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Fault detection and isolation in controlled multi-robot systems

Abstract: Multi-Agent Systems (MASs) have attracted much popularity, since the previous decade due
to their potential wide range of applications. Indeed, connected MASs are deployed in order to achieve more
complex objectives that could otherwise not be achievable by a single agent. In distributed schemes, agents
must share their information with their neighbours, which are then used for common control and fault detection
purposes, and thus do not require any central monitoring unit. This translates into the necessity to develop
efficient distributed algorithms in terms of robustness and safety. Indeed, the problem of safety in connected
cooperative MASs has arisen as a consequence of their complexity and the nature of their operations and wireless
communication exchanges, which renders them vulnerable to not only physical faults, but also to cyber-attacks.
The main focus of this thesis is the study of distributed fault and attack detection and isolation in connected
MASs. First, a distributed methodology for global detection of actuator faults in a class of linear MASs with
unknown disturbances is proposed using a cascade of fixed-time Sliding Mode Observers (SMOs), where each
agent having access to their state, and neighbouring information exchanges, can give an exact estimate of the
state of the overall MAS. An LMI-based approach is then applied to design distributed global robust residual
signals at each agent capable of detecting faults anywhere in the network. This is then extended to agents with
nonlinear nonholonomic dynamics where a new distributed robust Fault Detection and Isolation (FDI) scheme
is proposed using predefined-time stability techniques to derive adequate distributed SMOs. This enables to
reconstruct the global system state in a predefined-time and generate proper residual signals. The case of MASs
with higher order integrator dynamics, where only the first state variable is measurable and the topology is
switching is investigated, where a new approach to identify faults and deception attacks is introduced. The
proposed protocol makes an agent act as a central node monitoring the whole system activities in a distributed
fashion whereby a bank of distributed predefined-time SMOs for global state estimation are designed, which are
then used to generate residual signals capable of identifying cyber-attacks despite the switching topology. The
problem of attack and FDI in connected heterogeneous MASs with directed graphs, is then studied. First, the
problem of distributed fault detection for a team of heterogeneous MASs with linear dynamics is investigated,
where a new output observer scheme is proposed which is effective for both directed and undirected topologies.
The main advantage of this approach is that the design, being dependant only on the input-output relations,
renders the computational cost, information exchange and scalability very effective compared to other FDI
approaches that employ the whole state estimation of the agents and their neighbours as a basis for their
design. A more general model is then studied, where actuator, sensor and communication faults/attacks are
considered in the robust detection and isolation process for nonlinear heterogeneous MASs with measurement
noise, dynamic disturbances and communication parameter uncertainties, where the topology is not required to
be undirected. This is done using a distributed finite-frequency mixed H_/H∞ nonlinear UIO-based approach.
Simulation examples are given for each of the proposed algorithms to show their effectiveness and robustness.

Keywords: Fault Detection and Isolation; Attack Detection; Multi-Agent Systems; Networked Systems;
Unknown Input Observers; Linear Matrix Inequalities; Fixed-time Stability; Predefined-time Stability.



Détection et isolation de défauts dans les systèmes multi-agents commandés

Résumé: Les systèmes multi-agents (SMAs) ont beaucoup attiré depuis la décennie précédente en raison
de leur large éventail d’applications. En effet, les SMAs connectés sont déployés afin d’atteindre un objectif plus
complexe qui pourrait autrement ne pas être réalisable par un seul agent. Dans les approches distribuées, les
agents doivent partager leurs informations avec leurs voisins, qui sont ensuite utilisés à des fins de commande
et de détection de défaut, et ne nécessitent donc aucune unité de surveillance centrale. Cela se traduit par la
nécessité de développer des algorithmes distribués efficaces en termes de robustesse et de sécurité. En effet,
le problème de la sécurité dans les SMAs coopérants et connectés est apparu à la suite de leur complexité, de
la nature de leurs opérations et de leurs échanges via communication sans fil, ce qui les rend vulnérables non
seulement aux défauts physiques, mais également aux cyber-attaques. L’étude de la détection et de l’isolation
distribuées de fautes et des attaques dans les SMAs est la principale contribution de cette thèse. Premièrement,
une méthodologie distribuée de détection globale des défauts d’actionneur dans une classe de systèmes multi-
agents linéaires avec des perturbations inconnues est proposée à l’aide d’une cascade d’observateurs mode
glissant à temps fixe, où chaque agent ayant accès à leur état et les échanges d’informations voisins, peuvent
donner une estimation exacte de l’état du système global. Une approche basée sur les Inégalités Matricielles
Linéaires (IMLs) est ensuite utilisée pour la conception distribuée de résidus robustes au niveau de chaque agent,
ces résidus étant capable de détecter des défauts n’importe où dans la flotte. Celle-ci est ensuite étendue aux
agents avec une dynamique non linéaire non holonome dans laquelle un nouvel algorithme robuste et distribué
de détection et d’isolation de défauts est proposé à l’aide de techniques de stabilité à temps prédéfini afin de
construire des observateurs mode glissant distribué. Cela permet de reconstruire l’état du système global dans
un temps prédéfini et de générer correctement des signaux résiduels. Le cas des systèmes multi-agents sous
forme de chaîne d’intégrateurs, où seule la première variable d’état est mesurable et la topologie est dynamique,
est étudié, où une nouvelle approche pour identifier les défauts et les cyber-attaques est introduite. L’algorithme
proposé fait en sorte que chaque agent joue le rôle d’une unité de surveillance centrale de l’ensemble des activités
du système de manière distribuée, en employant des banques d’observateurs mode glissant basés sur la notion de
stabilité prédéfinie, où l’estimation de l’état global et des signaux résiduels duquel ils sont générés se fait avant
chaque instant de changement de topologie de communication. Ces résidus sont alors capables de distinguer
les cyber-attaques, des fautes physiques malgré la topologie commutée. Le problème de la détection et de
l’isolation des attaques et des fautes dans des systèmes hétérogènes connectés avec des topologies dirigées, est
ensuite étudié. Premièrement, le problème de la détection distribués des défauts actionneurs pour les systèmes
multi-agents linéaires et hétérogènes est traité, où un nouveau système d’observateur de sortie a été proposé
pour les topologies dirigées et non dirigées. Le principal avantage de cette approche est que la conception ne
dépend que des relations entrées/sorties, ce qui rend le temps de calcul, la quantité d’informations échangées
et la flexibilité, très intéressants par rapport à d’autres approches qui utilisent l’estimation de tout l’état des
agents et leurs voisins comme base de leur conception. Enfin, un modèle plus général est étudié, où les fautes
actionneurs, capteurs, et les défauts/attaques de communication sont considérés dans le processus de détection
et d’isolation pour les systèmes multi-agents hétérogènes non linéaires avec bruits de mesures, perturbations
dynamiques et incertitudes paramétriques sur la liaison de communication. Pour réaliser cet objectif, une
approche de type H_/H∞ à fréquence finie est utilisée pour la synthèse des observateurs. Des exemples de
simulation sont donnés pour chacun des algorithmes proposés pour montrer leur efficacité et leur robustesse.

Mots-Clés: Détection et Isolation de Défauts; Détection d’attaques; Systèmes Multi-Agents; Systèmes
Connectés; Observateurs à Entrées Inconnues; Inégalité Matricielle Linéaire; Stabilité en Temps Fixe; Stabilité
en Temps Prédéfini.
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General Introduction
A MAS consists of multiple autonomous subsystems that interact between themselves
and with their immediate environment in order achieve certain tasks in a cooperative
manner. Since the last decade, MASs have become an important subject of research
and their study is mostly inspired by cooperative behaviours observed in various animal
species, such as bird flocking and bee swarming. As such, in robotics for instance,
researchers have developed various cooperative control protocols and applied them to
various areas such as the military, automation in industry, transportation of heavy
loads, search and rescue missions in hazardous areas, etc. In these recent years, MASs
have become more and more complex as their size, communication requirements and
their need for adaptation to different situations they might encounter, increase. This
translates into the necessity to develop efficient distributed algorithms in terms of
robustness and safety. Indeed, the problem of safety in cooperative MASs has arisen
as a consequence of of their complexity and the nature of their operations and wireless
communication exchanges, which renders them vulnerable to not only physical faults,
but also to cyber-attacks. The safety of MASs has thus become one of the focal points
of the control scientific community for the past decade, and is the main focus of this
dissertation. There are several uncontrolled external factors that could decrease safety,
reliability and performance in cooperative MASs. One of these factors are faults. A
fault is generally defined as an unexpected deviation of at least one system variable,
property or feature from its acceptable, usual, standard and expected state.

On the other hand, communication between agents in a MAS, also called the
communication topology, can be represented using a graph which describes agents as
nodes and their communication links as edges. A communication topology could be
either undirected, if all information exchanges in the network are bidirectional, or
directed, if there are at least two given communicating agents in the network where
information flow is unidirectional. Furthermore, the communication topology could
either remain fixed or change with time. The first is called a fixed topology and
the second, a switching topology. As such, it is evident that graph theory plays an
important role in the analysis of MASs. Indeed, the Laplacian matix associated with
a MAS’s graph provides information about the network topology which dictates the
behaviour of the MAS. Hence, an unwanted deviation from the nominal Laplacian
matrix or the nominal behaviour of a node, might indicate the occurrence of an anomaly
in the network. Indeed, when it comes to connected MASs, two categories of faults
could be distinguished in this dissertation, depending on which element of the graph
they affect

• Node faults: or component faults, are faults that affect a node/agent’s compo-
nents, i.e., its actuator(s), sensor(s) or the general behaviour of its dynamics.
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• Link faults: or communication faults, are faults that affect the communication
topology of the MAS, i.e., the information flow between two given agents. It can
be an unexpected change in the topology’s parameters, a broken link, an attack
etc.

The main objective of this thesis is the study of distributed fault detection and
isolation in connected MASs. It is observed from the literature that the existing FDI
schemes in MASs suffer from various limitations with respect to different challenges
cited below

• FDI for MASs with temporal constraints: Most FDI observer methods proposed
do not take convergence time performance specifications into account and their
convergence time can be negatively impacted by different factors such as the
initials conditions, unknown perturbations, structure of the graph topologies,
switching graph topologies, etc. Fast convergence is a critical index that is can
be pursued in practice in order to have an idea on the expected convergence time
and thus, allows the designer to achieve a better robustness and performance of
the FDI modules. The fixed-time stability property allows to avoid the problem
of transient behaviours. What is more, this property can help to significantly
simplify the residual generation and fault detection process, whereby the con-
vergence time is estimated a-priori and is independent of the structure of the
communication topology and the initial conditions. This property has not been
sufficiently explored in literature in its application to fault and attack detec-
tion and identification in MASs. Indeed, as pointed out in [Yang et al. 2019],
the "fixed-time/prescribed-time fault detection for MASs has not received ade-
quate attention, which constitutes a promising topic" and "existing finite-time
techniques may provide a basis for the development of novel efficient fault de-
tection and Fault-Tolerant Control (FTC) approaches for MASs that seek a fast
convergence rate and desirable fault tolerance performance".

• FDI for MASs with switching topologies: Indeed, it is usually considered that the
communication topology of a MAS stays fixed during the detection process. In
many applications however, this can be impractical and communication topolo-
gies can be switching rather than fixed. In such situations, the predefined-time
principle can be useful as observers can be designed such that faults are detected
in a timely manner. As such, contrary to finite-time schemes, the estimation of
the settling time does not require the knowledge of the initial conditions, thus
allowing for a step by step design basis of the detection scheme. FDI design for
MASs under switching topologies is a challenging issue, especially when cyber-
attacks are concerned. Hence, this problem merges into the previous point, where
before each switching instant, the fixed-time property can be used to achieve a
fast convergence.

• FDI for MASs with heterogeneous agents and directed topologies: In practice,
MASs can sometimes be composed of heterogeneous agents, for economical rea-
sons or otherwise. This heterogeneity property can present some challenges in

Anass Taoufik Page 2
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the design of a distributed fault or attack detection scheme. The same can be
said for MASs with directed communication topologies. In fact, in such cases,
information is even more restrained, hence further complicating the detection
and isolation process. Indeed, distributed fault detection in MASs with het-
erogeneous agents and/or directed topologies, namely when cyber-attacks are
concerned, is still an open problem.

• FDI for MASs subject to cyber-attacks and physical faults: In practice, MASs
can be subject to either physical faults (actuator/sensor faults), cyber-attacks
(attacks on communication links) or both. The proposed algorithms should thus
be able to detect at least one anomaly type, and in the case where both occur,
an cyber-attack identification scheme must be put in place in order to discern
physical faults from cyber-attacks.

Given the objectives of this thesis, the proposed detection modules also need to
satisfy the following

• Distributed algorithm: MASs in most practical cases are limited in the informa-
tion that they are able to sense given that not all measurements are available
to each agent. This along with the fact that FDI decisions can only be trusted
locally, and not exchanged, namely in the presence of communication noise and
possible malicious attacks, motivates the need for a distributed algorithm. In-
deed, distributed schemes imply that each agent can run its fault and/or attack
diagnosis module based on its own states and the information exchanged between
its neighbouring agents.

• Robustness: MASs can be subject to all sorts of perturbations whose effects
on the system are unknown and sometimes unpredictable. Consequently, the
algorithms proposed in this thesis should be robust with respect to these pertur-
bations, whether they are dynamic disturbances or uncertainties, measurement
noise or communication noise etc.

Motivated by the above constraints, the following fault detection algorithms and
schemes have been proposed

• First, a distributed methodology for the detection of actuator faults in a class
of linear MASs with unknown disturbances is proposed in [Taoufik et al. 2020c],
whose main features are highlighted in the following. The formulation of the
distributed actuator FDI problem for a class of linear MASs with disturbances
is performed through the use of a cascade of fixed-time SMOs, where each agent
having access to their state, and neighbouring information exchanges, can give
an exact estimate of the state of the overall MAS. An LMI-based approach
is applied to design distributed global residual signals at each agent, based on
mixed H_/H∞ norms. The above combined approaches allow treating the ac-
tuator fault detection problem while keeping a distributed design approach, as
information obtained by each interacting agent only comes from its neighbours.
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• Then, the previous point is extended to nonholonomic systems, where a new dis-
tributed robust fault detection scheme for MASs composed of agents with nonlin-
ear nonholonomic dynamics is proposed in [Taoufik et al. 2021b]. This considered
model is relevant for many applications (for instance, ground mobile robots, sur-
face ships, underwater vehicles etc., see [Kolmanovsky & McClamroch 1995] for
an extended survey). In this proposed scheme, the use of predefined-time stabil-
ity techniques to derive adequate distributed SMOs is investigated, which enable
to reconstruct the global system state in a predefined-time and generate proper
residual signals. The proposed scheme ensures global fault detection, where each
agent is capable of detecting its own faults and those occurring elsewhere in the
system using only local information (contrary to most of the existing works).

• The results obtained in the first point are then extended to the case of MASs
with higher order integrator dynamics [Taoufik et al. 2020b], where only the
first state variable is measurable. Here, a new approach to identify faults and
deception attacks in a cooperating MASs with a switching topology is introduced.
The proposed protocol makes an agent act as a central node monitoring the
whole system activities in a distributed fashion whereby a bank of distributed
predefined-time SMOs for global state estimation are designed, which are then
used to generate residual signals capable of identifying cyber-attacks despite the
switching topology.

• In this thesis, the problem of distributed fault detection for a team of heteroge-
neous MASs with linear dynamics is also investigated in [Taoufik et al. 2020a],
where a new output observer scheme is proposed which is effective for both di-
rected and undirected topologies. The main advantage of this approach is that
the design, being dependant only on the input-output relations, renders the com-
putational cost, information exchange and scalability very effective compared to
other FDI approaches that employ the whole state estimation of the agents and
their neighbours as a basis for their design.

• A more general model is studied in [Taoufik et al. 2021a], where actuator, sensor
and communication faults/attacks are considered in the robust detection and
isolation process for nonlinear heterogeneous MASs with disturbances and com-
munication parameter uncertainties, where the topology is not required to be
undirected. This is done using a distributed finite-frequency mixed H_/H∞
nonlinear UIO-based approach.

The rest of this thesis is organised as follows:

• Chapter 1: Basic introductory concepts with regards to MASs, attack and
FDI in MASs and their applications are given. Basic algebraic graph theory
concepts and some useful mathematical tools are presented for describing the
communication topology among agents in a MAS. Additionally, a brief literature
review and state of the art of recent works on attack and FDI in the context of
connected MASs is conducted.
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• Chapter 2: The problem of distributed fault detection is investigated, for MASs
with linear dynamics, MASs with nonholonomic dynamics and finally for MASs
with higher order integrator nonlinear dynamics under switching topologies sub-
ject to deception attacks. This is done using the fixed-time property by designing
a bank of adequate distributed observers and a residual based approach.

• Chapter 3: This chapter is concerned with heterogeneous MASs and is com-
posed of two parts. In the first part, a distributed output observer approach is
designed for linear MASs with actuator faults, whereby the aim is to reduce the
dimensions of the FDI units. In the second part, a distributed nonlinear UIO-
based approach is used for MASs with quasi nonlinear dynamics subject not only
to actuator faults, but also to sensor and communication faults.

• Chapter 4: In this chapter, the obtained results are summarised and possible
future research directions are given.

The works presented in this thesis are published in the following
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• Taoufik, A., Defoort, M., Djemai, M., Busawon, K. (2021). A distributed fault
detection scheme in disturbed heterogeneous networked systems. Nonlinear Dy-
namics, 1-20.

• Taoufik, A., Defoort, M., Djemai, M., Busawon, K., & Diego Sánchez-Torres, J.
(2021). Distributed global fault detection scheme in multi-agent systems with
chained-form dynamics. International Journal of Robust and Nonlinear Control,
31(9), 3859-3877.

• Taoufik, A., Defoort, M., Busawon, K., Dala, L., & Djemai, M. (2020). A
Distributed Observer-Based Cyber-Attack Identification Scheme in Cooperative
Networked Systems under Switching Communication Topologies. Electronics,
9(11), 1912.

International Conferences
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output observer approach to actuator fault detection in multi-agent systems with
linear dynamics. 28th Mediterranean Conference on Control and Automation
(pp. 562-567). IEEE.
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Chapter 1. Background and State of the Art

1.1 Introduction

In recent years, MASs have become more and more complex as their size, communi-
cation requirements and their need for adaptation to different situations they might
encounter, increase. This translates into the necessity to develop efficient distributed
algorithms in terms of robustness and safety. Indeed, the problem of safety in coop-
erative MASs has been one of the focal points of the control scientific community for
the past decade, and is the main focus of this dissertation.

In this chapter, some concepts and mathematical tools required to introduce our
results presented in Chapters 2 and 3, are defined. The Chapter starts by giving a brief
literature review on MASs and defines their main concepts and characteristics. This is
followed by a general overview on graph theory and some mathematical tools associated
with it. A general overview on cooperative MASs is then provided. Then, a literature
review on existing FDI, Fault Estimation (FE) and Attack Detection techniques and
approaches in MASs are presented followed by a brief introduction to convergence
rate analysis and related mathematical background. Finally, the research motivation
behind this thesis is given to highlight the points that are lacking in the literature,
followed by the contributions of this dissertation that tackled these issues/points.

1.2 Literature Review

1.2.1 Multi-Agent Systems (MASs)

The term "agent" as found in literature can refer to different systems with subtle differ-
ences, e.g., "intelligent agents" [Sycara et al. 1996, Wong & Sycara 1999], "autonomous
agents" [Jennings et al. 1998], etc. Throughout this thesis, the adopted definition of
the term agent is the one used in the control community as required by the context of
our work. [Reza Davoodi et al. 2016] has described it as

Definition 1.1 [Reza Davoodi et al. 2016] An agent is a dynamical system with a state
vector that evolves through time, based on its past values and a control input vector.

Hence, an agent can refer to a Wheeled Mobile Robot (WMR), a drone, an
Unmanned Aerial Vehicle (UAV), an Autonomous Underwater Vehicle (AUV), etc,
examples of these systems with different architectures are shown in Figure 1.1. A MAS
composed of multiple mobile robot systems is called a Multi-Robot System (MRS).
Throughout this thesis, the terms agent and mobile robot, for instance, could be used
interchangeably. On the other hand, the notion of a MAS in the control community’s
point of view, can be described by the following definition

Definition 1.2 A multi-agent system is a set of agents that exchange information and
collaborate with each other based on a common control strategy to achieve an objective
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as a single entity. An objective that otherwise could not be achieved by each agent
alone.

The interaction and coordination described in Definition 1.2 with a common
group objective, is in essence, widely inspired by the inherent natural behaviours ob-
served in many biological species. Natural social behaviours are fish schoolings (Fig.
1.2), bird flockings (Fig. 1.3), bee swarming (Fig. 1.4), stampedes (Fig. 1.5), to
name a few. In all of these examples, through their collective animal behaviour, the
animal groups perform complex tasks by perceiving their neighbours’ behaviours and
acting accordingly without an external supervising entity. In a stampede situation for
instance, a group of mammals suddenly start running in the same direction in fear of
a predator, where each mammal perceives the position of those around him in order
to define its direction and speed by trying to achieve the the same thing at the same
time.

(a) (b)

(c)

Figure 1.1: Some classical examples of agents, (a) UAVs, (b) WMRs and (c) AUVs.

These different types of observed natural phenomena have become a driving
force for the development of algorithms for cooperative control and fault diagnosis
in MASs by researchers and scientists in a multitude of fields. Indeed, when looking
through literature, one could see that MASs have drawn a great amount of interest
from researchers in a wide range of application settings, such as multi-robot systems
[Anggraeni et al. 2019, Taoufik et al. 2021b, Arrichiello et al. 2015, Hernandez-Martinez
et al. 2013], UAVs [Ghamry & Zhang 2016, Kamel et al. 2015], ground and underwa-
ter vehicles [Millán et al. 2013], transportation systems [Li et al. 2015], microgrids

Anass Taoufik Page 9



Chapter 1. Background and State of the Art

Figure 1.2: An example of fish schooling.

Figure 1.3: An example of birds flocking in a V-shape form.

[Bidram et al. 2013, Kantamneni et al. 2015], formation flying of satellites [Barua &
Khorasani 2007], etc.

This is largely thanks to the sheer number of advantages they provide. Indeed,
not only they achieve missions or objectives that could not be achieved by single
agents, but they also allow for more safety features. For instance, when there is a
faulty or malfunctioning agent in a cooperative MAS, the detection of such anomaly
can lead to it being removed and its place taken by another agent, hence allowing for
the mission to carry on. Even though each one of the aforementioned applications
in the last paragraph has its own complexity, one of the underlying challenges is this
safety feature, namely the detection of such anomalies.
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Figure 1.4: An example of a swarm of bees.

Figure 1.5: An example of a stampede situation of a herd of mammals.

Some of the main features of MASs are given and detailed below.

Agent dynamics

Each agent in the MAS is characterized by a dynamical equation that could be either
linear or nonlinear. These models have a degree and could thus be of first-order,
second-order or high-order dynamics.
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MAS’s homogeneity

A MAS can either be composed of agents having different dynamics or similar dynam-
ics. This is referred to as the heterogeneity/homogeneity of a MAS. In this thesis,
the following definition is adopted when referring to a homogeneous or a heterogeneous
MAS.

Definition 1.3 A MAS is said to be a homogeneous one if both the dynamics and
the exchanged information of all the agents are the same, otherwise, it is called a
heterogeneous or a non-homogeneous MAS.

MAS’s communication topology

Information exchange amongst agents is a key characteristic in MASs. Indeed, each
agent is required to have the capability to communicate with other agents in its vicinity,
which are called its neighbours. The agents transmit, receive and perceive information.
This can either be through a wired network (different types of cables, electric...), a
wireless network (Wi-Fi modules, radio...) or through a sensor-based network, where
agents are equipped with on-board relative information sensors, in the latter case,
information is not really transmitted, but rather measured.

A topology or communication topology refers to the structure of these interactions,
and describes the direction of information flow between all of the agents comprising the
MAS. It can be divided into two types based on whether or not the network remains
the same or changes with time. These types are given below

• Fixed topology: A MAS topology is said to be fixed when the communication
network among the agents stays fixed and does not change with time.

• Switching topology: A MAS topology is said to be switching when the interaction
between agents changes with time, and so does the communication network.
Indeed, in some practical situations, it could be impossible for the agents to keep
a fixed network either willingly or unwillingly.

A topology can also be classified into two categories depending on the direction
of information flow between the agents, these categories are defined below

• Undirected topology: A communication topology is undirected if all the agents
in the MAS are able to both, send information to their neighbours and receive
information from them.

• Directed topology: A communication topology is called directed if for two given
agents in the MAS, one is able to send its information to the other but is unable
to receive the other’s information.
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1.2.2 Algebraic Graph Theory

The communication topology described in subsection 1.2.1 is modelled using algebraic
graph theory, making graph theory one of the fundamental tools in the study of MASs.
Indeed, a MAS relies particularly on the communication network that connects the
agents and algebraic graphs can be used as a representation of a network of agents.
This characterization of the MAS topology using graph theory can be exploited in
order to analyse problems in MASs such as controllability and control, observability
and observer design, stability, etc.

In rest of this subsection, some important results, definitions and properties of
algebraic graph theory which will be needed in the next chapter are given. The reader
is referred to the books [Bondy et al. 1976, Biggs et al. 1993, Mesbahi & Egerstedt 2010]
for a more comprehensive treatment on algebraic graph theory.

1.2.2.1 Graph Theory Basics

Suppose that there are N agents in a network of a MAS which interact between
themselves through a communication or sensor based network as described in the pre-
vious subsection. They could also be considered to communicate amongst themselves
through a network that is both communication based and sensor based. The interaction
pattern between agents can be modelled by describing the communication topology as
detailed above in the form of a graph by using graph theory and linear algebra.

