ = 0 if t ≤ Tϑ and
otherwise ϑ = 1 with an arbitrarily positive constant Tϑ > 0. The stability of the
disturbance observer can be achieved in finite-time Ti,1 such that Δ̂i → Δi for t < Ti,1
and Δ̂i=Δi for t ≥ Ti,1.

Proof: Subtracting the disturbance observers (51) from the transformed system (43)
and (45), it can be obtained

˙̃xi = −ri,1ϑsig(x̃i)1/2 − ri,3(1− ϑ)sig(x̃i)
(2+τ)/2 + Δ̃i

˙̃Δi = −ri,2ϑsign(x̃i)− ri,4(1− ϑ)sig(x̃i)
1+τ − Δ̇i

(52)

where i = 2, 4, x̃i = x̂i − xi, Δ̃i = Δ̂i − Δi. With the parameters being selected
in Theorem 1, the stability and finite-time convergence property of (52) have been
proved in Angulo et al. (2013). Therefore, the disturbance estimate errors Δ̃i converge

to 0 in finite-time Ti,1, such that Δ̂i → Δi for t < Ti,1 and Δ̂i=Δi for t ≥ Ti,1.

4.3. Backstepping controller

The aim of backstepping controller is to generate the appropriate elevator deflection
δe which guarantees that the altitude tracking equivalent error x1 converges to the
specified small neighborhood of the desired reference signal in spite of lumped distur-
bances. The tracking errors of the transformed system (42)-(45) are defined as

z1 = x1 − x1,d (53)

z2 = x2 − x2,c (54)

z3 = x3 − x3,c (55)

z4 = x4 − x4,c (56)

where x1,d= 0.5 ln(δh,min/δh,max) is the desired reference signal of transformed error
x1 = ξh(t). x2,c, x3,c, x4,c are the outputs of robust exact first-order differentiators
with the virtual control signals x2,d, x3,d, x4,d as the inputs. The finite-time robust
exact first-order differentiators are designed as follows

ψ̇i,1 = −κi,1ϑ0sig(ψi,1 − xi,d)
1/2 − κi,3(1− ϑ0)sig(ψi,1 − xi,d)

(2+τ0)/2 + ψi,2

ψ̇i,2 = −κi,2ϑ0sign(ψi,1 − xi,d)− κi,4(1− ϑ0)sig(ψi,1 − xi,d)
1+τ0

(57)

where xi,c = ψi,1, ẋi,c = ψi,2, i = 2, 3, 4. The positive design parameters κi,1, κi,2 are
selected based on the original first-order sliding mode differentiator (Levant, 2003);
κi,3, κi,4 are selected as κi,3 > 0, κi,4 > 0 and τ0 is chosen small enough. The function
ϑ0 : [0,∞) → {0, 1} is defined by ϑ0 = 0 if t ≤ Tϑ0

and otherwise ϑ0 = 1 with an
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arbitrarily positive constant Tϑ0
> 0. According to Lemma 1, robust exact first-order

differentiator is finite-time exact.
Choose the virtual control signals xi,d, i = 2, 3, 4 and the control input δe as follows

x2,d =
1

g1
[−f1 − η1z1 + ẋ1,d − β1sig(ε1)

a − λ1sig(ζ1)
b] (58)

x3,d =
1

g2
[−f2 − η2z2 + ẋ2,c − Δ̂2 − g1z1 − β2sig(ε2)

a − λ2sig(ζ2)
b] (59)

x4,d =
1

g3
[−f3 − η3z3 + ẋ3,c − g2z2 − β3sig(ε3)

a − λ3sig(ζ3)
b] (60)

δe =
1

g4
[−f4 − η4z4 + ẋ4,c − Δ̂4 − g3z3 − β4sig(ε4)

a − λ4sig(ζ4)
b] (61)

where ηi > 0, βi > 0, λi > 0, i = 1, 2, 3, 4 are positive design parameters to be de-
termined. a, b are positive constants and be set as 0 < a < 1, 0 < b < 1, ζi are the
compensated tracking error signals which have the following definition