A graph, denoted Q is naturally composed of a finite set, such that each set has
a finite number of elements. Each element is called a vertex or a node and the set
of nodes is denoted in this dissertation by N where each node represents an agent in
the MAS, hence one could define N , {1, ..., N}. On the other hand, the interaction
between two nodes in the graph is called an edge or link and represents the information
flow between two given agents. The set of edges in the graph Q is denoted F ⊆ N ×N .
Accordingly, the corresponding communication graph can be defined as Q , (N ,F),
where the cardinality |N | represents the order of the graph Q and the cardinality |F|
represents its size. Consider two nodes i and j in the graph Q, an edge (i, j) contained
in set F denotes that agent j can obtain information from agent i, but the opposite
is not necessarily true. Indeed, if agent i receives information from agent j, then the
edge (j, i) is also contained in F . It is considered that "self-edges", i.e., (i, i) are not
allowed, except if otherwise specified.

Undirected and Directed graphs

An undirected graph is composed of a set of nodes N and a set of edges F such that, for
each pair of nodes (i, j), i 6= j ∈ N , if there exists an edge (i, j) such that (i, j) ∈ F ,
then (j, i) ∈ F . Otherwise, the graph is called a digraph or a directed graph. An
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undirected graph can be viewed as a special case of a digraph. An undirected or a
directed graph is said to be a weighted graph, if each edge (i, j), i 6= j ∈ N in the
graph is associated with a weighing coefficient denoted aij . In the case of an undirected
weighted graph, one has aij = aji.

For visualization and illustrative purposes, nodes are represented as circles con-
taining the number/label of the agent (see Figure 1.6), while if the edge (i, j), i 6= j

linking j to i exists, it is represented by an arrow directed from the circle labelled j
to the one labelled i, an example of a directed graph is shown in Figure 1.7a, which
is a graph representation of a MAS composed of N = 4 agents. In the case of undi-
rected graphs, only one headless arrow is represented for simplicity, see Figure 1.7b
that shows an example of a graph representation of a MAS composed of N = 5 agents.

Figure 1.6: A visual illustration of interaction modelling of two WMRs using graph
theory.

(a)

(b)

Figure 1.7: Examples of graph representations of (a) a directed MAS topology, (b)
an undirected MAS topology.
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Agent’s neighbours

If an edge (i, j) ∈ F , then node i is said to be a neighbour of node j. The set of
neighbours of the node i is defined as Ni , {i 6= j : (i, j) ∈ F} and the cardinality
|Ni| of Ni denotes the number of agent i’s neighbours. For the edge (i, j), node i is
called the parent node and j the child node.
Example 1.1 Consider the graph represented in Figure 1.7a composed of N = 4
agents. In this example, the set of nodes corresponding to the agents is N = {1, 2, 3, 4}
and the set of edges is given as F = {(1, 2), (1, 4), (3, 1), (4, 1), (4, 2)}. The sets of the
agents’ neighbours are given as N1 = {2, 4}, N2 = ∅, N3 = {1}, and N4 = {1, 2}.

Connected graphs

Definition 1.4 A directed path going from a node j to a node i in the graph is a set
composed of a sequence of edges, starting from node j and ending at node i connecting
distinct and consecutively adjacent nodes in-between j and i.

Definition 1.5 A directed graph is said to be strongly connected if for every two dis-
tinct nodes in the graph there exists a directed path from one to the other. An undirected
graph is fully connected if there is an undirected path between every pair of distinct
nodes.

This means that for each node in the graph, there exists at least an edge con-
necting it to another node, in other words, each node always has at least one neighbour
in a connected graph.

Directed trees and spanning trees

Definition 1.6 A directed tree is a directed graph in which all nodes in the graph have
exactly one parent node except for one node. The node with no parent nodes is called
the root of the graph.

A subgraph Q1 = (N 1,F1) of Q = (N ,F) is a graph such that the subset of
nodes N 1 ⊆ N and the subset of edges F1 ⊆ F ∩ (N 1 ×N 1).
Definition 1.7 A directed spanning tree is a subgraph Q1 = (N 1,F1) of the directed
graph Q = (N ,F) such that the subgraph Q1 is a directed tree and N 1 = N .

The directed graph Q is said to contain a directed spanning tree if a directed
spanning tree is a subgraph of Q. In undirected graphs, if there is an undirected
spanning tree, it is equivalent to the graph being connected. Conversely, in directed
graphs, the existence of a directed spanning tree is a weaker condition than the graph
being strongly connected.
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1.2.2.2 Adjacency and Degree Matrices

The structure of a given graph can be represented by a matrix called the connectivity
or adjacency matrix, which can be defined as follows

Definition 1.8 The adjacency matrix of the graph Q composed of N agents/nodes, is
the N ×N matrix defined as A(Q) = [aij ] ∈ IRN×N , ∀i 6= j ∈ N such that

aij =
{

0, if (i, j) 6∈ F
1 if (i, j) ∈ F (1.1)

It is to be noted that the above definition of the adjacency matrix is used for the
case of an unweighed graph where aij can either be 1 or 0, with 1 meaning that there
is an edge between i and j and 0 signifying the absence of such an edge. In the case of
weighed graph however, elements of the adjacency matrix are rather chosen as aij > 0
instead of 1 when (i, j) ∈ F and 0 otherwise.

For a directed graph, the in-degree of a node i is defined as dij =
∑N
j=1 aij and

its out-degree as dji =
∑N
j=1 aji. For an undirected graph, the in-degree of node i is

the same as its out-degree, and is simply called the degree of node i.

Definition 1.9 A graph i is said to be balanced if ∀i, dij = dji.

For an undirected graph, A(Q) is symmetric and thus all directed graphs are
balanced.

Definition 1.10 The degree matrix of the graph Q, denoted D(Q), is the diagonal
N ×N matrix defined as

D(Q) = diag(d1, ..., dN ) (1.2)

where ∀i ∈ N , i 6= j, di =
∑N
j=1 aij.

Hence, in the case of a directed graph, it is the in-degrees that are used as
elements of the degree matrix.

1.2.2.3 Laplacian Matrix

Another key matrix that describes a graph and is crucial in the study of MAS, which
includes information on both the adjacency and degree matrices, is called the Laplacian
matrix and can be defined as follows

Definition 1.11 The Laplacian matrix of the graph Q, denoted L(Q), is the N ×N
matrix defined as L(Q) , [lij ], such that

lij =


di, if i = j

−aij if i 6= j, j ∈ Ni
0 otherwise

(1.3)
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Alternatively, one has L(Q) = D(Q)−A(Q) ∈ IRN×N . It is clear that for the case of
an undirected graph, L(Q) is always symmetric. On the other hand, when a directed
graph is concerned, L(Q) is not symmetric and can be referred to in the literature
as the nonsymmetric Laplacian matrix or the directed Laplacian matrix [Lafferriere
et al. 2005]. For an undirected graph, L(Q) is positive semidefinite and all its non-
zero eigenvalues are positive. For a directed graph, all of the nonzero eigenvalues of
L(Q) have positive real parts, in other words, all of the nonzero eigenvalues of −L(Q)
have negative real parts. For an undirected graph, 0 is a simple eigenvalue of L(Q)
if and only if the undirected graph is connected. For a directed graph, 0 is a simple
eigenvalue of L(Q) if the directed graph is strongly connected, this is to say that if
the directed graph has at least a spanning tree, then 0 is a simple eigenvalue of L(Q).
When undirected graphs are concerned, denote by λi(L(Q)) the ith smallest eigenvalue
of L(Q), then

λ2(L(Q)) = min
x⊥1N ,x 6=0

xTLx
xTx

where 1N is the N × 1 column vector of all entries equal to 1, referred to as the the
algebraic connectivity of Q which is positive if and only if Q is connected [Wilson 2015]
.

The following is satisfied for L(Q) in both the undirected and directed case

• lij < 0, ∀i, j ∈ {1, 2, ..., N}, i 6= j

•
∑N
j=1 lij = 0, ∀i ∈ {1, 2, ..., N}

• L(Q) always has zero row sums and 0 is an eigenvalue of L(Q) with the associated
eigenvector 1N .

The argument (Q) can be dropped for A(Q), D(Q) and L(Q) for the sake of
simplicity. In this dissertation, L is going to be referred to as the Laplacian matrix
without any prefix.

Example 1.2 Consider the unweighed directed graph illustrated in Figure 1.7a, the
adjacency, degree and Laplacian matrices are given as

A =


0 1 0 1
0 0 0 0
1 0 0 0
1 1 0 0

 , D =


2 0 0 0
0 0 0 0
0 0 1 0
0 0 0 2

 ,

L =


2 −1 0 −1
0 0 0 0
−1 0 1 0
−1 −1 0 2


For the unweighed undirected graph illustrated in Figure 1.7b, the adjacency, degree
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and Laplacian matrices are

A =


0 1 1 0 0
1 0 0 1 0
1 0 0 1 1
0 1 1 0 1
0 0 1 1 0

 , D =


2 0 0 0 0
0 2 0 0 0
0 0 3 0 0
0 0 0 3 0
0 0 0 0 2

 ,

L =


2 −1 −1 0 0
−1 2 0 −1 0
−1 0 3 −1 −1
0 −1 −1 3 −1
0 0 −1 −1 2



1.2.3 Cooperative Control in MASs

Cooperative control in MASs studies the problem of controlling a MAS in the aim
of fulfilling a common objective using local or global information. Indeed, the fun-
damental role in a MAS cooperative control is information sharing amongst agents,
where each agent requires information sent to it through a communication network or
sensed by it through relative information sensing devices. Based on this knowledge,
agents make their own decisions in such a way that a specified behaviour is achieved
and eventually maintained. One fundamental behaviour in MAS cooperative control
is consensus seeking, which requires every agent to agree on certain common values.
These common values of interest depend on the type and architecture of the agent as
well as the application at hand. For example, common values for a team of WMRs
could be either the positions, velocities or both. In the problem of consensus seek-
ing in MAS, two main types could be distinguished, the leaderless consensus problem
and leader-follower consensus problem. Both problems have attracted considerable
research interest in the past couple of decades and early milestone results can be men-
tioned, [Olfati-Saber & Murray 2004, Ren & Beard 2005, Fax & Murray 2004, Olfati-
Saber et al. 2007, Ren & Cao 2011]. The term "leader" appears in both problems and
can be defined as follows

Definition 1.12 A leader in the leader-follower consensus in a MAS refers to an
agent which produces a reference state trajectory that constitutes a common value of
interest for the MAS and thus its control objective. The leader could either be an actual
physical agent or simply a virtual agent.

1.2.3.1 Leaderless Consensus

The leaderless consensus problem, also referred to as the consensus producing or the
averaging consensus, is the consensus problem where agents are not required to track
any reference trajectory. In this case, the consensus state depends on the initial condi-
tions of all agents in the MAS as well as the structure of the communication topology.
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Consider a MAS composed of N agents, where each agent’s dynamics are mod-
elled by the following differential equation

ẋi(t) = Fi(xi(t), ui(t)), ∀i ∈ {1, 2, ..., N} (1.4)

where xi(t) ∈ IRnx , ui(t) ∈ IRnu are the state vector and the control input respectively
of agent i and Fi : IRnx × IRnu → IRnx . Then the leaderless consensus control problem
then can be formulated as

Definition 1.13 For a MAS, leaderless consensus is said to be achieved, if regardless
of the initial conditions xi(0), ∀i, j ∈ {1, 2, ..., N}: ||xi(t)− xj(t)|| → 0 as t→∞.

Hence, the objective is to design a distributed control algorithm aimed at driving
the integrity or a handful of states of the agents to some common final value. This
final value that is reached as t→∞ is referred to as the consensus value. Now consider
a MAS where all agents have single-integrator dynamics

ẋi(t) = ui(t), ∀i ∈ {1, 2, ..., N} (1.5)

where xi(t) ∈ IR is the state variable of agent i and ui(t) ∈ IR its control input. A
solution to the consensus problem as described in definition 1.13, can be given by the
following control protocol [Jadbabaie et al. 2003, Olfati-Saber & Murray 2004, Lin
et al. 2004]

ui(t) = −L
∑N
j=1 aij(xi(t)− xj(t)), ∀i ∈ {1, 2, ..., N} (1.6)

where L is the controller gain. The coefficients aij are the adjacency matrix entries
defined in the previous subsection.

Many results can be found with regards to the problem of leaderless consensus
for single integrator MAS. In [Ren & Beard 2005], the problem has been studied
for directed fixed topologies, where the MAS achieves consensus if the communication
graph has a directed spanning tree. [Olfati-Saber & Murray 2004] studied the averaging
consensus control problem in single integrator MAS with both fixed and dynamically
changing topologies.

Example 1.3 Consider a team of 5 mobile robots interacting according to the topology
shown in Figure 1.8, with the single integrator dynamics (1.5) where xi(t) represents
agent i’s position. Figure 1.9a shows the leaderless consensus where the initial condi-
tions of the agents are x1(0) = 0.5m, x2(0) = 2.5m, x3(0) = 2m, x4(0) = 1.5m and
x5(0) = 3m. Figure 1.9b shows the leaderless consensus for the case where the initial
conditions are x1(0) = 6m, x2(0) = 4m, x3(0) = 3m, x4(0) = 1m and x5(0) = 0.5m.
One can clearly see that the final agreement value is dependent on the initial conditions
and that this value is constant as t→∞.

On another hand, when it comes to MAS, a broad class of agents can be modelled
using double integrator dynamics [Shames et al. 2011, Mei et al. 2014, Guo et al. 2018].
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Figure 1.8: Example of a communication topology in the leaderless case.

(a) (b)

Figure 1.9: Leaderless consensus for different initial conditions.

Robotic vehicles for instance can be linearised and represented as double integrator
dynamical systems such that the positions and velocities are the state information
[Jadbabaie et al. 2003, Olfati-Saber et al. 2007]. In this case, the model of the ith
agent ∀i ∈ {1, 2, ..., N} is given as

{
ẋ1i(t) = x2i(t)
ẋ2i(t) = ui(t)

(1.7)

where x1i(t) ∈ IR and x2i(t) ∈ IR are agent i’s state variables and ui(t) ∈ IR is its
control input. The variables x1i(t) and x2i(t) can be interpreted as agent i’s position
and velocity respectively, in the context of a mechanical mobile system such as a mobile
robot, or as the phase and frequency respectively, when a power network is concerned.

As opposed to leaderless consensus case for agents with single integrator dynam-
ics, those with double integrator dynamics can have a dynamic consensus value. A
simple solution to the consensus problem, for agents with double integrator dynam-
ics, as described in definition 1.13 where xi(t) = [x1i(t), x2i(t)]T , can be given by the
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following control protocol [Ren & Atkins 2007, Ren & Beard 2008]

ui(t) = −
∑N
j=1 aij

[
L1(x1i(t)− x1j(t)) + L2(x2i(t)− x2j(t))

]
, ∀i ∈ {1, 2, ..., N}

(1.8)
where L1 and L2 are the consensus gains. Thanks to the simplicity and broad range
of applications of double integrator MASs, they have been widely studied in the lit-
erature under various constraints. For example, [Xie & Wang 2007] solved the the
consensus problem for double integrator MASs with undirected communication topolo-
gies. In [Zhu et al. 2009, Yu et al. 2010], necessary and sufficient conditions are given
with respect to the topology and Laplacian matrix for a general consensus problem
in MASs with double integrator dynamics, where the importance of the eigenvalues of
the Laplacian matrix in achieving consensus is studied. The necessity of the existence
of a spanning tree for the case of the consensus problem in double integrator MASs is
shown in [Ren & Atkins 2007]. In [Guo et al. 2018], a distributed consensus protocol
for double integrator MASs is proposed where relative positions and absolute veloci-
ties of agents are used. Leaderless consensus for the case of switching or dynamically
changing topologies was investigated in [Ren & Beard 2005].

[Ren et al. 2007] generalised the existing first-order and second-order consensus
protocols in literature, to the higher-order integrator case. In [Davoodi et al. 2016]
for instance, the consensus problem was solved for MASs with general higher order
linear dynamics. Nonlinear Sliding Mode Control (SMC) based consensus protocols in
second-order and higher-order MAS can be found in [Yu et al. 2016, Zuo et al. 2017, Su
& Lin 2015].

1.2.3.2 Leader-Follower Consensus

In contrast to the leaderless consensus control protocols, where the agents’ states, or
common values of interest, converge towards a final value which is dependent on the
initial conditions and the communication topology, in a multitude of applications, the
agents are rather needed to follow a reference trajectory that could be either time-
varying or constant. This situation is referred to in literature as the leader-following
consensus, leader-follower consensus, consensus tracking or model reference consensus
[Ren et al. 2007, Gallehdari et al. 2017]. This trajectory in the leader-follower consensus
control is produced by the leader as described in definition 1.12, and the rest of the
agents are referred to as the followers. This leader is generally labelled by 0 or r. Let
us consider the leader’s dynamics as follows

ẋr(t) = Fr(xr(t), ur(t)) (1.9)

where xr(t) ∈ IRnx , ur(t) ∈ IRnu are the state vector and the control input respectively
of the leader and Fr : IRnx × IRnu → IRnx . Then ur(t) can be designed in order to
drive the rest of the agents’ (the followers) common values of interest to any desired
reference trajectory. Hence, in this case, the objective is to both, for all agents of the
MAS to reach consensus with respect to a common state, and for this common state
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to converge towards the reference trajectory produced by the leader. Therefore, the
leader-follower consensus objective can be defined as follows

Definition 1.14 For a MAS composed of a leader and followers, the leader-follower
consensus is said to be achieved regardless of the initial conditions if ∀i ∈ {1, 2, ..., N},
||xi(t)− xr(t)|| → 0 as t→∞.

In most applications, namely those requiring distributed leader-follower consen-
sus protocols, the leader’s information is only available to a selected number of fol-
lowers. In [Ren & Atkins 2007] it is shown that for the leader-follower consensus to
be achieved, the graph topology is required to have a directed spanning tree with the
leader as its root. A simple distributed leader-follower control protocol design for ui(t)
in the single-integrator MAS case (1.5), with a leader whose dynamics are given as
ẋr(t) = ur(t), can be expressed as follows

ui(t) = −
∑N
j=1 aij(xi(t)− xj(t))− bi(xi(t)− xr(t)), ∀i ∈ {1, 2, ..., N} (1.10)

where bi = 0 when the ith follower does not have access to the leader’s information
and bi > 0 otherwise, in the case of an unweighed graph. bi = 1 when agent i can
receive information from the leader.

Figure 1.10: Example of a communication topology in the leader-follower case.

Example 1.4 Consider a team of 5 mobile robots interacting according to the topology
shown in Figure 1.10, with the single integrator dynamics (1.5) where xi(t) represents
agent i’s position and consider a virtual leader labelled 0 and whose state is xr(t)
and is only connected to the 1st and 5th agents. The graph clearly has at least one
spanning tree with 0 as the root. Figure 1.11a shows the leader-follower consensus
where the initial conditions of the agents are x1(0) = 0.5m, x2(0) = 2.5m, x3(0) = 2m,
x4(0) = 1.5m and x5(0) = 3m. Figure 1.11b shows the leader-follower consensus for
the case where the initial conditions are x1(0) = 6m, x2(0) = 4m, x3(0) = 3m,
x4(0) = 1m and x5(0) = 0.5m. One can clearly see that regardless of the initial
conditions the final agreement value as t→∞ is that of the leader.

The problem of leader-follower consensus control design has also been extensively
investigated in the past decade for first-order, second-order, and higher-order MASs.
In [Ren 2007], a consensus control protocol in MASs with single integrator dynamics
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(a) (b)

Figure 1.11: Leader-Follower consensus for different initial conditions.

was designed to track a time-varying trajectory produced by a leader which was ex-
tended to MASs with double integrator dynamics in [Hong et al. 2008]. In [Zhu &
Cheng 2010], the problem of leader-follower consensus control for second-order MASs
with switching topology and time-varying delays was investigated. The leader-follower
consensus problem was solved for both switching and fixed communication topologies
in MASs with higher-order dynamics, in [Ni & Cheng 2010]. Researchers have also
proposed leader-follower consensus control algorithms for MRSs with nonholonomic
constraints [Khoo et al. 2010, Defoort et al. 2016], general linear MASs under fixed
and switching topologies [Davoodi et al. 2016, Gallehdari et al. 2017], etc.

Formation Control

Another control problem in MASs worth mentioning, is formation control, in which
formation producing and formation tracking could be distinguished, depending on the
existence or absence of a reference trajectory [Ren & Cao 2011]. This type of control in
MASs consists of producing a given geometric shape by controlling positions, velocities
and depending on the application, orientations of the agents.

1.2.4 Fault Detection and Isolation (FDI) in MASs

There are several uncontrolled external factors that could decrease safety, reliability
and performance in MASs. One of these factors are faults. A fault is generally defined
as an unexpected deviation of at least one system variable, property or feature from
its acceptable, usual, standard and expected state [van Schrick 1997]. FDI in MASs
can be defined as the act of detecting these anomalies/faults in an agent, by setting up
an alarm that determines whether or not the fault has occurred and the time at which
it occurred, then isolating the faulty agent in the MAS, i.e., locating the source of
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the fault. FE can also be mentioned and refers to the act of reconstructing the shape
and magnitude of the fault. Sometimes, a third action besides detection and isolation
called Fault Identification [Ding 2008] can be beneficial as well. This action consists
of, after detecting a fault, identifying its type and nature. Indeed, when it comes to
MASs, two categories of faults could be distinguished in this dissertation, depending
on which element of the graph they affect [Qin et al. 2014] (See Figure 1.12a-1.12b for
a visual representation)

• Node faults: or component faults, are faults that affect a node/agent’s compo-
nents, i.e., its actuator(s), sensor(s) or the general behaviour of its dynamics.

• Link faults: or communication faults, are faults that affect the communication
topology of the MAS, i.e., the information flow between two given agents. It can
be an unexpected change in the topology’s parameters, a broken link, etc.

(a) (b)

Figure 1.12: Example illustrating both fault categories in MASs: (a) Node faults, (b)
Link faults.

Both fault types are called physical faults, as opposed to cyber faults which will
be discussed later on in this subsection (see 1.2.4.2). Node faults in literature can be
referred to as actuator faults, sensor faults, process faults, or any combination of these
three terms (See Figure 1.13 for a visual representation)

• Actuator faults: are faults that cause a difference between the supposed control
input of an actuator and its actual command.

• Sensor faults: are faults that cause deviations between the measured variables
of the system with respect to their actual real values.
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• Process faults: are faults that affect the general dynamics of the system, but do
not exclusively appear in the actuator and/or sensor channels. They cause unde-
sirable changes in the behaviour of the system even if the sensors and actuators
are safe.

Given that a typical characteristic of MASs as opposed to single systems, is in-
formation sharing, it is more challenging to detect such faults in a distributed manner.
Indeed, FDI in single systems can be analogous to centralised FDI schemes in MASs
which will be discussed later on in this subsection. In MASs, because of their commu-
nicative and cooperative nature, if and when a fault occurs, its effects can propagate
and spreads throughout the whole set of agents which is then bound to halt the MAS’s
mission and potentially lead to disastrous effects. One way to increase resilience of
MASs with respect to these anomalies is to design a robust cooperative control al-
gorithm that is resilient to the effects of certain faults. Another way, as pointed out
in [Teixeira et al. 2014], is to develop monitoring schemes to detect failures in the
MAS caused by attacks and faults. On the other hand, [Ding 2008] has provided an
exhaustive literature review on model-based techniques in fault detection and isolation
where observer-based techniques have been proven to be powerful software-based tools
in fault diagnosis due to their efficiency and on-line implementation capabilities, these
techniques are the ones concerned by this dissertation.

Figure 1.13: Node fault types.

Many criteria have to be taken into account when designing a FDI algorithm for
MASs, depending on the application at hand. A very important criterion that should
be considered is the architecture of the algorithm. This is defined in the following.
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1.2.4.1 FDI Architectures in MASs

Many FDI solutions have been proposed in the literature, their architectures can be
classified into three distinct categories, the centralised architecture, decentralised ar-
chitecture and distributed architecture. These terms, in the context of FDI, are defined
and described as follows

• Centralised Architecture:
In centralised FDI architectures, the FDI algorithm is installed in only one agent
or unit called the central agent/unit. This agent might be part of the system
or an outside monitoring unit. The central unit receives information from other
agents in the MAS and thus has global knowledge of the system’s state, which
is then used to run the FDI protocol. Therefore, other agents are not able to
perform their own fault diagnosis.
Centralised schemes require that each agent has access to the global measure-
ments. Such architecture may lead to communicational, computational and es-
pecially, in regards to FDI, safety problems. They usually can only be used for
very small sized MASs and if the central unit is compromised, so is the whole
FDI protocol along with it. See Figure 1.14 for an illustration of a centralised
FDI architecture for an example of a MAS composed of 3 agents.

Figure 1.14: An example of the structure of centralised architectures.

• Decentralised Architecture:
Decentralised FDI architectures are introduced to remedy some of the disadvan-
tages presented by centralised ones, namely by enhancing scalability and reliabil-
ity of the protocols. In these architectures, only local information is considered
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in the FDI modules and do not rely on neighbouring information, thus leading
to simpler and less communicationally demanding fault detection schemes. This
implies that each agent can locally detect or estimate its own faults based on its
information. Once, the agent detects its own fault, it can share its fault infor-
mation with other agents. Nevertheless, this structure is less adequate than the
distributed architectures when measurement noise in the sensors, and perturba-
tions in the communication links (uncertainties, noise, etc.) are involved. See
Figure 1.15 for an illustration of a decentralised FDI architecture for an example
of a MAS composed of 3 agents.

Figure 1.15: An example of the structure of decentralised architectures.

• Distributed Architecture:
In distributed architectures, the FDI algorithm is installed in each agent in the
MAS where the modules use local information as well as the neighbours’ infor-
mation. It is introduced in order to improve the reliability and scalability of
centralized and decentralized architectures and is the most suitable for MASs
especially in terms of reliability. In these schemes, each agent can detect or esti-
mate faults based on its own information along with the information exchanged
between neighbouring agents. In the context of FDI in MASs, this structure is
the most adequate, namely when there are measurement noises in the sensors,
and perturbations in the communication links. Recent surveys of different ap-
proaches to fault diagnosis in MASs [Qin et al. 2014, Song & He ] highlight other
advantages of distributed designs in contrast with centralised and decentralised
ones. Given the above, all of the FDI schemes designed and proposed in this
thesis are distributed algorithms.
Figure 1.16 depicts an illustration of a distributed FDI architecture for an exam-
ple of a MAS composed of 3 agents. Figure 1.17 shows a sketch of the illustrating
distributed architectures where the typically used information is depicted as well
as the faults that are to be detected.
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Figure 1.16: An example of the structure of distributed architectures.

Figure 1.17: A sketch illustrating distributed FDI schemes in MASs subject to node
and link anomalies.

Some other challenges and criteria that are to be taken into account before de-
signing an FDI algorithm for MASs besides its architecture, which are defined and
detailed in subsection 1.2.1, include

• Undirected/Directed topologies

• Fixed/Switching topologies

• Heterogeneous/Homogeneous agents
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In the following, a literature review on recent model based FDI techniques and
methods in MASs is provided.

FDI Techniques in MASs

Many early works in the literature have focused on designing centralised FDI and FE
protocols for MAS, in which agents comprising the system communicate with a central
unit which in turn performs detecting and/or isolating or estimating fault signals, e.g.,
[Meskin & Khorasani 2009a, Menon & Edwards 2013, Liu et al. 2016b, Meskin & Kho-
rasani 2009b]. In [Menon & Edwards 2013] for example, a robust FE scheme based
on sliding mode observers was proposed using relative measurements. The authors
studied a linear model where orthogonal transformations were applied to the initial
unobservable concatenated model to create observable sub-models used to estimate
actuator faults. [Meskin & Khorasani 2009a] solved the FDI problem in a centralised
manner for linear systems where structured residual sets were proposed with depen-
dent fault signatures, the scheme was then applied to a network of unmanned vehicles.
Early works have also studied FDI in MASs from a decentralised point of view [Li
et al. 2009, Stanković et al. 2010, Boem et al. 2016, Arrichiello et al. 2015]. [Arrichiello
et al. 2015] for instance, proposed a decentralised observer-based FDI strategy for a
team of networked robots where each robot of the team is able to detect and iso-
late faults occurring in other robots using local observers, residual vectors are then
computed to set up alarms when a fault occurs, thresholds are derived based on the
dynamics of the residual vectors. Early works have also dabbled in distributed designs,
e.g., [Franco et al. 2006, Yan & Edwards 2008, Meskin & Khorasani 2009a, Meskin
et al. 2010]. Between the three aforementioned approaches, which have been detailed
previously, the centralised FDI schemes seem to be the least favourite in the FDI com-
munity because of their weak reliability, which renders their usability counter intuitive
in the context of fault detection as the main objective is to maintain a high reliability
of the detection scheme. Decentralised schemes lead to a better autonomy of the design
where each agent can handle its own FDI tasks using local measurements only. On the
other hand distributed FDI schemes have proven to be the most reliable and as such
have become popular and widespread. This is because, as opposed to the centralised
and decentralised schemes, they lead to significantly more reliability as the failure of
an FDI module does not compromise the FDI process. Indeed, in centralised schemes,
the failure of the central unit leads to the failure of the entire FDI protocol, and in
decentralised schemes, the failure of an FDI module installed in a given agent can lead
to a fault happening in said agent going unnoticed [Ferrari et al. 2011].

[Meskin & Khorasani 2009a] and [Meskin et al. 2010] have both focused on the
design of distributed FDI schemes for networked homogeneous unmanned vehicles
subject to actuator faults based on geometric approaches. In [Shames et al. 2011]
and [Shames et al. 2012], the authors have investigated the problem of distributed
FDI design for homogeneous interconnected second-order MASs with undirected graph
topologies, by constructing a bank of Unknown Input Observers (UIOs) to detect one
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fault at a time in the MAS. [Shi et al. 2014] proposes a distributed FDI methodology
for discrete-time second-order MAS based on the optimal robust observers. [Davoodi
et al. 2013] focused on heterogeneous MASs equipped with relative information sensors,
in which agents are modelled with different dynamics and an agent can then detect
its own and its neighbours’ faults. More recently, [Quan et al. 2018] proposed a FDI
protocol for first order MASs with undirected graphs in a leader-follower control set-
up, using first order SMOs. However, most of these works only consider first, second
order or undisturbed MASs.

[Liu et al. 2016a] proposed UIOs to detect actuator faults in higher-order ho-
mogeneous nonlinear MASs with undirected graphs, where residuals were generated
for each fault which are robust with respect to dynamic disturbances using the H∞
norm. A MASs with the same constraints was studied in [Gao et al. 2017] but with-
out the nonlinear components using a reduced order UIO-based approach, however,
in these works, measurement and communication noise is not considered. In [Chadli
et al. 2017], the development and design of a distributed FDI scheme was carried out
for MASs composed of agents with discrete-time Linear Parameter-Varying (LPV) dy-
namics using UIO-based filters and the mixed H∞/H− performance technique, which
was achieved by solving a set of Linear Matrix Inequalities (LMIs). On top of de-
tecting faults in-spite of the presence of external disturbances, each agent is able to
estimate its own state and the state of its nearest neighbours. In [Davoodi et al. 2016],
the problem of FDI in MASs with linear dynamics and undirected topologies, under
both state consensus control and leader-follower control settings, is investigated where
distributed Luenberger observers are designed based on locally exchanged information.
Residuals are then designed based on the mixed H∞/H− performances to detect sen-
sor faults in agents and their immediate neighbourhoods, in these work however, only
sensor faults can be detected and the proposed schemes are not valid in the presence
of only actuator faults. [Hajshirmohamadi et al. 2019] extended the work of [Davoodi
et al. 2016] to accomplish both actuator fault and sensor fault detection. Both works
constitute a multi-objective fault detection and passive fault-tolerant control strategy,
hence creating a water bed effect where a compromise between the fault detection
and the fault-tolerant control performances respectively has to be found. Both works
however, only consider heterogeneous linear MASs with fixed topologies.

When it comes to distributed FE in MASs, [Han et al. 2019] has proposed a dis-
tributed intermediate robust observer-based scheme for homogeneous MASs with Lips-
chitz nonlinearities and no measurement noise, where new intermediary variables were
introduced for FE purposes. [Liu et al. 2018] also proposed a distributed FE observer
for homogeneous MASs with Lipschitz nonlinearities but with undirected communica-
tion topologies and only actuator faults. In [Zhang et al. 2016], a novel distributed
adjustable parameter-based FE observer was designed to estimate actuator faults. [Xia
et al. 2017] used a distributed robust dissipativity-based reduced-order observer for the
purpose of FE in homogeneous MASs. An adaptive distributed FE full order observer
was employed in [Zhang et al. 2015] for MASs with directed graphs, where the agents
are modelled with undisturbed linear dynamics. The works mentioned above only
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consider homogeneous linear systems or systems with Lipschitz nonlinearities and can
thus not be applicable for MASs with more complex dynamics such as MASs with
chained form dynamics for instance.

On the other hand, in [Wu et al. 2019], a fixed-time SMO was presented in order
to successfully fulfil the FDI tasks of a class of nonlinear MASs subject to actuator
faults and temporal constraints through the generation of some auxiliary variables
received from, and sent to neighbouring agents. It is shown therein, that the use
of fixed-time observers presents many advantages with respect to availability of the
state information and the problem of transient behaviours, making convergence time
a key factor in FDI for MASs. However, most works mentioned to this point have
proposed algorithms which only guarantee asymptotic convergence (i.e., the bound of
the settling time depends on the initial conditions). [Arrichiello et al. 2015] and [Quan
et al. 2018], for instance, have both used SMOs to achieve FDI but the convergence
time of the state estimation errors is heavily impacted by the initial conditions and the
graph topology. It is shown that, when a fault occurs before the convergence of the
FDI observers, the fault might not be detected and one can obtain possible erroneous
FDI results. This convergence time is discussed in details in Subsection 1.2.5, before
that, attacks in MASs are discussed in the following.

1.2.4.2 Attacks in MASs

In the context of cooperative networked MASs or simply Networked Control Sys-
tems (NCS), where computational resources and communication networks are inte-
grated, agents constantly exchange information amongst themselves, or with a compu-
tational unit through a wireless network. Consequently, these systems which include
computational resources, communicational capabilities and hardware, also referred to
as Cyber-Physical Systems (CPS) in the literature, introduce a high degree of connec-
tivity which exposes them to a new kind of malicious threats, known as cyber-attacks,
cyber faults or simply attacks. Since CPSs use open communication platform architec-
tures, they are vulnerable to suffering not only physical faults/malfunctions but also
these adversarial attacks. Detecting these latter threats has thus also become a cen-
tral focus for system security and control in MASs for the FDI community, along with
physical faults. Figure 1.18 depicts an illustration of the environment of a coopera-
tive networked MAS, its basic components, the cyber/physical layers and the possible
threats it is exposed to. Local malfunctions here, refer to physical anomalies/faults
that impact the physical space of the MAS.

Recent real-world situations where cyber-attacks have occurred were recorded.
Prominent examples include: multiple power blackouts in many countries in the world
like Brazil [Conti 2010], the attack on the water distribution system in Queensland,
Australia [Slay & Miller 2007], the Stuxnet attack that took control of actuators and
sensors in a Iranian nuclear facility prompted the Iranians to replace thousands of
failed centrifuges [Lindsay 2013], the cyber-attack against a Ukrainian power grid that
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Figure 1.18: An illustration of a cooperative networked MAS, basic components, cy-
ber/physical layers and possible threats.

led to power being cut for many hours [Sullivan & Kamensky 2017], etc. Clearly,
these types of malicious attacks aimed at degrading or interrupting the operation of
connected systems, exploit their aforementioned vulnerabilities and can have extremely
destructive effects, not only from a process point of view but also from environmental
and financial ones.

As in any connected system, the well known Confidentiality, Integrity, and Avail-
ability (CIA) triad of a CPS can be threatened and fall prey to two types of attacks,
non-targeted attacks and targeted attacks. In the latter case, the attacker/hacker has
an actual idea of the model and structure of the system that he targets, he knows that
he is targeting a control system, and has a perceived knowledge, full or partial, on its
dynamics. In non-targeted attacks, the attacker does not have any knowledge on the
system, and thus targets and corrupts general information that he can get his hands
on. Evidently, the degree of destructiveness and influence the attack induces on the
system depends on the attacker’s knowledge of the system.

The three main security elements in connected cooperative MASs mentioned in
the previous paragraph, that need to be maintained are: Confidentiality, Integrity, and
Availability. This means that in the context of connected MASs:

• Confidentiality: Unauthorized users have to be kept away from the exchanged
information. The lack of confidentiality is called disclosure.

• Integrity: The trustworthiness of data has to be guaranteed. Attacks that com-
promise integrity are called deception attacks.

• Availability: The needed information has to be accessible and usable to agents
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that need it upon demand. Attacks that compromise availability are calledDenial
of Service (DoS) attacks.

A specific kind of deception attack is called a replay attack [Khazraei et al. 2017,
Gallo et al. 2018a]. In these types of attacks, the attacker hijacks, the transmitted
information, records the readings for a certain time and then replays it with a delay
instead of the actual information, possibly while injecting it with exogenous signal.
Another type of deception attack is called False Data Injection Attack (FDIA) [Boem
et al. 2017]. It is a situation where the attacker targets the transmitted information
and makes sure that the received information is fake/invalid by injecting with mali-
cious false data. Other kinds of deception attacks classified as targeted attacks could
be mentioned, where the system dynamics are known to the attacker, include covert
attacks [Smith 2011] or stealth attacks [Hashemi et al. 2018]. In these situations, the at-
tacker modifies some information readings by physically tampering with the individual
sensory units or by getting access to one or multiple communication channels.

A DoS attack [Rezaee et al. 2021], sometimes called a jamming attack in literature
[Guan & Ge 2017] compromises accessibility of information to agents. These attacks
consist of assaulting data availability through blocking information flows between dif-
ferent agents in networked MASs or CPSs. The attacker jams the communication
channels and prevent data exchange.

A radical difference worth mentioning when comparing faults and attacks in
MASs, is that one could talk about attacks only when a networked system is concerned.
Hence, in MASs where agents measure their neighbours’ information using sensors, i.e.,
"sensor based" networks where no information is effectively exchanged over a wireless
network, one cannot talk about attacks, as access to these information by an external
attacker is not possible.

It is shown in [Cardenas et al. 2008] that information security techniques such
as adding encryption and authentication schemes can help make some attacks more
difficult to succeed, but that they are far from being sufficient for protecting systems
against cyber-attacks, as it is well-known that just because some of the components of a
system are secure, it does not mean that the overall system is. On the other hand, in the
context of networked control systems, the problem of attack diagnosis is getting closer
to the problem of fault diagnosis, where model based observer techniques have proven
to be efficient in attack detection, as seen in the literature [Teixeira et al. 2010, Tan
et al. 2020, Song & He , Zhang et al. 2021a]. It is shown that even though the
difference, mathematically speaking, between fault detection and attack detection in
the FDI community, can sometimes seem semantic [Teixeira et al. 2010] in certain
scenarios, the attack diagnosis/detection problem in networked MASs is a challenging
one, as it addresses a broader spectrum of feared scenarios and the attack model varies
depending on the nature of these scenarios. Indeed, FDI techniques are not always
effective in detecting attacks and should thus be tailored specifically for this purpose
as the attack should be properly modelled and can vary from a situation to another
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[Zhang et al. 2021a] .

Throughout this thesis, attacks in CPSs as defined in the context of cooperative
networked MASs with distributed FDI schemes are taken into account. Given that
in these systems, only agents’ exchanged information is exposed, i.e., agents do not
expose their physical components to the attacker, the latter can only target exchanges
between different agents, whatever that exchanged information might be. Another one
of the points this thesis focuses on is the attack identification which consists of securely
determining whether a detected anomaly is, in fact, an attack caused by an outsider
entity. The term FDI in connected MASs can sometimes be used as a general umbrella
term encompassing all types of anomalies that can affect an agent or a communication
link.

In the following, a brief literature review on recent model based attack detection
techniques and methods in MASs is provided.

Attack Detection Techniques in MASs

Given the discussion above, the detecting and isolating of cyber-attacks in connected
MASs have received immense attention in recent years, e.g. the reader is referred to
[Tan et al. 2020, Zhang et al. 2021a] for recently established surveys on attack detec-
tion methods. Many approaches to cyber-attack detection were studied, where it is
highlighted in [Tan et al. 2020] that most attack detection schemes in literature can
be divided into either model-based or data-driven methods. In most data-driven ap-
proaches, heuristic or deep learning algorithms are used to construct a "model" where
an attack is detected if the system measurement data does not match the constructed
"model", where certain assumptions could be made with respect to the measurements.
As for model-based approaches, thanks to the development of FDI algorithms and
their advantages mentioned above for physical faults, observer-based fault diagnosis
techniques are widely accepted as powerful tools used to solve attack detection prob-
lems in connected MASs [Gallo et al. 2018b, Tan et al. 2020, Song & He ]. Hence, this
thesis is interested in FDI techniques for attack detection, isolation and identification
in MASs. On the other hand, due to their complexity, distributed attack detection
and identification for MASs is premature [Song & He ]. Indeed, some of the challenges
encountered in the literature in attack diagnosis include modelling of the attack, at-
tacks in nonlinear MASs, attacks in MASs with switching communication topologies,
attacks in MASs with uncertainties and noise, etc.

[Fawzi et al. 2014] for instance, has focussed on the problem of state estimation for
linear systems in the case where some of the sensors/actuators are non-simultaneously
targeted by deception attacks. In [Corradini & Cristofaro 2017], a SMO was proposed
to detect scalar attacks for a linearised model of an electric power network, where sensor
and actuator attacks are considered not to occur simultaneously. Deception attack
detection for linear MASs with first-order agent dynamics was studied in [Pasqualetti
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et al. 2011] such that the attack is treated as an unknown input signal injected into the
system and the global model information is available throughout the attack detection
process. A threshold-based distributed scheme similar to one used in physical fault
detection was given in [Ferrari et al. 2011] to detect attacks on the communication
channels. In [Gallo et al. 2018a], the observer-detector scheme designed in [Boem
et al. 2017] was improved, where a distributed UIO based methodology was proposed
to estimate the state and detect a FDIA in the communication network, specifically to
identify whether output measurements received from an agent’s neighbours corrupted
by FDIA or not, detection thresholds are then designed and the results were verified on
direct current microgrids. DoS and replay attack detection for MASs have also received
increased attention in the past few years. The problem of replay attack detection
in connected MASs composed of vehicles with double integrator dynamics under a
cooperative cruise control was solved in [Merco et al. 2018] using a residual based
method. In [Biron et al. 2018] , the problem of DoS attack detection was solved using
decentralised SMOs for MASs comprised of a network of vehicles modelled with double
integrator dynamics, where an augmented system was used which also includes the
derivative of the control input. As for attack estimation/reconstruction, a SMO based
design was used in [Taha et al. 2016] in order to approximately reconstruct the attacks
using pseudo-inverse techniques. In [Nateghi et al. 2018], a SMO based on Higher-
Order Sliding Mode (HOSM) differentiators along with a sparse recovery algorithm
for a class of nonlinear systems was proposed, where the finite-time convergence of
the observers was shown and a reconstruction of a class of cyber-attacks was achieved.
A mode estimator was proposed in [Kim et al. 2017] for switched nonlinear CPSs
where the state and attack vectors’ estimates were achieved. In [Yu & Yuan 2020] an
extended state observer was used to estimate both the state vector and attack signals
in nonlinear NCS where the nonlinear part was modelled as a disturbance which was
then decoupled from the system given that certain assumptions are satisfied. Most
of the works mentioned above however, do not consider the case where both attacks
and physical faults are taken into account. Additionally, most works in the literature
do not consider the challenges of the existence of switching topologies, communication
noise and/or measurement noise, under both faults and cyber-attacks.

1.2.4.3 Fault-Tolerant and Attack Resilient Control in MASs

Both fault-tolerant control and attack resilient control problems in connected MAS deal
with the adjustment of the control mechanisms in order to deal with faults and attacks
respectively. This entails that in spite of the presence of faults or attacks, their effects
are reduced such that the desired control objectives are still achieved. In MAS, fault-
tolerant control or fault-tolerant consensus for consensus-type control protocols are
deployed when physical faults are concerned. Conversely when attacks are concerned,
attack resilient control or secure consensus are used [Zhang et al. 2021a]. Fault-tolerant
controllers [Gallehdari et al. 2016, Khalili et al. 2019] are designed based on FDI
information through the use of locally exchanged information (see [Yang et al. 2019]
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for a survey).

In literature [Blanke et al. 2006], two main types of fault-tolerant/attack resilient
control can be defined

• Passive: the controller parameters do not vary with respect to time, and are
designed off-line such that the system performance is guaranteed in the presence
of all predefined anomalies.

• Active: the controller parameters are adaptive and the controller is reconfigured
according to information about the type and shape of the anomaly, which are
received from a FDI module, such that the desired performance of the system is
recovered.

Fault-tolerant control with respect to physical threats in MASs has been widely
studied in the literature [Chen et al. 2016, Wang & Yang 2019, Liu et al. 2019]. On
the other hand, the attack resilient control problem has been investigated in parallel
with the attack detection problem in the past few years and is yet to be as widely
explored as the fault-tolerant control problem. When it comes to attack resilient
control, a cooperative control algorithm that is resilient to certain deception attacks
was designed in [Pasqualetti et al. 2011] for MASs with unperturbed linear dynamics
and perfect measurements using an UIO approach. [Lu & Yang 2018] solved the
problem of distributed consensus control for linear MASs under a general DoS attack,
where only a set of communication channels were jammed. In [Zhang et al. 2018], secure
consensus of MASs with Lipschitz nonlinearities subject to a DoS attack was addressed,
where the attacker jams a set of communication links such that the connectivity is
broken and the directed spanning tree is lost. Some more recent works on secure
consensus of MASs under deception and DoS attacks can also be found in [Mustafa &
Modares 2019, Modares et al. 2019, Deng & Wen 2020, Shi & Yan 2020].

Figure 1.19 depicts a chart listing all of the typical factors impacting FDI and
attack detection protocol designs as well as fault-tolerant control and attack resilient
control in MASs, as discussed thus far.

As mentioned in page 31, for the study of FDI for cooperative MASs, the con-
vergence rate is a critical topic [Yang et al. 2019, Wu et al. 2019]. Many existing
algorithms only guarantee asymptotic or finite-time convergence (i.e., the bound of
the settling time depends on the initial condition of the agents). However, many ap-
plications require a uniformly bounded convergence time. As such, in the following
Subsection, convergence rate analysis is discussed, where the concept of fixed-time and
predefined-time stability are introduced.
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Figure 1.19: A chart summarising factors impacting: attack detection, FDI, fault-
tolerant control and attack resilient control designs in connected MASs.

1.2.5 Convergence Rate Analysis

As mentioned in the previous subsection, an important topic in the study of the fault
and/or attack detection problems in MASs, is the convergence rate, which characterises
the settling time of the fault/attack detection observers. Fast convergence is a critical
index that is typically pursued in practice in order to have an idea on the expected
convergence time and thus, allows the designer to achieve a better robustness and per-
formance of the FDI modules. This knowledge presents many advantages with respect
to the transient behaviours and leads to the fault being detected in a timely manner.
As discussed earlier in this chapter, most FDI observer methods proposed in litera-
ture do not take this performance specification into account and most of the proposed
observers’ convergence time can be negatively impacted by different factors such as
the initials conditions, unknown perturbations, structure of the graph topologies, etc.
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One could distinguish four types of convergence rates: asymptotic stability, finite-time
stability, fixed-time stability and predefined-time stability. Each representing a stronger
notion of settling-time than the previous.

1.2.5.1 Asymptotic Stability

Most of the aforementioned observer-based fault detection algorithms discussed in the
previous subsection only consider asymptotic convergence, e.g., [Davoodi et al. 2016,
Quan et al. 2018, Hajshirmohamadi et al. 2019]. This is to say that the convergence
rate is exponential and the settling time is infinite. As such the state estimates cannot
reach their real values in a finite time.

1.2.5.2 Finite-time Stability

Consider the following nonlinear system{
ξ̇(t) = Φ(t, ξ(t), φ)
ξ(0) = ξ0

(1.11)

where ξ(t) ∈ IRn is the state vector and φ ∈ IRg where g ∈ IN, is the vector containing
the system’s parameters, which are considered to be constants (φ̇ = 0). Φ : IR+ × IRn

is assumed to be a nonlinear function with its origin as an equilibrium point, i.e.,
Φ(t, 0, φ) = 0. ξ(0) = ξ0 ∈ IRn are the system’s initial conditions. Then, the finite-
time stability can be defined as follows

Definition 1.15 [Bhat & Bernstein 2000] The origin of (1.11) is said to be globally
finite-time stable if it is globally asymptotically stable and any solution ξ(t, ξ0) of (1.11)
reaches the equilibrium point at some finite time moment, i.e., ∀t > Γ(ξ0), ξ(t, ξ0) = 0,
where Γ : IRn −→ IR+ ∪ {0} is called the settling-time function.

The asymptotic stability of the origin is implied by the finite-time stability of
the origin and as such, finite-time stability is a stronger condition than asymptotic
stability.

Lemma 1.1 [Bhat & Bernstein 2000] If there exists a continuously differentiable pos-
itive definite and radially unbounded function V : IRn → IR such that

V (0) = 0
V (ξ) > 0, ∀ξ ∈ IRn\{0},

and the derivative of V along the trajectories of (1.11) satisfies

V̇ (ξ) 6 −αV p(ξ) (1.12)
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where α > 0 and p ∈ (0, 1). Then, the origin of the system (1.11) is said to be globally
finite-time stable and the settling time is estimated as

Γ(ξ0) 6 1
α(1− p)(V (ξ0))1−p (1.13)

In finite-time stability, the power exponent is always less than one. Additionally,
it should be noted that the estimated bound of the settling time in finite-time stability,
depends on the initial conditions of the agents. Consequently, this bound cannot be a
priori estimated in a distributed fashion.

1.2.5.3 Fixed-time Stability

Despite the fact that finite-time stability presents many advantages when compared
with asymptotic stability, the estimation of convergence time bounds depends on initial
states, the knowledge of which is usually unavailable. This has given introduction to
fixed-time stability, in which the convergence information is provided in advance. This
crucial information yields more exploitable options for the observer designer.

Definition 1.16 [Polyakov 2011] The origin of (1.11) is said to be a globally fixed-
time equilibrium if it is globally finite-time stable and there exists a strictly positive
number Tmax such that for all ξ0 ∈ IRn the settling-time function Γ : IRn → IR+ is
bounded, i.e. Γ(ξ0) 6 Tmax for all ξ0 ∈ IRn, the solution ξ(t, ξ0) of system (1.11) is
defined and ξ(t, ξ0) ∈ IRn for t ∈ [0, Tmax) : limt→Tmax ξ(t, ξ0) = 0.

Lemma 1.2 [Polyakov 2011] If there exists a continuously differentiable positive def-
inite and radially unbounded function V : IRn → IR such that

V (0) = 0
V (ξ) > 0, ∀ξ ∈ IRn\{0},

and the derivative of V along the trajectories of (1.11) satisfies

V̇ (ξ) 6 −α(V (ξ))p − (βV (ξ))q (1.14)

where α > 0, β > 0, q > 0 and p ∈ (0, 1). Then, the origin of the system (1.11) is said
to be globally finite-time stable and the settling time is estimated as

Tmax = 1
α(1− p) + 1

β(q − 1) (1.15)

Hence, in the case where p = 1 − 1
µ , q = 1 + 1

µ and µ > 1, the settling time can be
estimated by a less conservative bound [Parsegov et al. 2012]

Tmax = πµ

2
√
αβ

(1.16)
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The concept of fixed-time stability can be introduced to design observers such that the
upper bound of the convergence time is independent of the initial conditions of the
system. To discern the case where the settling-time bound is set in advance as a func-
tion of the system’s parameters, the concept of predefined-time stability is introduced.
To derive a simple relationship between the control parameters and the upper bound
of the convergence time, the concept of predefined-time stability has recently been
proposed [Jimenez-Rodriguez et al. 2020b]. Based on this concept, [Sánchez-Torres
et al. 2018] has proposed a class of robust algorithms that ensures a predefined upper
bound of the settling time where the convergence time is set a-priori as a parameter
of the protocol and does not depend on the initial conditions.