ζi = zi − εi, i = 1, 2, 3, 4 (62)

The error compensation signals εi, i = 1, 2, 3, 4 are defined as follows

ε̇1 = −η1ε1 + g1(x2,c − x2,d) + g1ε2 − β1sig(ε1)
a (63)

ε̇2 = −η2ε2 + g2(x3,c − x3,d)− g1ε1 + g2ε3 − β2sig(ε2)
a (64)

ε̇3 = −η3ε3 + g3(x4,c − x4,d)− g2ε2 + g3ε4 − β3sig(ε3)
a (65)

ε̇4 = −η4ε4 − g3ε3 − β4sig(ε4)
a (66)

where εi(0) = 0, i = 1, 2, 3, 4.
Theorem 2: Consider the transformed error system (42)-(45) with the lumped dis-

turbances under Assumption 1, the finite-time disturbance observers (51) are used
to accurately estimate and compensate lumped disturbances, the robust exact first-
order differentiators are chosen as in (57), an improved finite-time error compensation
mechanism is designed as in (63)-(66), then we can select the virtual control signals
(58)-(60) and the control law (61), such that the transformed error converges to the
specified small neighborhood of desired reference signal in finite-time, which guar-
antees the transient and steady-state performance of altitude tracking error within
constrained fixed-time performance envelops.

Proof: The complete proof procedure of Theorem 2 is divided into the following five
steps.

Step 1: Choose the Lyapunov function candidate V1 as

V1 =
1

2
ζ21 (67)

Taking the time derivative of V1, yields

V̇1 = ζ1ζ̇1 = ζ1(ẋ1 − ẋ1,d − ε̇1)

= ζ1[f1 + g1(x2,c − x2,d) + g1(z2 + x2,d)− ẋ1,d − ε̇1]
(68)

Substituting virtual control signal x2,d and the derivative of error compensation
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signal ε1, it can be obtained

V̇1 = ζ1[g1(z2 − ε2) + η1(ε1 − z1)− λ1sig(ζ1)
b]

=ζ1[−η1ζ1+g1ζ2 − λ1sig(ζ1)
b]

= −η1ζ21 + g1ζ1ζ2 − λ1|ζ1|b+1

(69)

Step 2: Choose the Lyapunov function candidate V2 as

V2 = V1 +
1

2
ζ22 (70)

Taking the time derivative of V2, yields

V̇2 = V̇1 + ζ2ζ̇2 = V̇1 + ζ2(ẋ2 − ẋ2,c − ε̇2)

= V̇1 + ζ2[f2 + g2(x3,c − x3,d) + g2(z3 + x3,d) + Δ2 − ẋ2,c − ε̇2]
(71)

Substituting virtual control signal x3,d and the derivative of error compensation
signal ε2, it can be obtained

V̇2 = −η1ζ21 − η2ζ
2
2 − λ1|ζ1|b+1 − λ2|ζ2|b+1

+ g2ζ2ζ3 − ζ2Δ̃2 (72)

Step 3: Choose the Lyapunov function candidate V3 as

V3 = V2 +
1

2
ζ23 (73)

Taking the time derivative of V3, yields

V̇3 = V̇2 + ζ3ζ̇3 = V̇2 + ζ3(ẋ3 − ẋ3,c − ε̇3)

= V̇2 + ζ3[f3 + g3(x4,c − x4,d) + g3(z4 + x4,d)− ẋ3,c − ε̇3]
(74)

Substituting virtual control signal x4,d and the derivative of error compensation
signal ε3, it can be obtained

V̇3 = −
3∑

i=1

ηiζ
2
i −

3∑
i=1

λi|ζi|b+1
+ g3ζ3ζ4 − ζ2Δ̃2 (75)

Step 4: Choose the Lyapunov function candidate V4 as

V4 = V3 +
1

2
ζ24 (76)

Taking the time derivative of V4, yields

V̇4 = V̇3 + ζ4ζ̇4 = V̇3 + ζ4(ẋ4 − ẋ4,c − ε̇4)