1.2.5.4 Predefined-time Stability

It is indeed interesting, in many applications, to define a settling time Tp ∈ T in
advance, where T = {Tmax ∈ IR+ : Γ(ξ0) 5 Tmax, ∀ξ0 ∈ IRn}. Consider the system

ξ̇(t) = − (α|ξ(t)|p + η|ξ(t)|q)r sign(ξ(t)), ξ(0) = ξ0 (1.17)

where ξ ∈ IR. The real numbers α, η, p, q, r > 0 are the system’s parameters which
satisfy the constraints rp < 1 and rq > 1. The concept of predefined-time stability is
defined as follows

Definition 1.17 [Jimenez-Rodriguez et al. 2020b] The origin of (1.11) is said to be
predefined-time stable if it is fixed-time stable for Tmax ∈ IR+, there exists some φ ∈ IRl

such that the settling-time function of (1.11) satisfies

Tp = sup
ξ0∈IRn

Γ(ξ0) 6 Tmax, ∀ξ0 ∈ IRn

The following lemma concerning predefined-time stability can also be recalled

Lemma 1.3 [Aldana-López et al. 2019] For the parameter vector φ containing the
real numbers α, η, p, q, r > 0 satisfying the constraints rp < 1 and rq > 1, the origin
ξ = 0 of system (1.17) is fixed-time stable and the settling time function satisfies
T (ξ0) ≤ Tf = γ(φ), where

γ(φ) =

Θ(1−rp
q−p )Θ( rq−1

q−p )
Θ(r)(q − p)αr

(α
η

) 1−rp
q−p

(1.18)

and Θ(·) is the gamma function defined as

Θ(z) =
∫ +∞

0
e−ttz−1dt

The lemma presented below is used to derive a Lyapunov-like condition for char-
acterizing predefined-time stability of a system, where a settling time bound Tp is set
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in advance as a function of system parameters φ, i.e. Tp = Tp(φ), and a strong notion
of this class of stability is given when Tp = Tf , i.e., Tp is the least upper bound of the
settling time.

Lemma 1.4 [Aldana-López et al. 2019] Let us consider system (1.11). Suppose there
exists a continuous radially unbounded candidate Lyapunov function V : IRn → IR
such that

V (0) = 0
V (ξ) > 0, ∀ξ ∈ IRn\{0},

and the derivative of V along the trajectories of (1.11) satisfies

V̇ (ξ) 6 −γ(φ)
Tp

(αV p + ηV q)r , ∀ξ ∈ IRn\{0}, (1.19)

where α, η, p, q, r > 0, rp < 1, rq > 1, γ(φ) is given in (1.18). Then, the origin of
(1.11) is predefined-time-stable with predefined time Tp.

1.3 Research Motivation and Thesis Contribution

Given the relevant overviews and state of the art presented in the previous section,
the motivation behind this thesis is detailed herein, followed by a summary of its
contributions.

1.3.1 Research Motivation

The main objective of this thesis is the study of distributed fault detection and isolation
in MASs. It is evident from the literature and state of the art investigated in Section 1.2
that the existing FDI schemes suffer from various limitations with respect to different
challenges which have been detailed in the General Introduction part of the thesis.
They are briefly restated in the following

• FDI for MASs with temporal constraints: As expressed in the previous section,
the fixed-time stability property allows to avoid the problem of transient be-
haviours. What is more, this property can help to significantly simplify the
residual generation and fault detection process, whereby the convergence time
is estimated a-priori and is independent of the structure of the communication
topology and the initial conditions. This property has not been sufficiently ex-
plored in literature in its application to fault and attack detection and identifi-
cation in MASs.

• FDI for MASs with switching topologies: This problem merges into the previous
point. Indeed, it is usually considered that the communication topology of a
MAS stays fixed during the detection process. In many applications however,
this can be impractical and communication topologies can be switching rather
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than fixed. In such situations, the predefined-time principle can be useful as
observers can be designed such that faults are detected in a timely manner.
As such, contrary to finite-time schemes, the estimation of the settling time
does not require the knowledge of the initial conditions, thus allowing for a
step by step design basis of the detection scheme. Some works in the literature
have tackled the problem of FDI in MASs with switching topologies [Gallehdari
et al. 2017, Wang & Yang 2019, Saboori & Khorasani 2015, Zhang et al. 2017],
these works however, do not consider the possibility of the occurrence of a cyber-
attack.

• FDI for MASs with heterogeneous agents and directed topologies: In practice,
MASs can sometimes be composed of heterogeneous agents, for economical rea-
sons or otherwise. This heterogeneity property can present some challenges in
the design of a distributed fault or attack detection scheme. The same can be
said for MASs with directed communication topologies. In fact, in such cases,
information is even more restrained, hence further complicating the detection
and isolation process. Indeed, distributed fault detection in MASs with het-
erogeneous agents and/or directed topologies, namely when cyber-attacks are
concerned, is still an open problem.

• FDI for MASs subject to cyber-attacks and physical faults: In practice, MASs
can be subject to either physical faults (actuator/sensor faults), cyber-attacks
(attacks on communication links) or both. The proposed algorithms should thus
be able to detect at least one anomaly type, and in the case where both occur,
an cyber-attack identification scheme must be put in place in order to discern
physical faults from cyber-attacks.

Motivated by the above, the contributions of this thesis with respect to existing
literature are detailed in the next subsection.

1.3.2 Thesis Contribution

Given the previously discussed constraints, the contributions of the thesis are as follows

• First, a distributed methodology for the detection of actuator faults in a class
of linear MASs with unknown disturbances is proposed in [Taoufik et al. 2020c],
whose main features are highlighted in the following. The formulation of the
distributed actuator FDI problem for a class of linear MASs with disturbances
is performed through the use of a cascade of fixed-time SMOs, where each agent
having access to their state, and neighbouring information exchanges, can give
an exact estimate of the state of the overall MAS. An LMI-based approach is ap-
plied to design distributed global residual signals at each agent, based on mixed
H_/H∞ norms. The above combined approaches allow treating the actuator
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fault detection problem while keeping a distributed design approach, as informa-
tion obtained by each interacting agent only comes from its neighbours. The pre-
vious point is then extended to nonholonomic systems, where a new distributed
robust fault detection scheme for MASs composed of agents with nonlinear non-
holonomic dynamics is proposed in [Taoufik et al. 2021b]. This considered model
is relevant for many applications (for instance, ground mobile robots, surface
ships, underwater vehicles etc., see [Kolmanovsky & McClamroch 1995] for an
extended survey). In this proposed scheme, the use of predefined-time stability
techniques to derive adequate distributed SMOs is investigated, which enable
to reconstruct the global system state in a predefined-time and generate proper
residual signals. The proposed scheme ensures global fault detection, where each
agent is capable of detecting its own faults and those occurring elsewhere in the
system using only local information (contrary to most of the existing works).
The results obtained in the first point are then extended to the case of MASs
with higher order integrator dynamics [Taoufik et al. 2020b], where only the first
state variable is measurable. Here, a new approach to identify faults and de-
ception attacks in a cooperating MASs with a switching topology is introduced.
The proposed protocol makes an agent act as a central node monitoring the
whole system activities in a distributed fashion whereby a bank of distributed
predefined-time SMOs for global state estimation are designed, which are then
used to generate residual signals capable of identifying cyber-attacks despite the
switching topology.

• In this thesis, the problem of distributed fault detection for a team of heteroge-
neous MASs with linear dynamics is also investigated in [Taoufik et al. 2020a],
where a new output observer scheme was proposed which is effective for both
directed and undirected topologies. The main advantage of this approach is that
the design, being dependant only on the input-output relations, renders the com-
putational cost, information exchange and scalability very effective compared to
other FDI approaches that employ the whole state estimation of the agents and
their neighbours as a basis for their design. A more general model is studied in
[Taoufik et al. 2021a], where actuator, sensor and communication faults/attacks
are considered in the robust detection and isolation process for nonlinear hetero-
geneous MASs with disturbances and communication parameter uncertainties,
where the topology is not required to be undirected. This was done using a
distributed finite-frequency mixed H_/H∞ nonlinear UIO-based approach.

The remainder of this thesis is organised as follows:

• Chapter 2: The problem of distributed fault detection is investigated, for MASs
with linear dynamics, MASs with nonholonomic dynamics and finally for MASs
with higher order integrator nonlinear dynamics under switching topologies sub-
ject to deception attacks. This is done using the fixed-time property by designing
a bank of adequate distributed observers and a residual based approach.

Anass Taoufik Page 43



Chapter 1. Background and State of the Art

• Chapter 3: This chapter is concerned with heterogeneous MASs and is com-
posed of two parts. In the first part, a distributed output observer approach is
designed for linear MASs with actuator faults, whereby the aim is to reduce the
dimensions of the FDI units. In the second part, a distributed nonlinear UIO-
based approach is used for MASs with quasi nonlinear dynamics subject not only
to actuator faults, but also to sensor and communication faults.

• Chapter 4: In this chapter, the obtained results are summarised and possible
future research directions are given.
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2.1. Introduction

2.1 Introduction

In this chapter, the problem of distributed FDI in connected MASs is investigated us-
ing the fixed-time property whereby an agent can detect faults occurring in the MAS.
Some works have addressed the distributed fault detection problem for MASs using
relative information or using communication and sensing based frameworks [Chadli
et al. 2016, Davoodi et al. 2016, Quan et al. 2018, Barboni et al. 2020, Teixeira
et al. 2014]. In these works, only the faults of the agent and its neighbours can be
detected by an agent. On the other hand, in [Chadli et al. 2016] for instance, inputs
are assumed to be exchangeable, which is not always feasible, namely in sensitive coop-
erative operations. Conversely, most of the works on observer-based fault and attack
detection in cooperative MASs consider second order systems, linear systems or do not
consider the case of a possibly dynamic communication topologies subject to attacks.
Additionally, in the study of FDI and fault-tolerant cooperative control for MASs,
the convergence rate is a critical topic [Yang et al. 2019]. Many existing algorithms
only guarantee infinite convergence (such as asymptotic and exponential convergence)
or finite-time convergence (i.e., the bound of the settling time depends on the initial
condition of the agents). However, many applications require an uniformly bounded
convergence time. For instance, in MASs where the topology is switching and agents
are required to exactly estimate the state before each of the topology’s switching in-
stants. This information can also be useful in the context of the development of efficient
FTC algorithms for MASs that seek a fast convergence rate [Yang et al. 2019]. There-
fore, the concept of fixed-time stability has been introduced in this Chapter in order
to derive algorithms with an uniformly bounded convergence time [Polyakov 2011], see
Fig. 2.1 for a visual representation and evolution of convergence rates. As it will be
shown in subsequent Sections, FDI observer design can largely benefit from a-priori es-
timated convergence time. Indeed, not only does this information facilitate the design
and convergence analysis of the observers, but it also avoids erroneous FDI results by
estimating the time at which the transient behaviours dissipate. The convergence time
of the algorithms proposed in this Chapter are independent of the graph topology’s
structure and the initial conditions. Taking into consideration all of the above, this
Chapter is organised as follows

• In Section 2.2: Some preliminaries are provided which present the description of
the graph topology and gives some important Lemmas.

• In Section 2.3 [Taoufik et al. 2020c]: A distributed methodology for the detection
of actuator faults in a class of higher order linear MASs with unknown distur-
bances is proposed whose main features are highlighted in the following: (i) The
formulation of the distributed actuator FDI problem is performed through the
use of a cascade of fixed-time (see 1.2.5.3) SMOs, where each agent having ac-
cess to their state, can give an estimate of the state of the overall MAS. (ii)
An LMI-based approach is then applied to generate robust residual signals at
each agent capable of detecting a fault anywhere in the MAS, based on mixed
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Figure 2.1: Evolution of convergence rates.

H_/H∞ norms.

• In Section 2.4 [Taoufik et al. 2021b]: The idea behind the previous Section is
extended and a novel distributed FDI scheme for nonholonomic MASs where
each agent is capable of detecting its faults and those occurring elsewhere in
the system using only local information. In order to deal with possible non-
cooperative and malicious activities, the objective is to make each agent act as a
central node monitoring the whole system’s activities. The main contributions of
this Section are as follows: (i) Distributed predefined-time (see 1.2.5.4) observers
for global state estimation are introduced for a MASs with chained form dynamics
whereby the convergence time is set a-priori; (ii) The equivalent control concept
is used to estimate the disturbances and generate adequate residuals for actuator
fault detection.

• In Section 2.5 [Taoufik et al. 2020b]: The previous results are extended to the
case of switching communication topologies subject to cyber-attacks. Indeed, a
novel fault and attack detection scheme is proposed, where in the occurrence of
one anomaly type, the latter is identified. It is worth noting that here, each agent
requires the exchange of the output and their global estimates which is equivalent
to N information. This significantly reduces the communication burden when
compared to [Taoufik et al. 2020c] for instance. The main contributions compared
to the existing works in the literature are: (i) The design of a bank of distributed
predefined-time SMOs for global state estimation for a multi-agent system with
integrator dynamics whereby only the position is available for measurement and
the convergence time is an a priori user defined parameter, in order to overcome
the problem of attack detection and identification despite the switching topology.
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(ii) A residual based approach is proposed where the equivalent control concept
is used to detect different faults and attacks that might occur anywhere in the
system (i.e., an intrusion attack reflective of a local fault in agent or a cyber-
attack affecting a communication link between two given agents) in a distributed
way based on the topological properties of the network. This allows detection
and identification of multiple simultaneous attacks and faults.

A qualitative comparison between the features of the proposed methods in this
Chapter and some of the existing results in the literature, is illustrated in Table
2.1.

Reference LFDI NFDI GFDI MFFDI AD CR
[Teixeira et al. 2010] Yes Yes No No Yes Asymptotic
[Shames et al. 2011] Yes Yes No No No Asymptotic
[Teixeira et al. 2014] Yes Yes No No Yes Asymptotic
[Chadli et al. 2016] Yes Yes No Yes No Asymptotic
[Davoodi et al. 2016] Yes Yes No Yes No Asymptotic
[Liu et al. 2016b] Yes Yes No No No Asymptotic
[Gao et al. 2017] Yes Yes No No No Asymptotic
[Quan et al. 2018] Yes Yes Yes No No Asymptotic
[Wu et al. 2019] Yes Yes Yes Yes No Fixed-time
[Taoufik et al. 2020c] Yes Yes Yes Yes No Fixed-time
[Taoufik et al. 2021b] Yes Yes Yes Yes No Predefined-time
[Taoufik et al. 2020b] Yes Yes Yes Yes Yes Predefined-time

Table 2.1: Qualitative comparison between some existing works, where the following
acronyms are used, LFDI: Local FDI, NFDI: FDI in neighbouring agents, GFDI:
FDI in other agents beyond the 1-hop neighbourhood in the MAS, MFFDI: FDI of
multiple faults at a time, AD: Attack and fault detection and CR: Convergence rate
of the observers.

• In Section 2.6 the main conclusions of this chapter are drawn.

Sections 2.3, 2.4 and 2.5 are, in turn, divided into three Subsection each: A
problem formulation Subsection which lays out the system description as well as defines
the information exchange. A main result Subsection, where the proposed methodology
is detailed and finally a simulation example Subsection where an illustrative simulation
is carried out to show the effectiveness of the proposed algorithms. Fig. 2.2 depicts a
summary of the contribution of each Section.
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Figure 2.2: Summary of the contributions of each Section.

2.2 Preliminaries

Notations

Let us recall some of the notations employed in this Chapter. For any non-negative
real number α the function x → dxcα is defined as dxcα = |x|αsign(x) for any x ∈ R.
One can define

dxcα = [sign(x1)dx1cα, sign(x1)dx2cα, ..., sign(xN )dxNcα]T

where x = [x1, x2, ..., xN ]T ∈ RN . The set of real-valued m × n matrices is given by
IRm×n. λmin([·]) represents the smallest eigenvalue of square matrix [·], and λmax([·])
the largest one. ||(·)||n denotes the n−norm of vector (·). Throughout this Chapter,
for a real matrix P ∈ Rn×n, P > 0 denotes that P is symmetric and positive-definite.
For an arbitrarily real matrices X, Y and Z, the matrix:[

X Y

∗ Z

]
is a real symmetric matrix, where ∗ implies symmetry. The superscript T stands for
the matrix transpose and we denote by I the identity matrix and by 1 the vector with
all elements one, both with appropriate dimensions. For the sake of simplicity, the
time argument is omitted when it is not required for clarity.
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Topology Description

Consider the graph as described in Subsection 1.2.2.1, denoted Q = (N ,F) and
composed of N systems, N = {1, ..., N} is the node set consisting of N nodes,
and F ⊆ N × N is the fixed edge set. It is considered that Q is connected and
Ni ⊂ {1, ..., N}\{i} is the non-empty subset of agents that agent i can sense and
interact with. The Laplacian matrix L is defined as:

L = D −A ∈ IRN×N (2.1)

where D ∈ IRN×N is the degree diagonal matrix and A = [aij ] ∈ IRN×N is the
adjacency matrix defined by aij > 0 when the ith agent can receive information from
the jth agent and aij = 0 otherwise.

Let us denote by Li ∈ IR(N−1)×(N−1) the Laplacian matrix L defined without
agent i, and by:

Li = diag(`i1, . . . , `ii−1, `
i
i+1, . . . , `

i
N ) ∈ IR(N−1)×(N−1)

the associated diagonal matrix defining the interconnections between agent i and the
remaining agents, `ik > 0 if the information of agent i is accessible by the kth agent,
otherwise `ik = 0.

Example 2.1 Let us consider a team of 4 agents. The communication among each
agent is given according to the topology in Fig. 2.4, the Laplacian matrix is as follows

L1 =


2 −1 −1 0
−1 1 0 0
−1 0 2 −1
0 0 −1 1


The associated Laplacian sub-matrices as specified in the above are given as

L1 =

1 0 0
0 1 0
0 0 0

 ,L2 =

1 0 0
0 0 0
0 0 0

 ,L3 =

1 0 0
0 0 0
0 0 1

 ,L4 =

0 0 0
0 0 0
0 0 1

 ,
L1 =

1 0 0
0 2 −1
0 −1 1

 ,L2 =

 2 −1 0
−1 2 −1
0 −1 1

 ,L3 =

 2 −1 0
−1 1 0
0 0 1

 ,
L4 =

 2 −1 −1
−1 1 0
−1 0 2

 .
(2.2)

The following assumption in considered throughout this Chapter.

Assumption 2.2.1 In this work, communication links are assumed to be bidirectional.
This means that the considered graph is undirected [Fax & Murray 2004], i.e., the
adjacency matrix A is symmetric.
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Useful lemmas

Let us recall some complementary key lemmas that will be used throughout this Chap-
ter.

Lemma 2.1 [Aldana-López et al. 2019] Let n ∈ N . If a = (a1, . . . , an) is a sequence
of positive numbers, then the following inequality is satisfied for α, η, p, q, k > 0 with
pk < 1 and qk > 1

1
n

N∑
i=1

ai (αapi + ηaqi )
k >

(
1
n

N∑
i=1

ai

)α( 1
n

N∑
i=1

ai

)p
+ η

(
1
n

N∑
i=1

ai

)qk

Lemma 2.2 [Basile & Marro 1992] Let z = [z1, . . . , zN ]T ∈ IRN and

‖z‖p =
(

N∑
i=1
|zi|p

) 1
p

.

Then, for all l > r

‖z‖l 6 ‖z‖r.

Lemma 2.3 [Aldana-López et al. 2019] Let

f(z) = z (αzp + ηzq)k

for α, η, p, q, k > 0 with pk < 1 and qk > 1. Then f(z) is monotonically increasing for
all z > 0.

2.3 Actuator FDI in MASs with Linear Dynamics

2.3.1 Problem Formulation

Consider N agents interacting to achieve a common objective, indexed i = 1, 2, . . . ,
N . The dynamics of the ith agent are given by:{

ξ̇i(t) = Aξi(t) +Bu(ui(x) + fi(t)) +Bedi(t)
yi(t) = Cξi(t)

(2.3)

where ξi = [ξi,1, ξi,2, ..., ξi,n]T ∈ Rn and ui(x) ∈ R are the state vector and the
control input respectively of the ith agent. Note that the control and FDI problems
are independent and ui(x) = Pi(ξi, {ξj}j∈Ni), where Pi is the control protocol
of agent i and is a function of its state along with information received by their
neighbours. di ∈ R represents the disturbances and is an unknown bounded
scalar, with Be as its distribution matrix and Bedi = [ζi,1, ζi,2, ..., ζi,n]T . fi ∈ R
represents the fault signal where fi = 0 is equivalent to a fault-free situation and
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fi 6= 0 indicates the occurrence of an actuator fault in agent i. Here, it is assumed
that agent i can measure all of its state. The state matrices A and Bu are expressed as:

A =



0 ā1,2 ā1,3 . . . ā1,n
0 0 ā2,3 . . . ā2,n
...

...
... . . . ...

0 0 0 . . . ān−1,n
0 0 0 . . . 0

 ∈ Rn×n, Bu =


0
...
0
1

 ∈ Rn

yi(t) ∈ Rn is the measured output of agent i, with C = I ∈ Rn×n. Each agent
receives its neighbours’ estimates of other agents as well as its own measurements.
Many systems can be modelled using the upper triangular form described above, such
as omnidirectional mobile robots, UAV, power network systems, etc.

Assumption 2.3.1 It is assumed that Be ∈ Rn is a known matrix with rank(Be, Bu)
6= 0.

Given the graph described in the introduction Section, the objective in this Sec-
tion is the design of a FDI scheme such that each agent is able to detect an actuator
fault in the entire network of agents with disturbances solely by using information
exchanged between neighbouring agents. Figure 2.3 depicts the proposed scheme.

Figure 2.3: Proposed FDI scheme.

2.3.2 Main Result

The distributed FDI scheme is carried out through the use of a cascade of fixed-time
observers to reconstruct the global state of the overall system.
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2.3.2.1 Global State Reconstruction

The observer proposed here, for each agent i is able to obtain an estimate of all other
agents in the network. Denoting by ξ̂ki,m, agent k’s estimate of the mth state variable
of agent i and by ξi,m the mth measured state variable of agent i. For all i = 1, . . . , N ,
k = 1, . . . , N , k 6= i the proposed distributed fixed-time observer has the following
structure:

˙̂
ξki,m = ām,m+1ξ̂

k
i,m+1 + . . .+ ām,nξ̂

k
i,n + αi,msign

( N∑
j=1

aij(ξ̂ji,m − ξ̂
k
i,m) + `ik(ξi,m − ξ̂ki,m)

)

+ ηi,m

⌈ N∑
j=1

aij(ξ̂ji,m − ξ̂
k
i,m) + `ik(ξi,m − ξ̂ki,m)

⌋2
,

m = {1, 2, ..., n− 1} (2.4)

˙̂
ξki,n = αi,nsign

( N∑
j=1

aij(ξ̂ji,n − ξ̂
k
i,n) + `ik(ξi,n − ξ̂ki,n)

)

+ ηi,n

⌈ N∑
j=1

aij(ξ̂ji,n − ξ̂
k
i,n) + `ik(ξi,n − ξ̂ki,n)

⌋2

The error is defined by:

εki,m = ξ̂ki,m − ξi,m (2.5)

Differentiating equation (2.5) yields the dynamics of the observation error:

ε̇ki,m = ām,m+1ε
k
i,m+1 + . . .+ ām,nε

k
i,n + αi,msign

( N∑
j=1

aij(εji,m − ε
k
i,m)− `ikεki,m

)

+ ηi,m

⌈ N∑
j=1

aij(εji,m − ε
k
i,m)− `ikεki,m)

⌋2
− ζi,m,

m = {1, 2, ..., n− 1} (2.6)

ε̇ki,n = αi,nsign
( N∑
j=1

aij(εji,n − ε
k
i,n)− `ikεki,n

)
+ ηi,n

⌈ N∑
j=1

aij(εji,n − ε
k
i,n)− `ikεki,n)

⌋2

− Ui

with Ui = ui + ζi,n + fi.