= V̇3 + ζ4[f4 + g4δe +Δ4 − ẋ4,c − ε̇4]
(77)
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Substituting the control law δe and the derivative of error compensation signal ε4,
it can be obtained

V̇4 = −
4∑

i=1

ηiζ
2
i −

4∑
i=1

λi|ζi|b+1 − ζ2Δ̃2 − ζ4Δ̃4 (78)

Since the disturbance estimate errors Δ̃i = Δ̂i − Δi, i = 2, 4, converge to 0 in
finite-time T2,1, T4,1, respectively. When t = T1 ≥ max {T2,1,T4,1}, there are Δ̃2 =

0, Δ̃4 = 0. According to Lemma 3, (78) becomes

V̇4 ≤ −ηV4 − λV
(1+b)/2
4 (79)

where η = 2min(ηi), λ = 2(1+b)/2min(λi), i = 1, 2, 3, 4. According to Lemma 4,
ζi, i = 1, 2, 3, 4 converge to 0 in finite-time T2, and the expression of T2 is as follows:

T2 ≤ 2

(1− b)η
ln

(
ηV4(0)

(1−b)/2
+ λ

λ

)
(80)

Since zi = ζi + εi, the convergence property of εi, i = 1, 2, 3, 4 are analyzed next.
Step 5: Choose the Lyapunov function of the error compensation system as follows

Vε =
1

2

4∑
i=1

ε2i (81)

Taking the time derivative of Vε, yields

V̇ε = −
4∑

i=1

ηiε
2
i −

4∑
i=1

βi|εi|a+1
+

3∑
i=1

(xi+1,c − xi+1,d)giεi

≤ −ηVε − βV (1+a)/2
ε +

3∑
i=1

(xi+1,c − xi+1,d)giεi

(82)

where η = 2min(ηi), β = 2(1+a)/2min(βi), i = 1, 2, 3, 4. According to Lemma 2, if
there are noises in the virtual control signals, |xi+1,c − xi+1,d| ≤ νi+1, i = 1, 2, 3 can
be obtained in finite-time Ti,3, i = 1, 2, 3. From (46), we have |gi| ≤ g0, where g0 is a
known positive constant. When t ≥ T3 = max{Ti,3}, i = 1, 2, 3, we have

3∑
i=1

(xi+1,c − xi+1,d)giεi ≤
3∑

i=1

νi+1g0 |εi|

≤
3∑

i=1

(
l0ε

2
i

2
+
ν2i+1g

2
0

2l0
)

≤ l0Vε +
3∑

i=1

ν2i+1g
2
0

2l0

(83)

where l0 > 0 is the selected positive constant, substituting (83) into (82), it can be
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obtained

V̇ε ≤ −η0Vε − βV (1+a)/2
ε + χ (84)

where η0 = η − l0 > 0, χ =
3∑

i=1

ν2
i+1g

2
0

2l0
.

The inequality (84) can be written as

V̇ε ≤ −(1− p)η0Vε − pη0Vε − βV (1+a)/2
ε + χ (85)

or

V̇ε ≤ −η0Vε − (1− p)βV (1+a)/2
ε − pβV (1+a)/2

ε + χ (86)

where 0 < p < 1 is the designed positive constant.
From (85), if Vε ≥ χ

pη0
, we have

V̇ε ≤ −(1− p)η0Vε − βV (1+a)/2
ε (87)

Then, by Lemma 4, Vε converges into the following region in finite-time T1,4.

Vε ≤ χ

pη0
(88)

The corresponding time T1,4 can be given as

T1,4 ≤ 2

(1− p)(1− a)η0
ln

(1− p)η0V (0)
(1−a)/2
ε + β

β
(89)

From (86), if Vε ≥ ( χ
pβ )

2/(1+a), we have

V̇ε ≤ −η0Vε − (1− p)βV (1+a)/2
ε (90)

Then, by Lemma 4, Vε converges into the following region in finite-time T2,4.

Vε ≤ (
χ

pβ
)2/(1+a) (91)

The corresponding time T2,4 can be given as

T2,4 ≤ 2

η0(1− a)
ln
η0V (0)

(1−a)/2
ε + (1− p)β

(1− p)β
(92)

Combining together (88) and (91), we can obtain

Vε ≤ min

{
χ

pη0
, (
χ

pβ
)
2/(1+a)

}
(93)
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Since ε2i ≤ 2Vε, i = 1, 2, 3, 4, from (93), εi finally converge into region

|εi| ≤ min

{
(
2χ

pη0
)
1/2

,
√
2(
χ

pβ
)
1/(1+a)

}
(94)

From (89) and (92), the convergence time of T4 can be estimated as T4 ≤
max {T1,4, T2,4}.

According to the analysis of step 1∼4, we have |ζi| = 0. Since zi = ζi + εi, i =
1, 2, 3, 4, for t ≥ T1 + T2 + T3 + T4, then it follows

|z1| = |ξh − x1,d| ≤ |ζ1|+ |ε1|

≤ min

{
(
2χ

pη0
)
1/2

,
√
2(
χ

pβ
)
1/(1+a)

}
(95)

It can be shown that the signals zi, ζi, εi, i = 1, 2, 3, 4 are bounded. From (95), the
transformed error ξh(t) converges to the specified small neighborhood of the reference
signal in finite-time in spite of lumped disturbances, which guarantees the transient
and steady-state performance of altitude tracking error within constrained fixed-time
performance envelops.

This completes the proof.
Remark 4: In the proof process of step 5, it is assumed that the virtual control signals

have the influence of noises, so that |xi+1,c − xi+1,d| ≤ νi+1, i = 1, 2, 3. Note that if the
virtual control signals are not influence by noises, then xi+1,c − xi+1,d = 0, i = 1, 2, 3
can be realized in finite-time, that is νi+1 = 0, i = 1, 2, 3. Then zi = ζi+εi, i = 1, 2, 3, 4
converge to 0 in finite-time.

Remark 5: The adaptive neural network prescribed performance control
(Guo, Zhang, Celler, & Su, 2019) and adaptive fuzzy prescribed performance control
(Li & Tong, 2018) eliminate the influence of uncertain nonlinearities by employing
neuro/fuzzy approximating structures. However, as extra adaptive parameters have
to be updated and cumbersome parameters have to be introduced, the introduction of
neuro/fuzzy approximating structures increase the complexity and extra calculations.
In this paper, the disturbance observers are used to estimate and compensate the
lumped disturbances, avoiding the introduction of complex neuro/fuzzy approximat-
ing structures. In addition, the use of robust exact first-order differentiator at each
step of the design progress in this paper avoids the repeated differentiations of the vir-
tual signals and eliminates “explosion of complexity” phenomenon of the conventional
backstepping control.

Remark 6: It is worth mentioning the pioneering work on fixed-time control in
Polyakov (2012), in which stabilizing polynomial feedbacks algorithm and special mod-
ification of terminal second order sliding mode control algorithm provide fixed-time
stability of the closed-loop system and allow to adjust a guaranteed settling time inde-
pendent of initial conditions. In this paper, a novel fixed-time prescribed performance
controller is used to achieve fixed-time control. The novel fixed-time performance func-
tion is developed to impose priori performance envelops on tracking error. The key idea
is to use error transformed technology that the constrained fixed-time performance
envelops are changed into unconstrained equivalent error. Then, the equivalent error
system is stabilized based on backstepping approach, which ensures the transient and
steady-state performance of tracking error within constrained fixed-time performance
envelops.
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5. Airspeed tracking controller with fixed-time prescribed performance

According to (1), the airspeed subsystem of the UAV longitudinal model can be writ-
ten as the following form

V̇ = fV + gV δT +ΔV (96)

where

fV = −g sin γ − 0.5ρV 2SCD/m

gV = Tmax cosα/m
(97)

In addition, ΔV is the lumped disturbances including model uncertainties and external
disturbances. Now, the following assumption is introduced.