Assumption 2.3.2 It is assumed that inputs ui of each agent, disturbances ζi,m
with m = 1, 2, ..., n and faults fi are bounded by known constants such that ∀i ∈
{1, 2, ..., N}, |ui| 6 umax, |ζi,m| 6 ζmax and |fi| 6 fmax respectively with umax ∈ R+,
ζmax ∈ R+, fmax ∈ R+, and Umax = umax + ζmax + fmax.
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Equations (2.6) can be rewritten in a more compact form:

Ėi,m = ām,m+1Ei,m+1 + . . .+ ām,nEi,n
− αi,msign((Li + Li)Ei,m)− ηi,md(Li + Li)Ei,mc2

− 1ζi,m, m = {1, 2, ..., n− 1} (2.7)

Ėi,n = −αi,nsign((Li + Li)Ei,n)− ηi,nd(Li + Li)Ei,nc2 − 1Ui

Each agent i concatenates the estimation errors in the vector Ei,m i.e. Ei,m =
[ε1
i,m, ε

2
i,m, ..., ε

N
i,m]T . The fixed-time convergence property of the estimation errors is

summarized in the following theorem:

Theorem 2.1: [Taoufik et al. 2020c]

Considering Assumptions 2.3.1-2.3.2 are satisfied with i = 1, 2, ..., N , the ob-
server gains are expressed as:

ηi,m = σi
√
N

(2λmin(Li + Li))
3
2

∀m = 1, 2, ..., n (2.8)

αi,m = ζmax + σi

√
λmax(Li + Li)
2λmin(Li + Li) ∀m = 1, 2, ..., n− 1 (2.9)

αi,n = Umax + σi

√
λmax(Li + Li)
2λmin(Li + Li) (2.10)

The distributed observer described by Eq. (2.4) achieves the convergence of
the observation errors to zero in a finite time, where σi > 0, and this time is
bounded by:

T io := nπ

σi
(2.11)

Proof The proof consists of showing the fixed-time stability of (2.7) in a recursive
manner. For that, consider the following Lyapunov function associated with the nth
dynamics of the agents:

V i
n = 1

2(Ei,n)T (Li + Li)(Ei,n) (2.12)

Differentiating (2.12) results in:

V̇ i
n = (Ei,n)T (Li + Li)− (Ei,n)T (Li + Li)1Ui
× (−αi,nsign((Li + Li)Ei,n)− ηi,nd(Li + Li)Ei,nc2)
6 −(αi,n − Umax)||(Li + Li)Ei,n||1
− ηi,nN−

1
2 (2λmin(Li + Li))

3
2 (V i

n)
3
2

6 −σi(V i
n)

1
2 − σi(V i

n)
3
2 (2.13)
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This guarantees that Ei,n containing the nth state estimation errors is fixed-time stable
at the origin with the settling time bounded by T i1 = π

σi
, the dynamics of Ei,n−1 are

written in the form (2.14) after the convergence of Ei,n.

Ėi,n−1 = −αi,n−1sign((Li + Li)Ei,n−1)
− ηi,n−1d(Li + Li)Ei,n−1c2 − ζi,n−1 (2.14)

Similarly, we have :

V̇ i
n−1 6 −(αi,n−1 − ζmax)||(Li + Li)Ei,n−1||1
− ηi,n−1N

− 1
2 (2λmin(Li + Li))

3
2 (V i

n−1)
3
2

6 −σi(V i
n−1)

1
2 − σi(V i

n−1)
3
2

Ei,n−1 converges to 0 in a fixed time bounded by T i2 = 2T i1. Recursively, the dynamics
of Ei,1 reduce to:

Ėi,1 = −αi,1sign((Li + Li)Ei,1)− ηi,1d(Li + Li)Ei,1c2 − ζi,1
Following the same reasoning, Ei,1 converges to 0 within a fixed-time horizon bounded
by T io := T in = nT i1. This concludes the proof of Theorem 1.

Theorem 2.1 guarantees that this observer could recover the agent i’s state within a
fixed time by the remaining agents if Assumptions 2.3.1-2.3.2 are satisfied. Therefore
∀m ∈ 1, 2, ..., n, ∀i ∈ 1, 2, ..., N, ∀k ∈ 1, 2, ..., N , it is safe to use x̂ki,m in the residual
generation and evaluation step after t = T io. One could note that the settling estimation
time T io, obtained in Theorem 2.1 is independent of the initial observation errors for
each corresponding agent.
Remark 2.3.1 According to Theorem 2.1, the fixed-time observer (2.4) guarantees a
perfect estimation of the global system state despite the presence of bounded control
inputs, uncertainties, and faults in a fixed-time. Furthermore, it ensures the viability
of the residual signals defined in the next Sub-subsection, at a given prescribed-time
while avoiding the problem of transient behaviours and avoiding an over-tuning of the
switching times. As for the digital implementation of the proposed distributed observers,
it is possible to apply some discretisation algorithms [Polyakov et al. 2019, Jiménez-
Rodríguez et al. 2020a]. Concerning the effect of measurement noise, one may consider
similar reasoning as in [Ménard et al. 2017], where it is shown that a good trade-off
between robustness properties to measurement noise and fast convergence is obtained by
appropriately tuning the observer gains. Indeed, it can be shown that in the presence
of measurement noise, the estimation errors (2.5) due to the disturbances decrease
as αi,m, αi,n and ηi,m increase, but at the same time increase due to noise as these
parameters increase. Hence, through a reasonable choice of the settling time a good
compromise between robustness and a sufficiently fast estimation can be achieved.

Remark 2.3.2 It is worth mentioning that conditions (2.8)-(2.10) in Theorem 2.1
provide an explicit way to tune the gains in order to achieve a prescribed settling time,
regardless of the initial conditions, the disturbance signals affecting each agent and the
input signals. Additionally, physical bounds of perturbations, states, and inputs can be
estimated a-priori for any MAS.
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2.3.2.2 Residual Generation and Fault Detection

In the following, an LMI-based approach is used to design a distributed actuator
FDI scheme residual generator based on mixed H_/H∞ norms. The use of this ap-
proach rather than the one that involves the reconstruction of the disturbances and
faults for this system is supported by the fact that the fault detection scheme is less
computationally demanding and the gains are only computed once. Using the pro-
posed distributed observers, each agent can complete the global state by concatenating
the estimated states obtained from the observer. For an agent k, the corresponding
global state vector can be expressed as Xi,g = [(ξ̂1

i )T , (ξ̂2
i )T , . . . , (ξ̂Ni )T ]T ∈ R(n·N),

where ξ̂ki is the agent i’s estimate of the state of agent k previously obtained, where
ξ̂ki = [(ξ̂ik,1)T , (ξ̂ik,2)T , ..., (ξ̂ik,n)T ]T . Using (2.3), the associated global state space rep-
resentation can be written in the following form:{

Ẋi,g(t) = ĀiXi,g(t) + B̄u,i(Ui,g(t) + Fi,g(t)) + B̄e,iEi,g(t)
Yi(t) = Xi,g(t)

(2.15)

where EiG = [d1, d2, ..., dN ]T and Fi,g = [f1, f2, ..., fN ]T . Ui,g(t) = [u1, u2, ..., uN ]T is
the concatenated input vector. Matrices Āi, B̄u,i and B̄e,i are defined by block diagonal
notation Z̄i = diag(Z,Z, . . . , Z). Differentiating Yi(t) in (2.15) yields to:

Ẏi(t) = ĀiXi,g(t) + B̄u,i(Ui,g(t) + Fi,g(t)) + B̄e,iEi,g(t) (2.16)

Let us denote by Yi,g(t) the new output described as:

Yi,g(t) = Ẏi(t)− B̄u,iÛi,g(Xi,g(t)) (2.17)

Ûi,g(Xi,g(t)) = [ûi,1, ûi,2, ..., ûi,N ]T is the reconstructed input, where ûi = ui since each
agent has access to its own control input vector. Equations (2.15) can be re-written
as: {

Ẋi,g(t) = ĀiXi,g(t) + B̄u,i(Ûi,g(t) + Fi,g(t)) + B̄e,iEi,g(t)
Yi,g(t) = ĀiXi,g(t) + B̄u,iFi,g(t) + B̄e,iEi,g(t)

(2.18)

Remark 2.3.3 It should be also highlighted that Ẏi(t) and thus Yi,g(t), can easily be ob-
tained using a robust fixed-time differentiator [Moreno 2021, Aldana-López et al. 2021].

From system (2.18) and Remark 2.3.3, it is clear that one can apply a mixed
H_/H∞ norm optimization technique. A classical FDI scheme is comprised of a
residual generator and a residual evaluation process. To design the residual generator,
the following fault detection observer is used:

˙̂
Xi,g(t) = ĀiX̂i,g(t) + B̄u,iÛi,g(Xi,g(t)) +Hi(Yi,g(t)− Ŷi,g(t)) (2.19)

Ŷi,g(t) = ĀiX̂i,g(t) (2.20)
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ri(t) = Vi(Yi,g(t)− Ŷi,g(t)) (2.21)

where for each agent i, X̂i,g ∈ R(n·N) and Ŷi,g ∈ R(n·N) represent, respectively, the
state and output estimation vectors. ri ∈ R(n·N) is the residual signal vector. Hi ∈
R(n·N)×(n·N) and Vi ∈ R(n·N)×(n·N) are the gain matrices representing the observer
gain and the residual post filter weight, respectively. Considering the residual error
ei(t) = Xi,g − X̂i,g, one can write:

ėi(t) = Aiei(t) +Be,iEi,g(t) +Bu,iFi,g(t) (2.22)

ri(t) = Vi(Āiei(t) + B̄e,iEi,g(t) + B̄u,iFi,g(t)) (2.23)

with Ai = (Āi − HiĀi), Be,i = (B̄e,i − HiB̄e,i) and Bu,i = (B̄u,i − HiB̄u,i). In the
frequency domain, (2.23) can be written as:

ri(s) = T id(s)Ei,g(s) + T if (s)Fi,g(s) (2.24)

with T id(s) = ViĀi(sI − Ai)−1Be,i + ViB̄e,i and T if (s) = ViĀi(sI − Ai)−1Bu,i + ViB̄u,i.
Here, the H∞ norm is used to measure the maximum effect of the disturbances on the
residual and the H_ index to measure the minimum effect of the fault on the residual.
For system (2.18), designing the fault detection observer (2.19)-(2.21) is equivalent to
find matrices Hi and Vi, using the combined H_/H∞ strategy to guarantee sensitivity
of the residuals to the faults and robustness against perturbation. Therefore, the
objective is to minimize the following:

min Ji = min ||T
i
d(s)||∞

||T if (s)||_
(2.25)

where Ji represents a trade-off between sensitivity and robustness. In this section, the
approach in [Wang et al. 2007] is used. For given γi > 0 and βi > 0, the error system
(2.21)-(2.22) is asymptotically stable and the following are satisfied:

||T id(s)||∞ < γi (2.26)

||T if (s)||_ > βi (2.27)

if there exist matrices Qi > 0, Mi > 0 and Hi such that the following LMIs hold:[
QiAi + (Ai)TQi + (Āi)TMiĀi QiBe,i + (Āi)TMiB̄e,i

∗ −γ2
i I + (B̄e,i)TMiB̄e,i

]
< 0 (2.28)

[
QiAi + (Ai)TQi − (Āi)TMiĀi (Āi)TMiB̄u,i − P iBu,i

∗ β2
i I − (B̄u,i)TMiB̄u,i

]
< 0 (2.29)

with Mi = (Vi)TVi.

Anass Taoufik Page 58



2.3. Actuator FDI in MASs with Linear Dynamics

2.3.2.3 Residual Evaluation

The remaining task for fault detection and isolation (identifying the faulty agent in
the fleet) is to evaluate the obtained residuals, when the convergence of the estimation
errors is obtained (which depends on the parameters of the cascade of fixed-time ob-
servers as well as those of the fixed-time differentiator). The residuals are evaluated
after this settling time, by comparing the generated residuals with a threshold defined
hereafter.

Given Remark 2.3.1, when discrete-time implementation and measurement noise
are considered, the residual ri does not exactly equal to zero in the absence of fault.
Hence, once the residual signal is generated, it is important to define an evaluation
function. Amongst some standard evaluation functions presented in [Ding 2008], the
following Root Mean Square (RMS) evaluation function is chosen. The selected eval-
uation function Jki (t) generated by agent i is expressed as follows:

Jki (t) = ‖rki (t)‖RMS =
(

1
Tw

∫ t+Tw

t
||rki (τ)||2dτ

) 1
2

(2.30)

where ri = [(r1
i )T , (r2

i )T , ..., (rNi )T ]T and Tw is the finite-time evaluation window. Let
us denote by Jkth

i = supfaultfree‖Jki (t)‖RMS the threshold. The following is used as a
decision logic:

Jki (t) > Jkth
i ⇒ A fault has occured at agent k, (2.31)

Jki (t) 6 Jkth
i ⇒ No fault has occured. (2.32)

Remark 2.3.4 It should be mentioned that the distributed structure of the proposed
scheme implies that each agent can estimate faults based on its states and the infor-
mation exchanged between neighbouring agents, making it more adequate when there
are measurement noises in the sensors, or perturbations in the communication links.
Indeed, since the fault detection scheme is based not only on the state of the agent but
also on the mergers’ information from neighbouring agents: (i) a consensus on the oc-
currence of a fault is implicitly required for a fault to be detected, and (ii) the proposed
scheme acts as a filter, which enables the reduction of the effect of measurement noises
due to sensors while providing an accurate estimate of the global system state. Since
only information between neighbouring agents is shared, the effect of perturbations due
to the communication links is also reduced.

2.3.3 Simulation Example

An illustrative numerical example is provided herein to show the effectiveness of the
proposed scheme in this section. Consider a team of N = 4 agents governed by double
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integrator dynamics with unknown disturbances (n = 2), a special case of system (2.3)
such that ξi,1 represents the position of the ith robot, and ξi,2 its velocity, where:

A =
[
0 1
0 0

]
, Be =

[
0.5
1

]
, Bu =

[
0
1

]

The communication among each agent is given according to the topology in Fig. 2.4.

Figure 2.4: Communication topology.

The associated interconnection matrices as specified by the given topology are
given by (2.2).

In this example, a consensus algorithm in the presence of a group reference
velocity is used for each agent (with the velocity reference set to vd = 10m/s for each
agent).

ui = v̇d − κ(vd − ξi,2)−
4∑
j=1

aij [(ξi,1 − ξj,1)− ν(ξi,2 − ξj,2)]

where κ and ν are the consensus gains set to 5 and 2.5 respectively. To check the
robustness of the proposed scheme, two types of perturbations are considered: band-
limited Gaussian white noise of power 0.005 for agents 2 and 4, and high frequency
noise in the form of d2(t) and d4(t), for agents 1 and 3 that are modelled as follows:
d1(t) = 3.5 sin(150t) and d3(t) = (2.5 sin(350t))0.2. Additionally, additive band-limited
white measurement noise of power 10−8 has been added to all incoming and outgoing
edges and measurements. This means that transmitted information between neigh-
bouring agents has been affected by these communication noises. In order to show
the effectiveness of our approach, multiple types of abrupt faults are considered, a
ramp f1(t) = t − 5 for t ∈ [5, 15], two rectangular faults f2(t) and f4(t), and an
exponential fault f3(t) = −e1.3−0.1/(t−10) are added at various instants, and with dif-
ferent amplitudes. They are assumed to occur in agents 1, 2, 3 and 4 respectively as
shown in Fig. 2.5. Using these matrices and, without loss of generality, by choosing
T 1
o = T 2

o = T 3
o = T 4

o = 0.5 s, from Theorem 2.1, the resulting σ1, σ2, σ3 and σ4 allow
us to define the gains of the cascade observers expressed in Eq. (2.8)-(2.10):

α1,1 = 23.45, α1,2 = 38.45, η1,1 = η1,2 = 14.01.
α2,1 = 35.16, α2,2 = 50.16, η2,1 = η2,2 = 45.30.
α3,1 = 23.45, α3,2 = 38.45, η3,1 = η3,2 = 14.01.
α4,1 = 35.16, α4,2 = 50.16, η4,1 = η4,2 = 45.30.
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It is worth mentioning that the choice T 1
o = T 2

o = T 3
o = T 4

o allows the observers to

Figure 2.5: Fault signals in agents 1, 2, 3 and 4.

converge at the same time, hence simplifying the residual evaluation process.

(a) (b)

(c) (d)

Figure 2.6: Residual evaluation functions: (a) J1
i (t) of agent 1 (b) J2

i (t) of agent 2 (c)
J3
i (t) of agent 3 (d) J4

i (t) of agent 4. The dashed blue lines represent the convergence
time after which the functions should be considered. The dashed red lines represent
the thresholds.

Figure 2.6 shows the evaluation functions J1
i (t), J2

i (t), J3
i (t) and J4

i (t) of the
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residual vectors generated by agent 1, 2, 3 and 4 respectively. It is worth noting that
these functions make sense only after the observers and differentiators converge. This
is achieved after about 1.5 seconds (dashed blue vertical lines are added as delimiters
in order to illustrate this). Each agent generates four evaluation functions, one from
its own output and three from the estimates of the state of the three other agents.
Each of these functions is capable of detecting the corresponding agent’s fault from
the point of view of the agent that generates it. Fig. 2.6d for example displays the
functions J2

1 (t), J2
2 (t), J2

3 (t) and J2
4 (t) that detect faults occurring in agents 1, 2, 3 and

4 respectively from the point of view of agent 2. It is shown that, even though agent 2
does not directly communicate with neither agent 3 and 4, it uses their state estimates
to synchronise fault detection. The functions are robust with respect to disturbances
and faults can be easily distinguished. In accordance with this logic the same can be
said for the other agents as the same pattern for fault detection is followed. These
results show that our approach is useful for the problem of synchronised distributed
actuator FDI in a network of communicating MASs, where each agent can detect faults
occurring across the entirety of the system and isolate the faulty agent.

Remark 2.3.5 It is worth mentioning that the proposed scheme in this Section re-
quires each node in the network to exchange a large amount of information equivalent
to N × n in order to feed its bank of observers to monitor each of the other agents,
resulting in a distributed but potentially computationally heavy scheme. This means
that the proposed scheme is more suitable for small scale MASs as the exchange load
increases linearly with the number of nodes. However, the proposed approaches in this
Chapter are general, and the amount of shared information could be reduced if fewer
agents should be monitored. Furthermore, since each agent monitors the activity of the
whole network, it can be noticed that a certain amount of redundancy exists, hence,
if only a subset of agents act as monitoring units, the computational and exchange
burdens could be reduced. It should also be noted that many control applications may
benefit from this observer structure, and using it for both control and fault detection
can considerably reduce the computational cost.

2.4 FDI in MASs with Chained Form Dynamics

In this Section, fixed-time observers are used for robust state reconstruction and FDI
in homogeneous cooperative MASs with chained form dynamics, where the predefined-
time stability notion is used.

2.4.1 Problem Formulation

Consider a homogeneous MAS comprised of N unicycle-type mobile robots (see Fig.
2.7) labelled by i ∈ 1, . . . , N with nonholonomic constraints on the linear velocity.
These robots have two fixed front wheels with one axis but are independently controlled
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by two separate DC motors and a rear caster wheel, which prevents the robot from
tipping over as it moves on a plane.

Figure 2.7: Unicycle-type mobile robot.

The nonholonomic constraint is defined by

ẋi(t) sin(θi(t))− ẏi(t) cos(θi(t)) = 0 (2.33)

where (xi, yi) denotes the position of the center of mass Oi of the body located in
the middle of the two driving wheels, θi is the orientation of the robot, i.e., the angle
separating the axes −→ı and L1. The two wheels are separated by d = 2L. Using
constraint (2.33), the kinematics of the robot in the presence of uncertainties can be
modeled by the following differential equations [Laumond et al. 1998]

ẋi(t) = vi(t) cos(θi(t)) + ς1ζi(t)
ẏi(t) = vi(t) sin(θi(t)) + ς2ζi(t)
θ̇i(t) = ωi(t) + ς3ζi(t)

(2.34)

where vi, ωi, and ζi are the forward velocity, the angular velocity, and the unknown
disturbances, respectively, of the ith robot. ς1, ς2 and ς3 are assumed to be known
constants.

Let us denote by u1
i and u2

i the velocity commands of the left and right wheels,
respectively, actuated by DC motors and let fi,l and fi,r be additive faults occurring
on the left and right wheels respectively, and reflecting abnormal changes in their
velocities [Skoundrianos & Tzafestas 2004]. One can express the inputs in terms of the
velocities as follows: {

u1
i = vi,l + fi,l
u2
i = vi,r + fi,r

. (2.35)

vi,l and vi,r are the driving velocities of the left and right wheels respectively, which
are measured through on-board odometric sensors. For a nonholonomic mobile robot,
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when slippage occurs between the ground and the wheels, ωi and vi are expressed as
follows: 

ωi = (1− s1)u1
i − (1− s2)u2

i

d
= u1?

i + fi,1

vi = (1− s1)u1
i + (1− s2)u2

i

2 = u2?
i + fi,2

(2.36)

where 

fi,1 = (1− s1)fi,l − (1− s2)fi,r
d

fi,2 = (1− s1)fi,l + (1− s2)fi,r
2

u1?
i = (1− s1)vi,l − (1− s2)vi,r

d

u2?
i = (1− s1)vi,l + (1− s2)vi,r

2 ,

(2.37)

s1 and s2 are the slip ratios of the right and left wheels respectively. fi,1 and fi,2
are the fault signals to be detected. It is worth noting that a fault on either wheel
manifests itself in both signals.

Remark 2.4.1 Note that the slip ratios [Lu et al. 2016, Gao et al. 2014] s1 and s2,
are assumed to be known by agents since the left and right current velocities can be
estimated through an adequate localization method. The design of a distributed SLAM
method is however not in the scope of this thesis.

Now consider the following [Kolmanovsky & McClamroch 1995] nonsingular state
and input transformation 

ξi,1 = θi
ξi,2 = xi sin θi − yi cos θi
ξi,3 = xi cos θi + yi sin θi
u1?
i = ωi − fi,1
u2?
i = vi − fi,2

(2.38)

where u1?
i and u2?

i are defined in (2.36). With this change of coordinates, choosing the
following feedback {

Ui,1 = u̇1?
i

Ui,2 = u2?
i − ξi,2ξi,3

(2.39)

and adding a dynamical extension, (2.34) can be transformed into the following un-
certain chained form system

ξ̇i,1 = ξi,2 + ς3ζi
ξ̇i,2 = Ui,1 + ḟi,1
ξ̇i,3 = ξi,4ξi,2 + ζi (ς1 sin (ξi,1)− ς2 cos (ξi,1) + ς3ξi,4)
ξ̇i,4 = Ui,2 + fi,2 + ζi (ς1 sin (ξi,1)− ς2 cos (ξi,1) + ς3ξi,3)

(2.40)

Note that for each agent i, Ui,1 and Ui,2 represent any cooperative feedback con-
troller which uses exchanged information between neighbouring agents (i.e. [Sánchez-
Torres et al. 2019, Defoort et al. 2016, Anggraeni et al. 2019]), i.e., they depend
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on Ψi = [ξi,1, ξi,2, ξi,3, ξi,4]T ∈ IR4 and Ψj = [ξj,1, ξj,2, ξj,3, ξj,4]T ∈ IR4, where
j ∈ Ni = {k : aik > 0}.

Remark 2.4.2 The use of a dynamical extension is justified by the fact that almost
all mobile robots can compute the angular velocity and acceleration through odometric
sensors, which can be used in the residual generation scheme elaborated in this Section,
as well as in many control strategies [Anggraeni et al. 2019].

Assumption 2.4.1 The inputs Ui,1, Ui,2 and uncertainties ζi of each agent, are as-
sumed to be bounded by known constants umax

1 , umax
2 , ζmax ∈ IR+, where |Ui,1| 6 umax

1 ,
|Ui,2| 6 umax

2 and |ζi| 6 ζmax. Additionally, for all agents, the left and right wheel faults
fi,l, fi,r and their first derivatives have known constant bounds such that |fi,l| 6 fmax

l ,
|fi,r| 6 fmaxr and |ḟi,1| 6 ḟmax1 , with fmax

l , fmax
r , ḟmax

1 ∈ IR+.

The purpose here is to show that a monitoring agent can detect an actuator fault
in the entire network of agents despite the presence of unknown bounded disturbances,
using a distributed scheme, i.e., solely by using its state and information exchanged
with its neighbouring agents.

Hereafter, the proposed distributed global actuator fault detection design is laid
out through the use of a cascade of predefined-time observers for the sake of residual
generation. Indeed, the problem of global residual generation is to design a filter for
each agent i = {1, 2, . . . , N}, of the form ˙̂χki (t) = fr

(
t, Ûki,1, Ûki,2

)
+ gr

(
t, Ψ̂k

i , ζ̂
k
i

)
rki (t) = hr

(
t, χki

) (2.41)

where

• χ̂ki ∈ IR is agent k’s estimate of agent i’s filter variable, affected by both faults,

• Ψ̂k
i =

[
ξ̂ki,1(t), ξ̂ki,2(t), ξ̂ki,3(t), ξ̂ki,4(t)

]T
∈ IR4 represents agent k’s estimate of agent

i’s state,

• ζ̂ki ∈ IR represents agent k’s estimate of agent i’s disturbances,

• Ûki,1, Ûki,2 ∈ IR represent agent k’s estimate of agent i’s control inputs,

• rki (t) ∈ IR represents agent k’s estimate of agent i’s residual signal containing
information on the time and location of the fault occurrence. It should be close
to zero in the absence of fault and become distinctly different from zero in the
presence of a fault.

The proposed FDI scheme is described in Fig 2.8. First, the distributed
predefined-time observers, described in Subsection 2.4.2, are used to estimate the state
for each other agent in the fleet (i.e. χ̂ki ). Then, the equivalent control concept is used
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Figure 2.8: Proposed FDI scheme.

to estimate the disturbances ζ̂ki . From these estimated values, the monitoring agent
is able to reconstruct the applied control input. At last, using the estimated values, a
residual signal (2.41) can be derived in Subsection 2.4.2.2.

2.4.2 Main Result

2.4.2.1 State Reconstruction and Disturbance Estimation

The residual signals (2.41) are dependant on the estimates of the state variables, the
disturbances, and the control inputs. They need to indicate the faults occurring not
only on the robot and its neighbours but also on the MRS as a whole. To achieve this
objective, the observer proposed herein, for each agent, i can obtain an estimate of all
other agents’ state variables, disturbances, and control inputs.