Assumption 2: The lumped disturbances of the airspeed subsystem (1) is continu-

ously differentiable and the first-order derivative is bounded, i.e.
∣∣∣Δ̇V

∣∣∣ ≤ LV , in which

LV is a known positive constant.
Based on the robust exact first-order differentiator, finite-time disturbance observer

is designed to accurately estimate and compensate lumped disturbances in airspeed
subsystem (1) as follows

˙̂
V = fV + gV δT − rV,1ϑsig(V̂ − V )1/2 − rV,3(1− ϑ)sig(V̂ − V )(2+τ)/2 + Δ̂V

˙̂
ΔV = −rV,2ϑsign(V̂ − V )− rV,4(1− ϑ)sig(V̂ − V )1+τ

(98)

where V̂ and Δ̂V are the estimates of V and ΔV , respectively. Besides, the parameters
rV,1, rV,2, rV,3, rV,4, ϑ, τ are defined the similar as disturbance observers (51).

Then, by the similar analysis as Theorem 1, the stability of the disturbance observer
can be achieved in finite-time TV,1 such that Δ̂V → ΔV for t < TV,1 and Δ̂V =ΔV for
t ≥ TV,1.

The airspeed tracking error eV (t) = V − Vc within the constrained fixed-time per-
formance envelops can be formulated by the following inequality

− δV,minσV (t) ≤ eV (t) ≤ δV,maxσV (t) (99)

where δV,min, δV,max are positive design parameters, the fixed-time performance func-
tion σV (t) and its parameters σV,0, σV,∞, TV are defined the similar as (19) and satisfy
−δV,minσV (0) ≤ eV (0) ≤ δV,maxσV (0).

By introducing an equivalent error transformation eV (t) = σV (t)sV (ξV (t)) for the
airspeed tracking error, it can be obtained

ξ̇V (t) = μV [ėV (t)− σ̇V (t)eV (t)

σV (t)
] (100)

where σV (t), sV (ξV (t)), μV are defined the similar as (19), (25) and (29).
Take the derivative of airspeed tracking error eV (t), yields

ėV (t) = fV + gV δT +ΔV − V̇c (101)
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Substituting (101) into (100), it can be obtained

ξ̇V (t) = μV [fV + gV δT +ΔV − V̇c − σ̇V (t)eV (t)

σV (t)
] (102)

By the similar formula as (27), the desired reference signal of transformed error
ξV (t) is

ξV,c =
1

2
ln
δV,min

δV,max
(103)

Define the error signal

zV = ξV (t)− ξV,c (104)

Based on the finite-time disturbance observer (98), the airspeed control law is de-
signed as

δT =
1

gV
[−fV − Δ̂V +V̇c+

σ̇V (t)eV (t)

σV (t)
− ηV,1zV

μV
− ηV,2

μV
sig(zV )

bV ] (105)

Theorem 3: Consider the transformed error system (102) with the lumped dis-
turbances under Assumption 2, the finite-time disturbance observer (98) is used to
accurately estimate and compensate lumped disturbances, then we can select the con-
trol law (105), such that the transformed error converges to the reference signal in
finite-time, which guarantees the transient and steady-state performance of airspeed
tracking error within constrained fixed-time performance envelops.

Proof: A Lyapunov function is designed as

VV =
1

2
z2V (106)

Take the time derivative of (106) yields

V̇V = zV żV

= zV μV [fV + gV δT +ΔV − V̇c − σ̇V (t)eV (t)

σV (t)
]

= −ηV,1z2V − ηV,2|zV |bV +1 − zV μV Δ̃V

= −�1VV −�2V
(bV +1)/2
V − zV μV Δ̃V

(107)

where �1 = 2ηV,1, �2 = 2(bV +1)/2ηV,2. Since the disturbance estimate error Δ̃V =

Δ̂V − ΔV converges to 0 in finite-time TV,1, when t ≥ TV,1, there is Δ̃V = 0, and
(107) becomes

V̇V = −�1VV −�2V
(bV +1)/2
V (108)

According to Lemma 4, zV converges to 0 in finite-time TV,2, and the convergence

22



time of TV,2 can be estimated as follows

TV,2 ≤ 2

(1− bV )�1
ln

(
�1VV (0)

(1−bV )/2
+�2

�2

)
(109)

It can be seen that the transformed error ξV (t) converges to the reference signal in
finite-time TV,1+TV,2 in spite of lumped disturbances, which guarantees the transient
and steady-state performance of airspeed tracking error within constrained fixed-time
performance envelops.

This completes the proof.
Remark 7: According to the design process of the control scheme in this paper,

the parameters of the controller are divided into fixed-time performance functions,
robust exact first-order differentiators, disturbance observers, and backstepping con-
trol. The parameters σh,0, σV,0, σh,∞, σV,∞ of the fixed-time performance functions are
selected according to the initial values and the required steady-state error limits of
the altitude/airspeed tracking errors. The specified convergence times Th, TV can be
selected based on the control requirements and the actual flight performance limits of
the aircraft. The parameters selection rules of robust exact first-order differentiators
and disturbance observers can refer to Section 2.2 and Theorem 1. It is worth not-
ing that large parameters can accelerate the convergence rate, but excessively large
parameters may cause the chattering problem of the differentiators and disturbance
observers. Therefore, the parameters of the differentiators and disturbance observers
need to balance the convergence rate and the chattering problem, that is, under the
premise of meeting the convergence rate, the differentiators and disturbance observers
select small parameters. The parameters η1, η2, η3, η4 of the backstepping control in-
creases sequentially, and the large parameters can accelerate the convergence rate of
the system. Generally, the smaller of the specified convergence time Th, the larger
η1, η2, η3, η4. The parameters βi, λi, i = 1, 2, 3, 4 are generally small, and large param-
eters will cause chattering problem. The parameters 0 < a, b < 1 are generally large,
and small a, b will cause chattering problem. The larger the parameters ηV,1,ηV,2 are
selected of airspeed controller, the faster the convergence rate of the airspeed closed-
loop system. Generally, the smaller of the specified convergence time TV , the larger
ηV,1,ηV,2.

6. Simulation results

In this section, two numerical simulations are presented to verify the effective-
ness and robustness of the proposed backstepping controller with fixed-time pre-
scribed performance (FTPPBC). The nonlinear longitudinal model of fixed wing
UAV with model uncertainties and external disturbances is taken as the simulation
object. The main geometric characteristics of the fixed wing UAV and the values
of the aerodynamic coefficients are shown in Z. Yu et al. (2018). Based on the ba-
sic parameters of the fixed wing UAV, the simulation initial conditions are set as
h = 292m,V = 151m/s, γ = 0◦, α = 1.885◦, q = 0rad/s. The reference altitude
command is hc = 300m, and the reference airspeed command is Vc = 150m/s. Fur-
thermore, in order to verify the robustness of the proposed control scheme, the mass of
UAV is applied with 5% uncertainty, and the lift coefficient, drag coefficient and pitch-
ing moment coefficient are applied with -10%, 10%, 30% uncertainties, respectively.
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In addition, the time-varying external disturbances of lift, drag and pitch torque are
added as follows: ⎡

⎣ ΔL
ΔD
ΔM

⎤
⎦ =

⎡
⎣ 8000[sin(1.2t) + 0.1 cos(t)]

1000[sin(0.8t) + 0.2 cos(1.2t)]
5000[0.3 sin(1.6t) + cos(0.8t)]

⎤
⎦ (110)

6.1. Performance comparison with the existing control method

In this numerical simulation, comparison studies are carried out against the active
disturbance rejection control-based prescribed performance backstepping controller
(ADRC-PPBC) proposed in Yang, Tan, and Yue (2020). In Yang et al. (2020), the
extended state observers are utilized to estimate and compensate for uncertainties,
the tracking differentiators are employed to obtain the differential signals, and the
auxiliary system is used to overcome the input saturation constrain in the controller.