For this aim, the dynamics of the ith robot (2.40) are divided into two subsystems,
a disturbed double integrator subsystem Σi,1 and a second-order subsystem Σi,2:

Σi,1 :
{
ξ̇i,1 = ξi,2 + ς3ζi
ξ̇i,2 = Ui,1 + ḟi,1

Σi,2 :
{
ξ̇i,3 = ξi,4ξi,2 + ζi (ς1 sin (ξi,1)− ς2 cos (ξi,1) + ς3ξi,4)
ξ̇i,4 = Ui,2 + fi,2 + ζi (ς1 sin (ξi,1)− ς2 cos (ξi,1) + ς3ξi,3) . (2.42)

Denote by ξ̂ki,m, agent k’s estimate of the mth state variable of agent i and by
ξi,m the mth measured state variable of agent i, and by ζ̂ki agent k’s estimate of agent
i’s disturbance signal, for all m = {1, 2, 3, 4}, i = {1, . . . , N} and k = {1, . . . , N}. The
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proposed distributed predefined-time observer has the following structure:

Σ̂k
i,1 :


˙̂
ξki,1 = ξ̂ki,2 + κk1

((
α|Iki,1|p + η|Iki,1|q

)r
+ δ1

)
sign(Iki,1)

˙̂
ξki,2 = κk2

((
α|Iki,2|p + η|Iki,2|q

)r
+ δ2

)
sign(Iki,2)

Σ̂k
i,2 :



˙̂
ξki,3 = E3

[
ξ̂ki,2ξ̂

k
i,4 + ζ̂ki (ς1 sin ξ̂ki,1 − ς2 cos ξ̂ki,1 + ς3ξ̂

k
i,4)

+κk3
((
α|Iki,3|p + η|Iki,3|q

)r
+ δ3

)
sign

(
Iki,3

)]
˙̂
ξki,4 = E4

[
ζ̂ki (ς1 sin ξ̂ki,1 − ς2 cos ξ̂ki,1 + ς3ξ̂

k
i,3)

+κk4
((
α|Iki,4|p + η|Iki,4|q

)r
+ δ4

)
sign

(
Iki,4

)] (2.43)

with Iki,m =
∑N
j=1 akj

(
ξ̂ji,m − ξ̂ki,m

)
+ `ik

(
ξi,m − ξ̂ki,m

)
. The constants κk1, κk2, κk3, κk4,

α, η, δ1, δ2, δ3, δ4, p, q, r will be defined later. The components E3 and E4, will be
defined later and represent observer switches.

Assumption 2.4.2 The robot is considered to be bounded input bounded state stable.

The error is defined as
εki,m = ξi,m − ξ̂ki,m. (2.44)

Differentiating (2.44) gives the observation error dynamics for the two subsystems
Σk
i,1 and Σk

i,2 as follows:

Σk
i,1 :

 ε̇ki,1 = εki,2 − κk1
((
α|Cki,1|p + η|Cki,1|q

)r
+ δ1

)
sign

(
Cki,1
)

+ ς3ζi

ε̇ki,2 = −κk2
((
α|Cki,2|p + η|Cki,2|q

)r
+ δ2

)
sign

(
Cki,2
)

+ Ui,1 + ḟi,1

Σk
i,2 :



ε̇ki,3 = −E3ξ̂
k
i,2ξ̂

k
i,4 + ξki,2ξ

k
i,4 − E3ζ̂

k
i (ς1 sin

(
ξ̂ki,1

)
− ς2 cos

(
ξ̂ki,1

)
+ ς3ξ̂

k
i,4)

+ζki
(
ς1 sin

(
ξki,1

)
− ς2 cos

(
ξki,1

)
+ ς3ξ

k
i,4

)
−E3κ

k
3

((
α|Cki,3|p + η|Cki,3|q

)r
+ δ3

)
sign

(
Cki,3
)

ε̇ki,4 = −E4ζ̂
k
i

(
ς1 sin

(
ξ̂ki,1

)
− ς2 cos

(
ξ̂ki,1

)
+ ς3ξ̂

k
i,3

)
+ζki

(
ς1 sin

(
ξki,1

)
− ς2 cos

(
ξki,1

)
+ ς3ξ

k
i,3

)
−E4κ

k
4

((
α|Cki,4|p + η|Cki,4|q

)r
+ δ4

)
sign

(
Cki,4
)

+ Ui,2 + fi,2

(2.45)
with Cki,m =

∑N
j=1 akj

(
εki,m − ε

j
i,m

)
+ `ikε

k
i,m.

Putting (2.45) in compact form, one can write

Zi,1 :
{
Ėi,1 = Ei,2 −H

((
Li + Li

)
Ei,1
)

+ 1ς3ζi
Ėi,2 = −H

((
Li + Li

)
Ei,2
)

+ 1
(
Ui,1 + ḟi,1

)
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Zi,2 :



Ėi,3 = −E3
(
X̂i,2 ◦ X̂i,4

)
+ 1ξi,2 ◦ 1ξi,4 − E3Υ̂i ◦

(
ς1 sin X̂i,1 − ς2 cos X̂i,1

+ς3X̂i,4
)

+ ζi (ς1 sin (1ξi,1)− ς2 cos (1ξi,1) + ς31ξi,4)
−E3H

((
Li + Li

)
Ei,3
)

Ėi,4 = −E4Υ̂i ◦
(
ς1 sin

(
X̂i,1

)
− ς2 cos

(
X̂i,1

)
+ ς3X̂i,3

)
+ 1 (Ui,2 + fi,2)

+ζi (ς1 sin (1ξi,1)− ς2 cos (1ξi,1) + ς31ξi,3)− E4H
((
Li + Li

)
Ei,4
)
(2.46)

where ◦ represents the Hadamard-Schur product, Υ̂i =
[
ζ̂1
i , ζ̂

2
i , . . . , ζ̂

N
i

]T
and X̂i,m =[

ξ̂1
i,m, ξ̂

2
i,m, ..., ξ̂

N
i,m

]T
.

For m = {1, 2, 3, 4}, the term H
((
Li + Li

)
Ei,m

)
is expressed as

H
((
Li + Li

)
Ei,m

)
= κim

((
α|(Li + Li

)
Ei,m|p + η|

(
Li + Li

)
Ei,m|q)r + δm

)
×sign

((
Li + Li

)
Ei,m

)
For this case, each agent i concatenates the estimation errors in vector Ei,m =[
ε1
i,m, ε

2
i,m, ..., ε

N
i,m

]T
.

Theorem 2.2: [Taoufik et al. 2021b]

For constant positive definite parameters α, η, p, q and r, which satisfy the
constraints rp < 1 and rq > 1, and given that assumptions 2.2.1, 2.4.1 and 2.4.2
are satisfied, the predefined-time observer gains are expressed as

δ1 = ς3ζ
max

κ1
, δ2 = umax1 + ḟmax1

κ2
,

δ3 = 1
κ3
, δ4 = ς3ξ

max
3 ζmax + umax2 + fmax2

κ4

(2.47)

with κim = Nγ(φ)
λmin(Li + Li)Tmp

, κm = min{κ1
m, . . . , κ

N
m} for m = {1, 2, 3, 4}, and

E3 =
{

1 when t > T 1
p + T 2

p + T 4
p

0 otherwise

E4 =
{

1 when t > T 1
p + T 2

p

0 otherwise

(2.48)

where ξmax3 ∈ IR+ is the physical maximum value of the state variable ξi,3 arising
from Assumption 2.4.2 such that |ξi,3| 6 ξmax3 . γ(φ) is defined in equation
(1.18) and Tmp is the settling time which is an user-defined parameter. The mth

dynamics of the agents’ observation errors (2.46) converge to zero in a predefined
time T =

∑4
m=1 T

m
p .

Remark 2.4.3 Note that without loss of generality, the settling time is considered to
be the same for all of the mth dynamics of agents for notational convenience.
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Proof Taking advantage of the structure of the error dynamics (2.46), which their
coupling terms and its input are in the regular form [Loukyanov & Utkin 1981], the
proof of the predefined time-convergence is made in two steps. First, the convergence of
trajectories of subsystem Zi,1 is achieved in a predefined-time T 1

p +T 2
p . Hence, following

the block control principle [Drakunov et al. 1990, Loukianov 2002], the convergence
of subsystem Zi,2 is studied after time T 1

p + T 2
p to circumvent the coupling problems

between the two subsystems.

1. Convergence of Zi,1 This part of the proof consists of showing the
predefined-time stability of Zi,1 in a recursive manner. For that, consider the fol-
lowing Lyapunov function associated with the concatenated second error dynamics of
the agents

V i
2 = 1

N

√
λmin (Li + Li) (Ei,2)T (Li + Li) (Ei,2) . (2.49)

Differentiating (2.49), it follows:

V̇ i
2 = 1

N

√
λmin

(
Li + Li

)
(Ei,2)T (Li + Li) (Ei,2)

(Ei,2)T
(
Li + Li

) (
Ėi,2
)

= 1
N

√
λmin

(
Li + Li

)
(Ei,2)T (Li + Li) (Ei,2)

(Ei,2)T
(
Li + Li

)
×
(
−H

((
Li + Li

)
Ei,2
)

+ 1
(
Ui,1 + ḟi,1

))
.

(2.50)

Let the set Sm =
[
s1
m, . . . , s

N
m

]T
=
(
Li + Li

)
Ei,m. Then, it follows that

V̇ i
2 =

√
λmin (Li + Li)

N

(
− (S2)T H (S2)√

(Ei,1)T (Li + Li) (Ei,2)
+ (Ei,2)T

(
Li + Li

)√
(Ei,2)T (Li + Li) (Ei,2)

×1
(
Ui,1 + ḟi,1

))

=

√
λmin (Li + Li)

N

− 1√
(Ei,2)T (Li + Li) (Ei,2)

∑N
i=1 κ

i
2|si2|

(
α|si2|p + η|si2|q

)r
− δ2√

(Ei,2)T (Li + Li) (Ei,2)

∑N
i=1 κ

i
2|si2|+

(Ei,2)T
(
Li + Li

)√
(S2)T Ei,2

1
(
Ui,1 + ḟi,1

)
=

√
λmin (Li + Li)

N
(−∆1 (S2) + ∆2 (S2)) .

(2.51)

Using Lemma 2.1, and given that
∑N
i=1 κ

i
2 > κ2 and ||S2||1 =

∑N
i=1 |si2|, the
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following inequality from the first term in (2.51) can be deduced:

∆1 (S2) = 1√
(Ei,2)T (Li + Li) (Ei,2)

∑N
i=1 κ

i
2|si2|

(
α|si2|p + η|si2|q

)r
>

κ2N√
(Ei,2)T (Li + Li) (Ei,2)

∑N
i=1

1
N |s

i
2|
(
α|si2|p + η|si2|q

)r
>

κ2N√
(Ei,2)T (Li + Li) (Ei,2)

×
(

1
N ‖S2‖1

) (
α
(

1
N

∑N
i=1 ‖S2‖1

)p
+ η

(
1
N

∑N
i=1 ‖S2‖1

)q)r
(2.52)

Using Lemma 2.2, ‖S2‖1 > ‖S2‖2 =
√
ST2 S2 =

√
(Ei,2)T (Li + Li)2 (Ei,2). Thus,

expressing Ei,2 as a linear combination of the eigenvectors of
(
Li + Li

)
, it follows that

(Ei,2)T
(
Li + Li

)2 (Ei,2) > λmin
(
Li + Li

)
(Ei,2)T

(
Li + Li

)
(Ei,2).

Now, using Lemma 2.3, it yields

−∆1 (S2) 6 −κ2
√
λmin (Li + Li)

(
α
(
V i

2
)p + η

(
V i

2
)q)r

. (2.53)

On the other hand, from the second terms of (2.51) one can conclude that

∆2 (S2) 6 λmin
(
Li + Li

)(
− δ2
‖S2‖1

∑N
i=1 κ

i
2|si2|+

ST2
‖S2‖1

1
(
Ui,1 + ḟi,1

))
6 λmin

(
Li + Li

) (
−κ2δ2 + umax

1 + ḟmax
1

)
6 0

. (2.54)

By combining inequalities (2.53) and (2.54), the following inequality is obtained
from (2.51):

V̇ i
2 6 −κ2

N
λmin

(
Li + Li

) (
α
(
V i

2
)p + η

(
V i

2
)q)r

6 −γ (φ)
T 2
p

(
α
(
V i

2
)p + η

(
V i

2
)q)r

.

(2.55)

Consequently, according to Lemma (1.4), Ei,2 converges towards the origin with
the settling time T 2

p . For t > T 2
p , the dynamics of Ei,1 become

Ėi,1 = −H((Li + Li)Ei,1) + 1ς3ζi.

Setting V i
1 = 1

N

√
λmin (Li + Li) (Ei,1)T (Li + Li) (Ei,1) and following the same

steps of the proof for V i
2 ,

−∆1 (S1) 6 −κ1
√
λmin (Li + Li)

(
α
(
V i

1
)p + η

(
V i

1
)q)r

. (2.56)

Thus ∆2 (S1) 6 λmin
(
Li + Li

)
(−κ1δ1 + ς3ζ

max) 6 0. Hence, as a result, the
dynamics of V i

1 have the form

V̇ i
1 6 −κ1

N
λmin

(
Li + Li

) (
α
(
V i

1
)p + η

(
V i

1
)q)r

6 −γ (φ)
T 1
p

(
α
(
V i

1
)p + η

(
V i

1
)q)r

.

(2.57)
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Similarly to Ei,2, Ei,1 converges to the origin with the settling time T 1
p + T 2

p .

2. Convergence of Zi,2 In order to show the predefined-time stability of Zi,2,
let us consider the following two sub-steps.

• For t > T 1
p + T 2

p , since the dynamics of Ei,1 have converged to 0, i.e., Ei,1 has
reached and remains on the sliding manifold (Ėi,1 = Ei,1 = 0) and E4 = 1, the
chosen gains allow us to get an online estimation of the disturbance expressed as

Υ̂i = E4κ
i
1δ1
ς3

sign
((
Li + Li

)
Ei,1
)

eq (2.58)

where ζ̂ki = ζi when t > T 1
p + T 2

p , the term sign
((
Li + Li

)
Ei,1
)

eq, is a continuous
function which denotes the equivalent value sign function. In practice, this sign
function is usually implemented by a high frequency component with a certain
sampling period which can be cut-off using a low pass filter[Utkin 2013]. The
recovered signal is called the equivalent information injection and equation (2.58)
represents the global disturbance estimation.
The dynamics of Ei,4 are then reduced to

Ėi,4 = −ς3
(
Υ̂i ◦ Ei,3

)
−H

((
Li + Li

)
Ei,4
)

+ 1 (Ui,2 + fi,2) . (2.59)

Considering Assumption 2.4.2, since the input and the fault are physically
bounded, Ei,3 remains bounded for all t ∈

[
T 1
p + T 2

p , T
1
p + T 2

p + T 4
p

]
. Indeed,

Ei,3 only depends on the measured states since X̂i,3 = 0 during this time in-
terval. Hence, |Ei,3| 6 1ξmax

3 . Similarly to the previous step, by setting
V i

4 = 1
N

√
λmin (Li + Li) (Ei,4)T (Li + Li) (Ei,4), one can get

−∆1 (S4) 6 −κ4
√
λmin (Li + Li)

(
α
(
V i

4
)p + η

(
V i

4
)q)r (2.60)

∆2(S4) 6 λmin
(
Li + Li

)
(−κ4δ4 + ς3ξ

max
3 ζmax + umax

2 + fmax
2 ) 6 0. (2.61)

As a result
V̇ i

4 6 −κ4
N
λmin

(
Li + Li

) (
α
(
V i

4
)p + η

(
V i

4
)q)r

6 −γ (φ)
T 4
p

(
α
(
V i

4
)p + η

(
V i

4
)q)r

.
(2.62)

Hence, Ei,4 converges to zero in a predefined-time T 1
p + T 2

p + T 4
p .

• Finally, for t > T 1
p + T 2

p + T 4
p , given that Ėi,1 = Ėi,2 = Ėi,4 = 0 and E3 = 1, the

dynamics of Ei,3 become

Ėi,3 = −H
((
Li + Li

)
Ei,3
)
. (2.63)

By setting V i
3 = 1

N

√
λmin (Li + Li) (Ei,3)T (Li + Li) (Ei,3) and following the same

procedure

−∆1 (S3) 6 −κ3
√
λmin (Li + Li)

(
α
(
V i

3
)p + η

(
V i

3
)q)r (2.64)
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∆2 (S3) 6 −κ3δ3λmin
(
Li + Li

)
6 0 (2.65)

Consequently,

V̇ i
3 6 −γ (φ)

T 3
p

(
α
(
V i

3
)p + η

(
V i

3
)q)r

. (2.66)

Therefore, Ei,3 converges to the origin with the settling time T = T 1
p+T 2

p+T 3
p+T 4

p .
This concludes the proof.

Remark 2.4.4 Similarly to remark 2.3.1 in the previous Section, according to The-
orem 2.2, the predefined-time observer (2.43) guarantees a perfect estimation of the
global system state in the presence of bounded control inputs, uncertainties, and faults
in a predefined-time T . Additionally, the concept of predefined-time stability is instru-
mental in tuning the switching times defined in Eq. (2.48) adequately, independently of
the initial conditions of the system. Furthermore, it ensures the viability of the resid-
ual signals defined in 2.4.2.2, at a given prescribed-time while avoiding the problem of
transient behaviours and avoiding an over-tuning of the switching times.

Remark 2.4.5 Similar remarks as 2.3.2 can be made in this Section for condi-
tions (2.47) in Theorem 2.2 and observers (2.43). Moreover, since global knowl-
edge on the fixed communication topology is known to all agents, the information
λmin

(
Li + Li

)
defined in Theorem 2.2, and therefore, κm = min{κ1

m, . . . , κ
N
m} can

both be computed a-priori. Moreover, if all Tmp are the same, κm = Nγ(φ)
gTp

with
g = max{λmin

(
L1 + L1

)
, . . . , λmin

(
LN + LN

)
}.

Remark 2.4.6 Note that the design of observers for the considered class of MASs,
i.e. nonholonomic systems, due to the dynamics ξ̇i,3 in Eq. (2.40), is far from be-
ing straightforward. Hence, conventional methods developed for linear or quasi linear
systems cannot be easily applied. Here, the idea is to design a switching observer as in-
troduced in Eq. (2.43) with the observer switching components E3 and E4. Indeed, the
dynamics of the ith robot are divided into two coupled subsystems. To solve the coupling
between the two subsystems in Eq. (2.42), we use a switching scheme and fixed-time
stability concepts. The concept of fixed-time stability is very useful to give the switching
times used in Eq. (2.48). Note that due to fixed-time stability, the switching times are
independent of the initial conditions of the system. The proposed distributed observers
give an exact estimate of the global system state in a predefined-time. This ensures the
viability of the residual signals at a given prescribed-time while avoiding the problem of
transient behaviours. At last, it should also be noted that contrary to existing fixed-time
observers such as the one proposed in the previous Section ([Taoufik et al. 2020c]), the
proposed distributed predefined-time observer ensures an estimation of the global state
of the system with a good estimate of the settling time. This enables to avoid an over
tuning of the switching times given in Eq. (2.48) and to reduce the transient behaviour.
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2.4.2.2 Residual Generation and Fault Detection

Since an online estimation of the disturbance has been obtained in (2.58), an observer
generating the residual in the form of (2.41) can be designed by the means of a new
variable. Let us define a new variable χi whose dynamics are explicitly affected by
both faults of the system such that χi = Er (ξi,2 + ξi,4), where Er is the residual
switch introduced since the residuals can only be designed when all of the global state
estimates have converged toward zero i.e.,

Er =
{

1 when t > T

0 otherwise

with T = T 1
p + T 2

p + T 3
p + T 4

p . One can write

χ̇i = ξ̇i,2 + ξ̇i,4 = Ui,1 + Ui,2 + ζi (ς1 sin (ξi,1)− ς2 cos (ξi,1) + ς3ξi,3) +
(
ḟi,1 + fi,2

)
.

(2.67)
The fault detection filter is expressed as

˙̂χki = Ûki,1 + Ûki,2 + ζ̂ki

(
ς1 sin

(
ξ̂ki,1

)
− ς2 cos

(
ξ̂ki,1

)
+ ς3ξ̂

k
i,3

)
+ %

(
χi − χ̂ki

)
(2.68)

and the associated residual signal is defined as

rki = Er
(
χi − χ̂ki

)
(2.69)

where

• Ûki,1 and Ûki,2 are the estimates of the applied control inputs obtained using the
estimate of the global system state,

• % is the residual filter gain.

Proposition 2.1: [Taoufik et al. 2021b]

For all % > 0 and Er = 1, rki is null if fi,r = fi,l = 0 and different from zero if
fi,r 6= 0 or fi,l 6= 0.

Proof The observation error,eki = χi − χ̂ki , dynamics when χ̂ki has converged, i.e.,
Er = 1 are expressed as

ėki = χ̇i − ˙̂χki = Ui,1 + ḟi,1 + Ui,2 + fi,2 + ζi (ς1 sin (ξi,1)− ς2 cos (ξi,1) + ς3ξi,3)
−Uki,1

(
Ψ̂k
i

)
− Uki,2

(
Ψ̂k
i

)
− ζ̂ki

(
ς1 sin

(
ξ̂ki,1

)
− ς2 cos

(
ξ̂ki,1

)
+ ς3ξ̂

k
i,3

)
−%

(
χi − χ̂ki

)
= ḟi,1 + fi,2 − %eki

Thus, the chosen residual rki = Ere
k
i is close to zero if there is no fault, i.e.,

limt→∞ exp (−%t) = 0 and different from zero when a fault occurs. The signal rki is
used to detect a fault on either wheels of the ith robot by the kth robot.

Anass Taoufik Page 73



Chapter 2. Distributed FDI in MASs Subject to Temporal Constraints

Similarly to the previous Section, given Remark 2.4.4, is it obvious that the
residual rki does not exactly equal to zero in the absence of fault. Hence, once the
residual signal is generated, the following RMS evaluation function is chosen

Jki = ‖rki (t)‖RMS =
(

1
Tw

∫ t+Tw

t
||rki (τ)||2dτ

) 1
2

(2.70)

where Tw is the finite-time evaluation window. The inaccuracies due to measurement
noise and sampling, denoted Πk

i , are considered as unstructured unknown inputs. The
observation error dynamics eki = χi − χ̂ki and residuals in a fault-free scenario are
expressed as

ėki = Πk
i − %eki

rki = eki
(2.71)

Given Assumption 2.2.1-2.4.2, Πk
i remains bounded. Let us denote its RMS norm

bound $k
i estimated off-line in the absence of a fault (||Πk

i ||RMS 6 $k
i ). The following

RMS threshold, denoted Jkth
i is then defined

Jkth
i = sup

fi,r=fi,l=0
||Πk

i ||RMS6$k
i

||rki (t))||RMS (2.72)

This corresponds to the tolerant limit for uncertainties, measurement errors, etc..
Based on the evaluation function, one can detect a fault through the following de-
cision logic

Jki > Jkth =⇒ A fault is detected
Jki 6 Jkth =⇒ No fault is detected (2.73)

with Jkth = max{Jkth
1 , . . . , Jkth

N }. The isolation of a faulty agent in the team is thus
achieved when the residual is larger than the defined threshold. In this Section, one
could make the same remarks as 2.3.4.

2.4.3 Simulation Example

Consider a MAS composed of N = 6 robots governed by unicycle-type dynamics
(2.34) labelled by numbers 1 through 6 with ς1 = ς2 = ς3 = 2 and d = 0.2 m. The
communicating among each agent is given according to the fixed topology shown in
Fig. 2.9, and is characterised by the following Laplacian matrix

L(Q) =



2 −1 −1 0 0 0
−1 3 0 −1 −1 0
−1 0 2 0 0 −1
0 −1 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1


Hence, Assumption 2.2.1 is fulfilled.
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Figure 2.9: Communication topology.

The initial positions xi(0), yi(0) and θi(0) of the agents are given as

[x1(0), y1(0), θ1(0)]T = [0, 0, 0]T
[x2(0), y2(0), θ2(0)]T = [−0.5, 0, π]T
[x3(0), y3(0), θ3(0)]T = [0.5, 0, π/4]T
[x4(0), y4(0), θ4(0)]T = [−1, 0, 0]T
[x5(0), y5(0), θ5(0)]T = [1, 0, π/12]T
[x6(0), y6(0), θ6(0)]T = [0,−1, π/2]T

.

For each agent, distributed observers are designed to estimate the global state in
a desired prescribed time T =

∑4
m=1 T

m
p = 4s, with T 1

p = T 2
p = T 3

p = T 4
p = 1s. Given

Remark 2.4.3, this choice allows the observers to converge at the same time, hence
simplifying the residual evaluation process. The sampling period is set as Ts = 10−5s.

In order to check the robustness of the proposed scheme, band-limited white
measurement noise of power 10−8 has been added to all agents. Moreover, additive
band-limited white communication noises of random powers between 10−8 and 10−7

have been added to all edges in the network. This means that transmitted information
between neighbouring agents has been affected by these communication noises. For the
unknown disturbance ζi in (2.34), two types of dynamic perturbations are considered:
a band-limited white noise of power 10−6 for agents 3 and 4, high frequency noise
modelled by ζ1(t) = ζ5(t) = 2 sin(2000t) for agents 1 and 5, and a combination of both
noises for agents 2 and 6.