For FTPPBC, the parameters of the novel fixed-time performance functions for
altitude and airspeed tracking control are set as σh,0 = 10, σh,∞ = 0.1, Th =
2.5s, δh,min=1, δh,max=1, σV,0 = 1.2, σV,∞ = 0.02, TV = 1s, δV,min=1, δV,max=1.
The parameters of disturbance observers are set as r2,1 = r4,1 = rV,1 = 1,
r2,2 = r4,2 = rV,2 = 0.5, r2,3 = r4,3 = rV,3 = 0.5, r2,4 = r4,4 = rV,4 = 0.5,
τ = 0.05, Tϑ = 0.1. The parameters of robust exact first-order differentiators are
set as κ2,1=0.7, κ2,2=0.4, κ2,3=0.5, κ2,4=0.5, κ3,1=0.8, κ3,2=0.6, κ3,3=0.5, κ3,4=0.5,
κ4,1=1, κ4,2=0.6, κ4,3=0.5, κ4,4=0.5, τ0 = 0.1, Tϑ0

= 0.1. The parameters of back-
stepping controller and error compensation mechanism are chosen as η1=1.1, η2= 3.3,
η3= 10, η4= 30, β1 = β2 = β3 = β4 = 0.1, λ1 = λ2 = λ3 = λ4 = 0.1, a = 0.8, b = 0.9.
The parameters of airspeed controller are chosen as ηV,1= 0.3, ηV,2= 0.3.

The simulation results of two control schemes are shown in Figs. 6-15. Fig. 6 and
Fig. 8 show the curves of the altitude and airspeed tracking. The response curves of
the altitude and airspeed tracking errors are sketched in Fig. 7 and Fig. 9, from which
it is evident that the altitude and airspeed tracking errors under ADRC-PPBC and
FTPPBC are limited to respective performance envelops with small overshoot. The
altitude and airspeed tracking errors under ADRC-PPBC converge to steady-state er-
ror ranges (−0.1m, 0.1m) and (−0.02m/s, 0.02m/s) in 3.5s and 3.3s, respectively. The
altitude and airspeed tracking errors under the proposed FTPPBC are finally converge
to the prescribed steady-state error ranges (−0.1m, 0.1m) and (−0.02m/s, 0.02m/s)
in preassigned fixed-time 2.5s and 1s. Therefore, due to the fixed-time prescribed per-
formance, FTPPBC can reach the control command in arbitrarily preassigned fixed-
time, which has better convergence performance than ADRC-PPBC. Meanwhile, the
other system states i.e., flight-path angle γ, angle of attack α, and pitch rate q, il-
lustrated in Figs. 10-12, are always within the admissible bounded ranges. Fig. 13
shows the comparison curves between the actual disturbances and the disturbances
estimates of the longitudinal model. It can be seen from Fig. 13 that the disturbance
observers estimate the disturbances accurately. Based on the disturbance observer,
the proposed FTPPBC presents excellent robustness against model uncertainties and
external disturbances. Moreover, the control inputs of thrust throttle setting and ele-
vator deflection in Figs. 14-15 are continuous and smooth, therefore, the control inputs
of proposed FTPPBC are easy to implement in practice.
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Figure 6. Comparison results in altitude tracking.
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Figure 7. Comparison results in altitude tracking er-
rors.
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Figure 8. Comparison results in airspeed tracking.
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Figure 9. Comparison results in airspeed tracking er-
rors.
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Figure 10. The curves of flight-path angle.
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Figure 11. The curves of angle of attack.

25



0 1 2 3 4 5 6 7 8 9 10

time(s)

-20

-15

-10

-5

0

5

10

15

20

25

30

q(
de

g/
s)

Figure 12. The curves of pitch rate.
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Figure 13. Disturbance estimate curves of the pro-
posed FTPPBC.
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Figure 14. The curves of thrust throttle setting.
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Figure 15. The curves of elevator deflection.