In the following, two typical fault situations are considered: i) an exponential
signal representing a progressive loss of efficiency in one of the wheels, ii) an out of
control situation simulated by a sine function [De Loza et al. 2015]. They occur in
agents 6 and 5 as follows

f6,l(t) =
{

0 t < 11s,
0.2(e−10(t−11) − 1) t > 11s.

f5,r(t) =
{

0 t < 10s,
−0.2 sin(t− 10) t > 10s;

.
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Here, in order to show the effectiveness of the proposed FDI scheme, the following
consensus control protocol is used [Maghenem et al. 2018], where Ui,1 and Ui,2 are
defined as

Ui,1 = −kw1 ξi,2 − kw2 (ξi,1 − dξi,1)− p(t)
2
(
(ϕ̄(ξi,1)

∑N
j=1 aij(zi − zj))2

+(ϕ(ξi,1)
∑N
j=1 aij(zi − zj))2

) (2.74)

Ui,2 =
∫ ∞

0

[
− kv1vi − kv2ϕ(ξi,1)T

N∑
j=1

aij(zi − zj)
]
dt− ξi,2ξi,3 (2.75)

with ϕ(ξi,1) =
[
cos(ξi,1) sin(ξi,1)

]T
, ϕ̄(ξi,1) =

[
sin(ξi,1) − cos(ξi,1)

]T
and zi =[

xi − dxi yi − dyi

]T
, where dxi = 0.5i, dyi = i and dξi,1 = 0.5 form the desired

coordinates. The consensus errors are defined as ei = ϕ(ξi,1)
∑N
j=1 aij(zi − zj). kv1 ,

kv2 , kw1 and kw2 are the consensus gains chosen as 3, 5, 4 and 6 respectively. p(t) is a
persistently exciting signal chosen as p(t) = 0.1 sin(0.1t), and

yi =
∫

(ξ̇i,4 + ξi,2ξi,3) sin(ξi,1)dt, xi =
∫

(ξ̇i,4 + ξi,2ξi,3) cos(ξi,1)dt

From the proposed predefined-time observer, the inputs (2.74)-(2.75) can be robustly
estimated at each node as follows

Ûki,1 = −kw1 ξ̂ki,2 − kw2 (ξ̂ki,1 − dξi,1)− p(t)
2
(
(ϕ̄(ξ̂ki,1)

∑N
j=1 aij(ẑki − ẑkj ))2

+(ϕ(ξ̂ki,1)
∑N
j=1 aij(ẑki − ẑkj ))2

)
Ûki,2 =

∫∞
0

[
− kv1( ˙̂

ξki,4 + ξ̂ki,2ξ̂
k
i,3)− kv2ϕ(ξ̂ki,1)T

∑N
j=1 aij(ẑki − ẑkj )

]
dt− ξ̂ki,2ξ̂ki,3

ẑki =

( ˙̂
ξki,4 + ξ̂ki,2ξ̂

k
i,3) cos(ξ̂ki,1)− dxi

( ˙̂
ξki,4 + ξ̂ki,2ξ̂

k
i,3) sin(ξ̂ki,1)− dyi


For the estimation of the perturbations, the first-order low pass filters are chosen with
cut-off frequencies of ωc = 1000 r/s. The parameter vector of the observers φ verifying
the conditions in Theorem 2.2 is given as

φ = [α, η, p, q, r]T = [1.5, 3, 0.5, 4, 0.25]T .

Additionally, one can easily check that Assumptions 2.4.1 and 2.4.2 are verified with
umax1 = 2.15, umax2 = 4.75, ζmax = 2.4, ḟmax1 = 1, fmax2 = 1 and ξmax3 = 4.43. Provided
that in this example T 1

p = T 2
p = T 3

p = T 4
p , and from Remark 2.4.5, g = max{λmin(L1 +

L1), . . . , λmin(L6 + L6)} = 0.438, the gains are selected as κ1 = κ2 = κ3 = κ4 = 60.92
and 

δ1 = 0.079
δ2 = 0.052
δ3 = 0.016
δ4 = 0.443
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Figure 2.10: Linear velocities vi(t).

Figure 2.11: Consensus errors.

Figures 2.10 and 2.11 represent the linear velocity and consensus errors respec-
tively, for each agent. The residual filter gains are chosen as 4. Figures 2.12a-2.12c
show the global residual signals generated by the monitoring agents 1, 3 and 6 respec-
tively with respect to the rest of the agents. It is worth noting that these signals are
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(a) (b)

(c)

Figure 2.12: Global residual signals generated by (a) Agent 1, (b) Agent 3, and (c)
Agent 6.

Figure 2.13: Agent 5’s state estimation errors of agent 6 (Ex. 2.4.3).
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Figure 2.14: Agent 6’s state estimation errors of agent 5.

read after the observers converge, the dashed blue vertical lines are added as the cor-
responding delimiters while dashed red lines are added to show the chosen thresholds.
The convergence is achieved after T = 4s as defined previously. One can easily notice
that the residual signals are robust with respect to disturbances and measurement/edge
noises and faults can be distinguished. Figs. 2.13-2.14 show agent 5’s estimation errors
of agent 6 and agent 6’s estimation errors of agent 5.

Remark 2.4.7 It is worthy of mention that the proposed scheme in this Section
presents similar disadvantages as the one proposed in the previous Section, namely
an information exchange at each agent that is equivalent to 4N . As such, similar
remarks as in 2.3.5 could be made here.

2.5 Attack Detection in MASs with Switching Topologies

2.5.1 Preliminaries

In Section 2.3 and 2.4, the considered topology is fixed and safe from any attacks.
In this Section, both switching topologies and cyber-attacks are considered. Before
formulating the problem, let us first modify the topology description as follow:

Topology description: In this Section, it is further assumed from the de-
scription of the graph topology in Section 2.2, that the communication topology is
time-varying. As a result, we denote by T̃ = {τ1, τ2, ..., τM} the set of all possible
known topologies and by M := {1, ...,M} the set of indices corresponding to these
topologies. More precisely, the communication topology is characterised by a switch-
ing graph Qσ(t) = Q(t) where σ(t) : [0,∞) −→ M is a piecewise constant switching
signal and determines the communication topology with 0 = t0 < t1 < t2... being the
switching instants of σ(t). Furthermore, it is assumed that σ(t) satisfies the minimum
dwell time condition [Jadbabaie et al. 2003]. That is, the time interval between any
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consecutive switching instants is larger than or equal to a minimum dwell time, and
tw+1 − tw = τw < Tw with Tw a known constant. Therefore, when σ(t) = s ∈ M,
the topology Q(t) = Qσ(t) = Qs is activated. In this Section, all modes of Qs satisfy
Assumption 2.2.1.

For the remainder of this Section, the active mode is referred to using the super-
script s. The adjacency matrix As = [as

ij ] ∈ IRN×N is defined by as
ij > 0 when the ith

agent can receive information from the jth agent and as
ij = 0 otherwise. Let Ds be the

in-degree diagonal matrix with entries ds
i =

∑N
j=1 a

s
ij . Hence, the Laplacian matrix Ls

is defined as:
Ls = Ds −As ∈ IRN×N

Similarly to Section 2.2, for a given active mode, let us denote by Ls
i ∈

IR(N−1)×(N−1) the Laplacian matrix Ls defined without agent i, and by:

Li,s = diag(`i,s1 , . . . , `
i,s
i−1, `

i,s
i+1, . . . , `

i,s
N ) ∈ IR(N−1)×(N−1)

the associated diagonal matrix defining the interconnections between agent i and the
remaining agents under the active topology s, `i,sk > 0 if information of agent i is
accessible by the kth agent; otherwise `i,sk = 0.

2.5.2 Problem Formulation

Consider a homogeneous MAS composed of N agents labelled by i ∈ {1, ..., N}, and de-
scribed by the following nth-order dynamics

ξ̇i,1(t) = ξi,2(t)
ξ̇i,2(t) = ξi,3(t)
...
ξ̇i,n−1(t) = ξi,n(t)
ξ̇i,n(t) = ui(t) + fai (t)
zi(t) = ξi,1(t)

(2.76)

where ξi,m(t) ∈ IR is agent i’s mth state variable with ξi(t) = [ξi,1(t), ξi,2(t), ..., ξi,n(t)]T
∈ IRn, fai (t) ∈ IR is an actuator fault affecting the dynamics of the agent which could
be exogenous, ui(t) ∈ IR is the control input and zi(t) ∈ IR is the agent i’s internal
measurement. Note that there is a multitude of practical applications of such systems,
namely robotic systems, power systems, etc. Research on cyber-attack identification
for such systems is of both practical and theoretical significance.

Furthermore, it is considered that agents have access to their own control inputs,
but they do not receive their neighbours’ inputs. If needed, they have to reconstruct
them using state estimates from exchanged information which are possibly corrupted.
The exchanged information is expressed as{

zki(t) = `i,sk (zi(t) + f̌eki(t)),
ẑkji (t) = as

kj(ẑ
j
i (t) + fekj(t))

(2.77)
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where zki(t) ∈ IR is the agent i’s output signal sent to the agent k with zkk(t) = zk(t),
and ẑkji (t) ∈ IR is agent j’s estimate of agent i’s output which is sent to agent k,
the term ẑji (t) will be defined in the Subsection 2.5.3. Both pieces of information are
subject to an edge attack denoted f̌eki(t) ∈ IR and fekj(t) ∈ IR, respectively. Note that,
these attacks affect all broadcasted information of an agent to another. In this section,
a solution to the following questions is investigated:

• How can one detect a cyber-attack anywhere in the MAS, where each agent can
only measure the first state variable, while keeping a distributed approach of the
FDI scheme?

• How can one distinguish said attacks from actuator fault? i.e., how can one
identify a cyber-attack?

The conceptual idea in this work is that information locally produced by the
sensors is considered to be secure, while the one sent over the communication net-
work/cyber layer of the system is vulnerable to external attacks. Fig. 2.15 depicts the
structure of the scheme proposed in this Section. The main result is laid out in the
Subsection 2.5.3.

Remark 2.5.1 It is worth noting that the proposed scheme here only requires the
exchange of the output and their global estimates which is equivalent to N for each
agent, hence resulting in less information exchange as [Wu et al. 2019] or [Taoufik
et al. 2020c] for instance.

Figure 2.15: Proposed fault/attack detection scheme, where Ls refers to the switching
topology described in Subsection 2.5.1 and Es

q is defined in 2.3.
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2.5.3 Main Result

Herein, the proposed distributed bank of predefined-time observers for output, state
estimation and global cyber-attack detection scheme is laid out.

2.5.3.1 Global Output and State Estimation

Let us define the ’monitored’ agent i as the agent to be diagnosed by a ‘monitoring’
agent k. First, let us consider the case of a fixed communication topology, where no
cyber-attack exists in the system (i.e., f̌eki = fekj = 0). Denote by ξ̂ki,m, agent k’s
estimate of the mth state variable of agent i and by ẑki , agent k’s estimate of agent i’s
output. The proposed distributed switched observer takes the following structure:

˙̂
ξki,1 = ξ̂ki,2 + V(Iki,1) = ẑki
...
˙̂
ξki,n−1 = ξ̂ki,n + Es

n−2V(Iki,n−1)
˙̂
ξki,n = Es

n−1V(Iki,n)

(2.78)

with V(Iki,l) = κk,sl
(
(α|Iki,l|p + η|Iki,l|q)r + δs

l

)
sign(Iki,l),{

Iki,1 =
∑N
j=1 a

s
kj(ẑ

kj
i − ẑki ) + `i,sk (zki − ẑki )

Iki,m = ξ̃ki,m − ξ̂ki,m, m ∈ {2, ..., n}
(2.79)

and the variables Es
q, ∀q ∈ {1, ..., n− 1} are defined later.

The auxiliary state variables ξ̃ki,m, ∀m ∈ {2, ..., n} are defined as
ξ̃ki,2 = ξ̂ki,2 + Es

1κ
k,s
1 δs

1sign(Iki,1)eq
...
ξ̃ki,n−1 = ξ̂ki,n−1 + Es

n−2κ
k,s
n−2δ

s
n−2sign(Iki,n−2)eq

ξ̃ki,n = ξ̂ki,n + Es
n−1κ

k,s
n−1δ

s
n−1sign(Iki,n−1)eq

(2.80)

where the subscript eq denotes the equivalent value of sign function. In the following,
it is assumed that the effect of the filter dynamics is negligible w.r.t. those of the
observer. Let us define the errors as{

εki,1 = zki − ẑki
εki,m = ξi,m − ξ̂ki,m, ∀m ∈ {2, ..., n}

Differentiating them yields the following error dynamics:

ε̇ki,1 = εki,2 − κ
k,s
1
(
(α|Iki,1|p + η|Iki,1|q)r + δs

1
)
sign(Iki,1)

...
ε̇ki,n−1 = εki,n − Es

n−2κ
k,s
n−1

(
(α|Iki,n−1|p + η|Iki,n−1|q)r

+δs
n−1

)
sign(Iki,n−1)

ε̇ki,n = ui + fai − Es
n−1κ

k,s
n

(
(α|Iki,n|p + η|Iki,n|q)r + δs

n

)
sign(Iki,n)

(2.81)
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where Iki,1 can be expressed in terms of the output estimation errors as Iki,1 =∑N
j=1 a

s
kj(ε

j
i,1 − εki,1) + `i,sk ε

k
i,1. Putting (2.81) in compact form, the following is ob-

tained: 
Ėi,1 = Ei,2 −H(Ei,1)
...
Ėi,n−1 = Ei,n − Es

n−2H(Ei,n−1)
Ėi,n = 1(ui + fai )− Es

n−1H(Ei,n)

(2.82)

where for each agent ∀i ∈ {1, ..., N} and ∀l ∈ {1, ..., n}, the estimation errors,
the state estimates and the auxiliary variables are concatenated in the vectors: Ei,l =
[ε1
i,l, ..., ε

N
i,l]T , X̂i,l = [ξ̂1

i,l, ..., ξ̂
N
i,l]T , X̃i,l = [ξ̃1

i,l, ..., ξ̃
N
i,l]T . Let us denote Ls

i = Li,s + Ls
i.

The terms H(Ei,l),∀l ∈ {1, ..., n} are expressed as

{
H(Ei,1) = κi,s1

(
(α|Ls

iEi,1|p + η|Ls
iEi,1|q)k + δs

1
)
sign(Ls

iEi,1)
H(Ei,m) = κi,sm

(
(α|Ei,m|p + η|Ei,m|q)k + δs

m

)
sign(Ei,m), ∀m ∈ {2, ..., n}

Assumption 2.5.1 For every agent, the state variables, the control and fault signals
are bounded, and their maximum values are known, i.e., for ξ̄i,l, ū, f̄a ∈ IR+, i ∈
{1, ..., N} and l ∈ {1, ..., n}: |ξi,l(t)| 6 ξ̄i,l, |ui(t)| 6 ū, |fai (t)| 6 f̄a.

Theorem 2.3: [Taoufik et al. 2020b]

For constant positive definite parameters α, η, p, q and r, which satisfy the
constraints rp < 1 and rq > 1, and given Assumption 2.5.1, for a fixed commu-
nication topology and in the absence of cyber-attack, for each agent, the obser-
vation errors (2.82) converge towards zero in a predefined time T s =

∑n−1
j=1 T

j,s
p

independently of initial conditions, with the observer gains:
δs
q = ξ̄i,q+1

κs
q

, ∀q ∈ {1, ..., n− 1}

δs
n = ū+ f̄a

κn

(2.83)

with 
κi,s1 = Nγ(φ)

λs
iT

1,s
p

κi,sm = Nγ(φ)
Tm,sp

, ∀m ∈ {2, ..., n}

and
Es
q =

{
1 when t >

∑q
j=1 T

j,s
p

0 otherwise , ∀q ∈ {1, ..., n− 1}

where κs
m = min{κ1,s

m , . . . , κN,sm } and λmin(Ls
i) = λs

i. γ(φ) is defined in Equa-
tion (1.18), Es

m represents the observer switches and Tm,sp is the settling-time
for each dynamic which is an user-defined parameter, considered to be the same
for all of the mth dynamics of the agents for notational convenience.
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Proof The proof is done step by step by taking advantage of the switching conditions.
Indeed, due to this, at each step, only a one-dimensional, corresponding sub-dynamical
system is studied.

Step 1: Initially, Es
1 = Es

2 = ... = 0, the error dynamics are expressed as
Ėi,1 = Ei,2 −H(Ei,1)
...
Ėi,n−1 = Ei,n
Ėi,n = 1(fai + ui)

(2.84)

Consider the following Lyapunov function associated with the concatenated first
error dynamics of the agents

V i
1 = 1

N

√
λs
iETi,1Ls

iEi,1

Differentiating it results in

V̇ i
1 = 1

N

√√√√ λs
i

ETi,1Ls
iE i,1
ETi,1Ls

i(Ei,2 −H(Ei,1)) (2.85)

By setting S1 = [s1
1, . . . , s

N
1 ]T = Ls

iEi,1, one obtains

V̇ i
1 =

√
λs
i

N

(
− 1√

ETi,1Ls
iEi,1

∑N
i=1 κ

i,s
1 |si1|(α|si1|p + η|si1|q)r

− δs
1√

ETi,1Ls
iEi,1

∑N
i=1 κ

i,s
1 |si1|+

ETi,1Ls
iEi,2√

ST1 Ei,1

) (2.86)

Then, it follows that

V̇ i
1 =

√
λs
i

N
(−∆1(S1) + ∆2(S1))

with {
∆1(S1) = (ETi,1Ls

iEi,1)−
1
2
∑N
i=1 κ

i,s
1 |si1|(α|si1|p + η|si1|q)r

∆2(S1) = −δs
1(ETi,1Ls

iEi,1)−
1
2
∑N
i=1 κ

i,s
1 |si1|+ ETi,1Ls

iEi,2(ST1 Ei,1)−
1
2

Considering Lemma 2.1, and taking into account the fact that
∑N
i=1 κ

i,s
1 > κs

1
and ||S1||1 =

∑N
i=1 |si1|, the term ∆1(S1) can be expressed as

∆1(S1) > κs
1||S1||1√
ETi,1Ls

iEi,1
(α( 1

N

∑N
i=1 ||S1||1)p + η( 1

N

∑N
i=1 ||S1||1)q)r (2.87)
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Using Lemma 2.2, it can be shown that

||S1||1 > ||S1||2 = (S1)T (S1) =
√

(Ei,1)T (Ls
i)2(Ei,1) (2.88)

By expressing Ei,1 as a linear combination of the eigenvectors of Ls
i, the term

ETi,1(Ls
i)2Ei,1 can be bounded as

ETi,1(Ls
i)2Ei,1 > λs

iETi,1Ls
iEi,1

Thus, using Lemma 2.3, one has

−∆1(S1) 6 −κs
1
√
λs
i

(
α(V i

1 )p + η(V i
1 )q
)r (2.89)

On the other hand, from the second term ∆2(S1), the following can be deduced

∆2(S1) 6 λs
i

(
− δs

1
||S1||

∑N
i=1 κ

i,s
1 |si1|+

(S1)T

||S1||
(Ei,2)

)
6 λs

i(−κs
1δ

s
1 + ξ̄i,2)

6 0

(2.90)

By combining (2.89) and (2.90), the following is obtained from (2.86)

V̇ i
1 6 −κ

s
1
N
λs
i

(
α(V i

1 )p + η(V i
1 )q
)r

6 −γ(φ)
T 1,s
p

(
α(V i

1 )p + η(V i
1 )q
)r (2.91)

Therefore, in accordance with Lemma 1.19, Ei,1 converges towards the origin with
the settling time T 1,s

p (i.e., Ei,1 = Ėi,1 = 0). As a result, at t = T 1,s
p (Es

1 = 1), we have

Ei,2 −H(Ei,1)eq = Xi,2 − X̂i,2 −H(Ei,1)eq
= 0 (2.92)

Hence, one gets X̃i,2 = Xi,2. At this point, one can go to the next step.

Step 2: At t = T 1,s
p , the error dynamics become


Ėi,2 = Ei,3 −H(Ei,2)
...
Ėi,n−1 = Ei,n
Ėi,n = 1(fai + ui)

(2.93)
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Selecting the Lyapunov function V i
2 = 1

N

√
ETi,2Ei,2 and by following the same

reasoning as before, one gets

−∆1(S2) 6 −κs
2
(
α(V i

2 )p + η(V i
2 )q
)r

∆2(S2) 6 − δs
2

||S2||
∑N
i=1 κ

i,s
2 |si2|+

(S2)T (Ei,3)
||S2||

6 −κs
2δ

s
2 + ξ̄i,3

6 0

(2.94)

with S2 = [s1
2, . . . , s

N
2 ]T = Ei,2. Then, it is straightforward to show that

V̇ i
2 6 −γ(φ)

T 2,s
p

(
α(V i

2 )p + η(V i
2 )q
)r

Consequently, Ei,2 converges towards the origin with the settling time T 1,s
p + T 2,s

p (i.e.,
Ei,2 = Ėi,2 = 0). Therefore, at t = T 1,s

p + T 2,s
p and Es

2 = 1.

Step n: Now, fast forward to the nth step, at t =
∑n−1
j=1 T

j,s
p , the error dynamics

become
Ėi,n = 1(fai + ui)−H(Ei,n) (2.95)

Taking as the Lyapunov function V i
n = 1

N

√
(Ei,n)T (Ei,n) and by setting Sn =

[s1
n, . . . , s

N
n ]T = Ei,n, and following the same procedure as before, the following in-

equalities are obtained for the terms ∆1(Sn) and ∆2(Sn)

−∆1(Sn) 6 −κs
n

(
α(V i

n)p + η(V i
n)q
)r

∆2(S2) 6 − δs
n

||Sn||
∑N
i=1 κ

i,s
n |sin|+

(Sn)T1(ū+ f̄a)
||Sn||

6 −κs
nδ

s
n + ū+ f̄a

6 0

(2.96)

The proof is thus concluded at the nth step.

Now, let us consider the presence of a possible cyber-attack in the network. Due to
the presence of these attacks, the output estimation errors is expressed as

εki,1 = zi − ẑki + `i,sk f̌
e
ki +

∑N
j=1 a

s
kjf

e
kj (2.97)

Assumption 2.5.2 It is assumed that ∀i, j ∈ {1, .., N}, i 6= j, f̌eki(t), fekj(t) and their
derivatives are bounded.

In this case, the following theorem can be stated.
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Theorem 2.4: [Taoufik et al. 2020b]

For constant positive definite parameters α, η, p, q and r, which satisfy the con-
straints rp < 1 and rq > 1, given Assumptions 2.5.1-2.5.2 and in the presence
of one or multiple cyber attacks incident to agent k, in the case of fixed commu-
nication topology, the observation errors converge towards zero in a predefined
time T s =

∑n−1
j=1 T

j,s
p independently of initial conditions, and the gains are given

as 
δs
q = ξ̄i,q+1 + F̄ s(q)

k

κs
q

, ∀q ∈ {1, ..., n− 1}

δs
n = ū+ f̄a + F̄ s(n)

k

κs
n

(2.98)

with

F s(l)
k = dl

dtl
(`i,sk f̌

e
ki +

N∑
j=1

as
kjf

e
kj), ∀l ∈ {1, ..., n}

where F s(l)
k corresponds to the lth time derivative of F s

k = `i,sk f̌
e
ki +

∑N
j=1 a

s
kjf

e
kj

and F̄ s(l)
k is the corresponding upper bound. The gains κi,sl and the observer

switches Es
m remain the same as in Theorem 2.3.

Proof When cyber-attacks are considered, (2.79) becomes
Iki,1 =

∑N
j=1 a

s
kj(ẑ

j
i − ẑki ) + `i,sk (zi − ẑki )

+
∑N
j=1 a

s
kjf

e
kj + `i,sk f̌

e
ki,

Iki,m = ξ̃ki,m − ξ̂ki,m, m ∈ {2, ..., n}
(2.99)

Furthermore, the auxiliary variables (2.80) become

ξ̃ki,2 = ξ̂ki,2 + Es
1V(Iki,1)eq = ξ̂ki,2 + εki,2 − `

i,s
k

˙̌
feki

−
∑N
j=1 a

s
kj ḟ

e
kj

...
ξ̃ki,n = ξ̂ki,n + Es

n−1V(Iki,n−1)eq = ξ̂ki,n + εki,n
−`i,sk f̌e

(n−1)
ki −

∑N
j=1 a

s
kjf

e(n−1)
kj

(2.100)

and the concatenated errors are expressed as
Ėi,1 = Ei,2 + 1F s(1)

k −H(Ei,1)
...
Ėi,n−1 = Ei,n + 1F s(n−1)

k − Es
n−2H(Ei,n−1)

Ėi,n = 1(ui + fai + F s(n)
k )− Es

n−1H(Ei,n)

(2.101)

The rest of the proof straightforwardly follows the same reasoning as Theorem
2.3 and is thus omitted for brevity.
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Note that the use of the predefined-time concept is very useful when dealing with
switching topologies. Indeed, using our proposed scheme, one can immediately derive
the following proposition:

Proposition 2.2: [Taoufik et al. 2020b]

Consider the switching topologies described in Subsection 2.5.2. Selecting T s

such that T s < Tw, ∀s ∈ M and observer parameters (2.98), the distributed
switched observers guarantee the predefined-time stability of the estimation er-
rors regardless of initial conditions at each switching instant.

Similarly to Section 2.5.2, the following remark could be made:

Remark 2.5.2 The global fault estimation protocol proposed in this Section, is a dis-
tributed one. Each neighbouring agent can only exchange local information during the
fault estimation process. Furthermore, provided that all of the possible topologies are
known to all agents, constants λs

i and therefore κs
1 = min{κ1,s

1 , . . . , κN,s1 } can be com-
puted a priori. If all Tm,sp are the same (i.e., T 1,s

p = . . . = Tn,sp = Tp), κs
1 = Nγ(φ)

gTp
with

g = max{λs
1, . . . , λ

s
N}.

2.5.3.2 Residual Generation and Cyber-Attack Identification

The idea is to compute the difference between the actual input of an agent and the
estimated input. The difference should indeed be null in the case of no attacks or faults.
The next step is to identify the source and type of faults, specifically deception attacks
and thus trigger the appropriate alarms. Note that, for Theorems 2.3 and 2.4, the upper
bounds of the control inputs are used in Assumption 2.5.1 to design the predefined-
time distributed observers. It is shown herein, through a residual based approach
how one can detect actuator faults or cyber-attacks with a global approach using
input estimates if the control structure is known. In the following, let us consider the
following typical linear higher-order consensus control algorithm [Ren et al. 2007, Ren
& Atkins 2007], used with the available information

ui = −
∑
j∈Ni

as
ij

[
γs

1(zi − zij) +
n∑

m=2
γs
m(ξ̃ii,m − ξ̃ij,m)

]
+ µs

i ξ̃
i
i,n (2.102)

where ∀l ∈ {1, ..., n} , ∀i ∈ {1, ..., N} , γs
l and µs

i are the consensus gains. It can be
noticed that communication faults spread in the MAS through ui, and thus need to be
detected as they occur. In the absence of edge faults, consensus is achieved provided
a suitable selection of µs

i, γs
1 and γs

m due to the fixed-time stability property of the
proposed distributed observers [Jiang & Wang 2010].
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Proposition 2.3: [Taoufik et al. 2020b]

Define agent k as the monitoring agent, agent i as the monitored agent,
agents p ∈ Nk as agent k’s neighbours and agents j ∈ Ni as agent i’s neighbours,
where agent i may or may not be a direct neighbour of k and j 6= i. Using pro-
tocol (2.102), an agent k can detect a cyber-attack on a communication link
incident to agent k or i and local faults fai anywhere in the fleet, provided one
anomaly type happens, using the following residual signal:

rki (t) = V(Iki,n)eq − ûki (2.103)

where
ûki = −

∑
j∈Ni

as
ij [γs

1(ẑki − ẑkj ) +
n∑

m=2
γs
m(ξ̃ki,m − ξ̃kj,m)] + µs

i ξ̃
k
i,n

is agent i’s reconstructed input by agent k with ûkk = uk.