6.2. Comparison results with conventional PPBC

In this numerical simulation, comparison studies are carried out against the designed
FTPPBC with conventional prescribed performance backstepping controller (PPBC).
The backstepping controller of PPBC is the same as FTPPBC. The conventional
exponentially decaying performance functions of PPBC are chosen as follows:

σh(t) = (σh,0 − σh,∞)e−lht + σh,∞
σV (t) = (σV,0 − σV,∞)e−lV t + σV,∞

(111)

where σh,0 = 10, σh,∞ = 0.1, σV,0 = 1.2, σV,∞ = 0.02 are chosen the same as fixed-time
performance functions in Section 6.1. The exponents lh, lV are set as lh = 0.3, lV = 0.6
for PPBC 1, lh = 0.5, lV = 1 for PPBC 2, lh = 0.7, lV = 1.4 for PPBC 3, lh = 0.9, lV =
1.8 for PPBC 4, respectively. The other parameters and initial states in PPBC 1-4
are set the same as FTPPBC in Section 6.1.

The simulation results of two control schemes are shown in Figs. 16-24. As can
be seen from Figs. 16-19, the altitude and airspeed tracking errors under FTPPBC
evolve strictly inside respective performance envelops, and finally converge to the
prescribed steady-state error ranges (−0.1m, 0.1m) and (−0.02m/s, 0.02m/s) in pre-
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assigned fixed-time 2.5s and 1s. As the exponents lh, lV increase, illustrated in Figs.
17, the altitude tracking errors under PPBC 1-4 converge to steady-state error range
(−0.1m, 0.1m) in 3.7s, 3.3s, 2.9s, 2.7s, respectively, and the airspeed tracking errors
under PPBC 1-4 converge to steady-state error range (−0.02m/s, 0.02m/s) in 3.0s,
2.5s, 2.1s, 1.9s, respectively. It is worth noting that the relationship between lh, lV and
actual convergence time is nonlinear, and when the simulation conditions and param-
eters change, the convergence time also changes, that is, it is difficult to ensure the
convergence time by selecting specified lh, lV . Therefore, for actual control problems,
FTPPBC can directly specify the convergence time, which is more convenient than
the conventional PPBC to select appropriate lh, lV through a series of simulations.
As illustrated in Figs. 20-22, the flight-path angle γ, angle of attack α, and pitch rate
q under PPBC 1-4 and FTPPBC are always within the admissible bounded ranges.
Since the UAV is in the flight phase, the idle throttle is 0.05, that is, δT ∈ [0.05, 1].
As can be seen from Figs. 23-24, the thrust throttle setting and elevator deflection
of FTPPBC are not saturation, while the thrust throttle settings of PPBC 1-4 are
saturation at the initial time. According to the simulation results and the analysis
in Section 3.3, compared with PPBC, FTPPBC can effectively avoid control input
saturation at the initial time.
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Figure 16. Comparison results in altitude tracking.
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Figure 17. Comparison results in altitude tracking er-
rors.
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Figure 18. Comparison results in airspeed tracking.
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Figure 19. Comparison results in airspeed tracking
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Figure 20. The curves of flight-path angle.
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Figure 21. The curves of angle of attack.
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Figure 22. The curves of pitch rate.
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Figure 23. The curves of thrust throttle setting.
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Figure 24. The curves of elevator deflection.

7. Conclusion

In this paper, we aim at achieving arbitrarily fixed-time prescribed performance con-
trol for the longitudinal model of fixed wing UAV subject to model uncertainties
and external disturbances. A novel performance function with arbitrarily preassigned
fixed-time convergence property is developed, which imposes priori performance en-
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velops on both altitude and airspeed tracking errors. Furthermore, based on the dis-
turbance observer, a novel backstepping control scheme with modified error compen-
sation mechanism is proposed to guarantee altitude tracking error within constrained
fixed-time performance envelops in spite of lumped disturbances, whereas airspeed
controller with fixed-time prescribed performance is designed. Finally, numerical sim-
ulations are used to verify the effectiveness of the proposed control scheme. In the
future work, the coordinated trajectory tracking control with fixed-time prescribed
performance of multiple UAVs will be explored.
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