Proof After the convergence of errors, the actual applied control input for each
agent becomes

ui = −
∑
j∈Ni

as
ij

[
γs

1(zi − zj) +
∑n
m=2 γ

s
m(ξi,m − ξj,m)

]
+µs

iξi,n −
∑
j∈Ni

as
ij(γs

1f̌
e
ij +

∑n
m=2 γ

s
mf̌

e(m−1)
ij )

Furthermore, the reconstructed input generated by the monitoring agent k is
expressed as

ûki = −
∑
j∈Ni

as
ij

[
γs

1(zi − zj) +
∑n
m=2 γ

s
m(ξi,m − ξj,m)

]
+µs

iξi,n −
∑
j∈Ni

γs
1a

s
ij

[
`i,sk f̌

e
ki − `

j,s
k f̌

e
kj +

∑
p∈Nk

as
kpf

e
kp

−
∑
p∈Nk

as
kpf

e
kp

]
+
∑
j∈Ni

∑n
m=2 a

s
ijγ

s
m

[
`i,sk f̌

e(m−1)
ki

+`j,sk f̌e
(m−1)
kj

]
+ µs

i

[
`i,sk f̌

e(n−1)
ki +

∑
p∈Nk

as
kpf

e(n−1)
kp

]

Therefore, the residual signals (2.103) become

rki (t) = (ui − ûki ) + fai − `
i,s
k f̌

e(n)
ki −

∑
p∈Nk

as
kpf

e(n)
kp

= Θk
fe + fai

(2.104)

where Θk
fe is

Θk
fe =

∑
j∈Ni

γs
1a

s
ij

[
`i,sk f̌

e
ki − `

j,s
k f̌

e
kj +

∑
p∈Nk

as
kpf

e
kp −

∑
p∈Nk

as
kpf

e
kp

]
−
∑
j∈Ni

∑n
m=2 a

s
ijγ

s
m

[
`i,sk f̌

e(m−1)
ki + `j,sk f̌

e(m−1)
kj

]
− µs

i

[
`i,sk f̌

e(n−1)
ki

+
∑
p∈Nk

as
kpf

e(n−1)
kp

]
−
∑
j∈Ni

as
ij(γs

1f̌
e
ij +

∑n
m=2 γ

s
mf̌

e(m−1)
ij )

−`i,sk f̌e
(n)
ki −

∑
p∈Nk

as
kpf

e(n)
kp

(2.105)
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Note that, when the control efforts ui are known to other agents in the network,
the term (ui − ûki ) in Equation (2.104) disappears. In this case, the residual signals
become

rki (t) = fai − `
i,s
k f̌

e(n)
ki −

∑
p∈Nk

as
kpf

e(n)
kp

= Θk
fe + fai

(2.106)

where Θk
fe = −`i,sk f̌e

(n)
ki −

∑
p∈Nk

as
kpf

e(n)
kp . As a result, the defined residual signals

(2.103) generated by the monitoring agent k are able to detect the presence of a cyber-
attack or an actuator fault and distinguish as per Proposition 2.3.

Residual Evaluation and Decision Logic:

Once the residual signals are generated, it is important to be able to interpret them
in order to find the root of the fault and thus make corrective measures accordingly.
Indeed, from Equation (2.103), it can be noticed that, when a cyber-attack incident
to agent k or i occurs while there is no local malfunction, agent k’s generated residual
signal for itself is rkk = 0 and rki 6= 0 for all k 6= i regardless of whether or not agent i
is a neighbour of k. On the other hand, when there is no cyber-attack, the residuals
provide explicit estimations of the local faults, with rkk = fak and rki = fai . rkk is thus
used to identify a cyber-attack in the system as it is only sensitive to local faults.
The proposed cyber-attack identification scheme is thus summarized in Algorithm 1.

Algorithm 1 Observer Design and Decision Logic
Result: Distributed Cyber-attack Identification
while communication topology s is active do

Choose observer convergence time T s in accordance with Proposition 2.2
Define Laplacian sub-matrices Ls

i and Li,s
Compute observer gains from Theorems 2.3–2.4
Define a monitoring agent k
for q ∈ {1, 2, ..., N} do

Generate residual signals rkq from Equation (2.103)
end
if rkk = 0 and rki = 0 then

No cyber-attack or local faults exist in the network
else if rkk = 0 and rki 6= 0, ∀i 6= k then

A cyber-attack has occurred in the network
else if rkk 6= 0 and rki = 0 then

An actuator fault has occurred in agent k
else if rkk = 0 and ∃!i 6= k such that rki 6= 0 then

An actuator fault has occurred in agent i
end

end

Remark 2.5.3 Note that our approach does not present limitation with respect to the
number of detectable attacks in the system, contrary to some existing works, for in-
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stance in [Teixeira et al. 2010]. Indeed, Proposition 2.3 can be used to detect simultane-
ous actuator faults and cyber-attacks, and discern them from each other thus achieving
the cyber-attack identification objective. Moreover, the predefined-time stability prin-
ciple is useful to design fast converging switched observers to solve the problem of
switching communication topologies as pointed out in Proposition 2.2. This allows for
avoiding false alarms and achieving fast convergence of the estimation errors before the
next topology switching instant. Furthermore, it is worth mentioning that the proposed
approach in this Section, can also be used when communication attacks on the com-
munication weights as

ij or sudden abrupt quality drops in the exchanged information
occur. These attacks manifest themselves in the generated residuals as exponentially
decaying signals.

Remark 2.5.4 It is worth noting that the proposed scheme here only requires the
exchange of the output and their global estimates which is equivalent to N for each
agent, hence resulting in less information exchange as [Wu et al. 2019] or [Taoufik
et al. 2020c] for instance.

2.5.4 Simulation Example

Cyber-attack identification in cooperative MRSs.

Here, an illustrative numerical example is given in order to show the effectiveness of
the proposed global cyber-attack identification protocol. For this, let us consider a
team of N = 5 WMRs that are labelled with numbers 1 through 5 and are moving
in a two-dimensional plane (see Figure 2.16). In this example, the robots have to
cooperate in order to render the steady state axial jerk null and thus achieve constant
linear position, velocity and acceleration synchronization of the network of WMRs.

Here, we assume non-slipping and pure rolling conditions and since our aim is to
achieve linear acceleration synchronization, only the dynamics along the x-direction
are considered. In this case, each robot can be modelled with the following simplified
triple integrator dynamics which is a special case of system (2.76):

ẋi(t) = ξ̇i,1(t) = ξi,2(t)
v̇i(t) = ξ̇i,2(t) = ξi,3(t)
ȧi(t) = ξ̇i,3(t) = ui(t) + fai (t)
zi(t) = ξi,1(t)

where ξi,1(t), ξi,2(t), ξi,3(t) and fai (t) are the x-position, the linear velocity on the
x-axis, the linear acceleration on the x-axis and an internal fault affecting the local
jerk of a robot. The proposed residual observer-based cyber-attack identification algo-
rithm can be implemented on the on-board micro-controllers as depicted in Figure 2.16.
Furthermore, the robots are assumed to be equipped with WiFi modules and broad-
cast their information through a wireless network described by the graph topologies
illustrated in Figure 2.17, which are characterised by the Laplacian matrices:
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(a) (b)

Figure 2.16: The setup of the studied problem where: (a) represents the upper per-
spective view of a WMR on the x-y 2D plane and (b) represents an illustration of the
set-up of the five mobile robots.

L1 =


3 −1 −1 0 −1
−1 2 0 −1 0
−1 0 1 0 0
0 −1 0 1 0
−1 0 0 0 1

 and L2 =


3 −1 0 −1 −1
−1 2 −1 0 0
0 −1 1 0 0
−1 0 0 1 0
−1 0 0 0 1


The communication topology is assumed to switch from L1 to L2 at t1 = 12 s. In this
example, in order to achieve state consensus (i.e., position, velocity and acceleration
consensus). The following cooperative control is used for each robot

ui = ari (t) + µs
i ξ̃
i
i,3 −

∑5
j=1 a

s
ij

[
γs

1(z1 − zij)− γs
2(ξ̃ii,2 − ξ̃ij,2)− γs

3(ξ̃ii,3 − ξ̃ij,3)
]

where ∀i ∈ {1, ..., N}, µs
i, γs

1, γs
2 and γs

3 are the consensus gains set to 5, 4, 3, and, 2.5,
respectively, for both possible communication topology modes s ∈ {1, 2}, and ari (t) =
1ms−2 is the reference acceleration. Hence, ∀s ∈ {1, 2}, the exchanged signals between
agents are given as

zki(t) = `i,sk (zi(t) + f̌eki(t) + ∆zki(t))

and

ẑkji (t) = as
kj(ẑ

j
i (t) + fekj(t) + ∆ẑkji (t))

where ∆zki(t) = 0.1 sin(zki(t)), and ∆ẑkji (t) = 0.01 sin(ẑkji (t)) are noise due to some
communication uncertainties.
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(a) (b)

Figure 2.17: The corresponding topology graphs, where: (a) corresponds to L1 for
t < 12 s and (b) to L2 for t > 12 s.

The initial positions of the five agents on the x-axis are given as ξ1,1(0) = 0 m,
ξ2,1(0) = 1.5 m, ξ3,1(0) = 3 m, ξ4,1(0) = 4.5 m and ξ5,1(0) = 0.5 m respectively. The
initial velocities and acceleration are set to 0. For each of the mobile robots, the dis-
tributed observers are designed to estimate the global state in the desired predefined
time T 1 = T 2 = 3 s with T 1,1

p = T 2,1
p = T 3,1

p = T 1,2
p = T 2,2

p = T 3,2
p = 1 s which satisfies

the conditions set out in Proposition 2.2. It is worth mentioning that this choice allows
the observers to converge at the same time, hence simplifying the residual evaluation
process. The observer parameters are chosen as

φ = [α, η, p, q, r]T = [1, 2, 1.5, 3, 0.5]T

used for each corresponding topology satisfying the conditions in Theorems 2.3–2.4.
On the other hand, to obtain the equivalent values, first-order low pass filters are used
with cut-off frequency of 100 s−1 for the first, second and third dynamics. In order to
verify the performance of the proposed scheme, the following two simulation scenarios
are carried out on MATLAB. The sampling period is set as Ts = 10−5s.

First Scenario: In the 1st scenario, a fault occurs in robot 3 causing an out of
control situation that affects its local jerk simulated by the following function fa3 (t):

fa3 (t) =


0 t < 4s
0.5 sin(5t) + 15 5s 6 t 6 8.5s
0 t > 8.5s

This fault only represents a local malfunction in the robot 3 and thus needs
to be distinguished from a cyber-attack. It can be clearly seen from Figure 2.18
corresponding to the 1st scenario that the residuals generated by the monitoring agents
for the monitored agent 3, i.e., r1

3, r2
3, r4

3 and r4
3 respectively, provide an explicit

estimation of fa3 .

Second Scenario: In the 2nd scenario, a FDIA occurs in information exchanges
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(a) (b)

(c) (d)

Figure 2.18: Residuals in scenario 1 by agents 1, 2, 4, and 5, shown in sub-figures
(a), (b), (c) and (d) respectively. The vertical dashed blue line represents the conver-
gence time.

flowing from robots 1 to 2 at t = T e = 10 s, for the first topology such that

f̌e12(t) = fe12(t) =
{

0 t < 10 s
100(1− e1−0.1t) t > 10 s

Note that the topology switches at t1 = 13 s and f̌e12(t) = fe12(t) remains throughout the
topology change (see Figure 2.17). Therefore, the gains are computed from Theorem
2.4 and Remark 2.5.2 as

κ1
1 = 56.98
κ1

2 = 24.98
κ1

3 = 24.98
δ1

1 = 0.35
δ1

2 = 1.2
δ1

3 = 1.5

and

κ2
1 = 58.92
κ2

2 = 24.98
κ2

3 = 19.98
δ2

1 = 0.33
δ2

2 = 1.2
δ2

3 = 1.5

It should be recalled that these gains are valid for both scenarios. Figure 2.19 cor-
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responding to the 2nd scenario shows that a cyber-attack in the form of the simulated
functions f̌e12(t) and fe12(t), incident to agent 1 in both topologies, can be distinguished
even in the presence of some reasonable communication noise. Indeed, the residual
signals r1

1, r2
2, r3

3, r4
4 and r5

5 stay around 0 after the cyber-attack appears in the system
and throughout the topology change.

Consequently, according to Proposition 2.3, one can distinguish and identify a
cyber-attack in the networked MAS.

Remark 2.5.5 It should be noted that the proposed scheme in this Section is able to
detect multiple occurring actuator faults and isolate them. It can also detect the occur-
rence of at least one attack in the MAS but is not capable of isolating it. Furthermore,
as mentioned in Proposition 2.3, the identification process can only be carried out if
one type of anomaly (either fault or attack) occurs at a time. As for the number of
monitoring agents, similar remarks as 2.3.5 can be observed.

2.6 Conclusions

In this Chapter, the problem of robust global distributed FDI is solved for: higher or-
der linear connected MASs with unknown disturbances, connected MASs with chained
form dynamics and higher order integrator connected MASs subject to cyber-attacks
under switching topologies in Sections 2.3, 2.4 and 2.5 respectively. The proposed
schemes use cascades of distributed SMOs and the fixed-time stability properties,
whereby each agent gives an exact estimate of the global system state and the ob-
server gains are designed through a prescribed time without any a-priori information
on the initial conditions of the system. As such, through residual based approaches,
any agent/node acts as a monitoring unit to the whole system behaviour and can de-
tect simultaneous faults anywhere in the MAS. In Section 2.5, the previous results
are extended to connected MASs with switching topologies subject to communication
attacks where a novel distributed cyber-attack identification scheme was proposed.
The proposed algorithms act as filters and are thus robust to both measurement noise,
communication noise and dynamics disturbances. Illustrative numerical examples are
given in Sections 2.3-2.5 to show the efficacy of the proposed schemes.

On the other hand, one could note that the schemes proposed in this Chapter
only consider the case of homogeneous MASs and undirected topologies. In the next
Chapter, distributed scalable algorithms are developed for heterogeneous MASs where
the graph topologies are not required to be undirected.
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(a) (b)

(c) (d)

(e)

Figure 2.19: Residuals generated by all agents in scenario 2, where: (a) Agent 1’s
residual signals, (b) Agent 2’s residual signals, (c) Agent 3’s residual signals, (d)
Agent 4’s residual signals, (e) Agent 5’s residual signals.
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3.1. Introduction

3.1 Introduction

This Chapter is concerned with distributed FDI in heterogeneous MASs where com-
munication topologies are not required to be undirected. In the previous Chapter,
FDI schemes were designed for homogeneous MASs. However, due to the growing
size, complexity and heterogeneity of MASs, the design of fault and attack detection
observers is rendered more intricate. Indeed, multiple factors are at play when FDI
design in MASs is concerned, namely, the dimensions of the FDI module and the
communication/implementation costs. This Chapter takes concerns into account.

One can make the observation that in most works, FDI observers are mostly
based on full state observers (e.g., [Liu et al. 2016a, Chadli et al. 2017]). However, it
could be noted that any type of observer could be employed for FDI purposes, as long
as an estimate of the output is obtained. It could thus be argued that it is not necessary
to estimate all of the state variables as far as FDI is concerned. Hence, Section 3.2 of
this Chapter concerns distributed actuator FDI in heterogeneous MASs using output
observers, i.e., observer which are based solely on the input-output relationships of the
system.

On the other hand, the issue of FDIs in heterogeneous MASs subject to unknown
disturbances, faults and attacks is still a challenging issue. Indeed, on top of actuator
and sensor faults, MASs can be subjected to multiple types of cyber-attacks [Zhang
et al. 2021b, Khalaf et al. 2018, Gallo et al. 2018a, Lu & Yang 2018, Boem et al. 2017,
Smith 2015], which are thoroughly described in Chapter 1. Thus, Section 3.3 of this
Chapter is concerned with the issue of distributed FDI in heterogeneous MASs under
unknown disturbances, actuator/sensor faults and communication attacks. There is a
multitude of ways to detect and isolate faults and cyber-attacks in MASs (see [Song
& He ]). Some works proposed centralised architectures to detect faults or attacks
[Pasqualetti et al. 2013, Jan et al. 2015], due to their simplicity, whereby the analysis
of all data is done by a central unit. However, in order to avoid long distance data
transmissions, reduce complexity and improve scalability namely in larger systems, the
detection and isolation process should be distributed.

A great deal of existing works in the literature either focus on linear and/or homo-
geneous MASs [Khan et al. 2020, Quan et al. 2018, Menon & Edwards 2013, Davoodi
et al. 2013, Chadli et al. 2017, Davoodi et al. 2016, Li et al. 2021, Liang et al. 2021], do
not consider the effect of disturbances [Khan et al. 2020, Teixeira et al. 2014], or do not
consider the effect of measurement and communication noise [Quan et al. 2018, Liu
et al. 2016a, Han et al. 2019]. However, it is a well known fact that disturbances
and noise are practically inevitable. Furthermore, some works only consider actuator
faults [Quan et al. 2018, Liang et al. 2021, Liu et al. 2016a, Wu et al. 2019] or only
sensor faults [Davoodi et al. 2013, Chadli et al. 2017, Davoodi et al. 2016]. In [Chadli
et al. 2017, Teixeira et al. 2014, Liu et al. 2016a, Liu et al. 2016b], UIOs were used
in fault detection. Nevertheless, most of the existing works on fault detection using
UIOs consider that the generated residual signals are completely decoupled from the
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unknown input. Indeed, they usually require a strict rank condition to decouple the
unknown input vector, which can be infeasible. In [Liu et al. 2016a] for instance,
an UIO residual based scheme for nonlinear homogeneous MASs with actuator faults
was proposed, where faults and disturbances were decoupled from the error dynamics
assuming some rank conditions. In [Chadli et al. 2017], UIOs were combined with
the mixed H−/H∞ method for fault detection purpose where only sensor faults were
considered. Furthermore, the H− performance index method proposed therein as well
as in [Davoodi et al. 2013, Davoodi et al. 2016] for instance, is only applicable when
the distribution matrix of the sensor faults is of full column rank. In Section 3.3, one
contribution is to relax such condition using the finite frequency approach introduced
in [Iwasaki et al. 2005]. Furthermore, in [Davoodi et al. 2016, ?] for instance, multiple
faults cannot occur in the MAS, which is a drawback, especially in large-sized MASs.

In [Quan et al. 2018, Davoodi et al. 2016, Li et al. 2021, Liang et al. 2021,
Liu et al. 2016a], information from neighbouring FDI filters was transmitted among
agents, which may weaken the distributed property of the detection scheme. Indeed,
if and when an observer fails to accurately give an estimate at a given instant for
an agent, all surrounding observers in its neighbourhood are compromised, which in
turn compromises their respective neighbours’ observers, thus creating a destructive
snowball effect that might lead to confusing results, instigate false alarms, etc. In
Section 3.3, such drawback is removed since observers do not communicate between
themselves. Unlike [Quan et al. 2018, Li et al. 2021, Liang et al. 2021, Liu et al. 2016a],
where the topology is assumed to be undirected, a directed communication graph is
considered in this Chapter. Additionally, the proposed scheme in Section 3.3, does not
require knowledge beyond its 1-hop neighbourhood and is independent on the graph
topology of the overall MAS, making it more scalable. Furthermore, as opposed to the
detection filters proposed in [Wu et al. 2019, Liu et al. 2016a, Quan et al. 2018, Liang
et al. 2021] where their size increases as the graph topology grows, in the proposed
scheme, the size of the filter is only limited to the size of the neighbourhood of each
agent independently, hence improving the scalability and reducing the computational
burdens. Given the limitations discussed above with respect to the existing studies,
the main contributions of this Chapter are summarised as follows

• In Section 3.2 [Taoufik et al. 2020a]: An output observer design methodology
for fault detection and isolation is proposed for MASs with linear dynamics. As
mentioned before, the main advantage of this approach is that the design, being
dependant only on the input-output relations, renders the computational cost
and scalability very effective compared to other FDI approaches that employ the
whole state estimation of the agent and its neighbours as a basis for their design.

• In Section 3.3 [Taoufik et al. 2021a]: A more general problem is studied where
actuator, sensor and communication faults are considered in the robust detection
and isolation process for Lipschitz nonlinear heterogeneous MASs with distur-
bances and communication parameter uncertainties, without global knowledge
about the communication graph and under directed graphs. A distributed finite-
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frequency mixedH−/H∞ nonlinear UIO based FDI scheme is designed, such that
actuator and sensor faults along with the communication faults are treated sep-
arately. Hence, the rank condition on the measurement fault distribution matrix
as required by [Davoodi et al. 2016, Li et al. 2021] for instance, is relaxed. Addi-
tionally, the scheme is capable of detecting and distinguishing multiple faults and
attacks at a given time instant. Sufficient conditions in terms of a set of LMIs are
provided for the proposed finite-frequencyH−/H∞ UIO based method, where the
coupling between Lyapunov matrices and the observer matrices is avoided. This
LMI characterisation enables to reduce conservatism by introducing additional
design variables.

• In Section 3.4, the main conclusions of this Chapter are drawn.

Each of the Sections 3.2 and 3.3, are divided into three Subsection each: A
problem formulation Subsection which lays out the system description and defines the
information exchange, a main result Subsection, where the proposed methodology is
detailed and finally a simulation example Subsection where an illustrative simulation
is carried out to show the effectiveness of the proposed schemes. Fig. 2.2 depicts a
summary of the contribution of each Section. Table 3.1 shows a brief comparison with
the contributions of this Chapter and some existing works.

Topology Description

In this Chapter, the topology is represented by a directed graph Q = (N ,F), where
V = {1, . . . , N} is the node set and F ⊆ N × N is the edge set. It is described by
an adjacency matrix A ∈ IRN×N that contains positive weight entries. If information
flows from node j to i, then aij > 0, otherwise aij = 0. The neighbouring set of node i,
denoted by Ni ⊆ V ⊂ {1, ..., N}\{i}, Ni = |Ni|, is the subset of nodes that node i can
sense and interact with. Alternatively, one could noteNi = {i1, i2, ..., iNi} ⊆ {1, ..., N}.
It is considered that Q is strongly connected.

Notations

Let us recall some of the notations employed in this Chapter. The superscript T stands
for the matrix transpose. I is the identity matrix with appropriate dimensions. For a
given k ≥ 0, we will denote by

∫ t
0
k times· · ·︸︷︷︸ ∫ t0 f(τ)dτ...dτ = Ik{f(t)}, the k integrations of

the function f(t) with respect to time, i.e., I0{f(t)} = f(t). Given a transfer function
Txy(s) linking y to x, its H∞ norm is defined as

||Txy||∞ = supωσ̄(Txy(jω)),

where σ̄ is the maximum singular value of Txy(s). Its H− index is defined as

||Txy||− = infωσ(Txy(jω)),
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where σ is the minimum singular value of Txy(s).

For a square matrix A, He(A) = A+A∗ where the superscript A∗ corresponds to
the conjugate of A. tr(A) is the trace of A. 1n and In refer to a column of all entries 1
and an identity matrix respectively and of dimensions n. 0m×n denotes a null matrix of
dimensionm×n. j refers to the imaginary unit. diag(a1, a2, ..., an) denotes the diagonal
matrix containing a1, a2, ..., an on the diagonal. Blkdiag(A1, A2, ..., An) denotes the
block diagonal matrix with matrices A1, A2, ..., An on the diagonal. Col(A1, A2, ..., An)
denotes the column block matrix (AT1 , AT2 , ..., ATn )T . For the sake of simplicity the time
argument is omitted when it’s not required for clarity.
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ks

U
T
R

R
IS
R

A
C
IR

G
K

[Khan et al. 2020] Yes No No No Yes Yes No No Yes
[Quan et al. 2018] Yes No No No No Yes No No Yes
[Davoodi et al. 2016] Yes Yes No No No Yes Yes No Yes
[Teixeira et al. 2014] Yes No No No Yes Yes No No Yes
[Chadli et al. 2017] Yes Yes Yes No No Yes Yes No No
[Liu et al. 2016b] No No No No No Yes No Yes Yes
[Teixeira et al. 2010] Yes No No No Yes Yes No No Yes
[Taoufik et al. 2020b] Yes No No No Yes Yes No No No
[Taoufik et al. 2020a] Yes No Yes No No No Yes No No
[Taoufik et al. 2021a] No Yes Yes Yes Yes No No No No

Table 3.1: Brief comparison with some existing works, where the following acronyms
are used: D&N: Both Disturbances and Noise; Hetero.: Heterogeneous; A&S Faults:
Both Actuator and Sensor Faults; UTR: Undirected Topology Required; RISR: Rel-
ative Information Sensors Required; AGIR: Access to the Collective Input Required;
GK: Global Knowledge.

3.2 Actuator FDI in heterogeneous MASs with Linear
Dynamics

3.2.1 Problem Formulation

Consider a team of N heterogeneous agents indexed i = 1, 2, . . . , N . The dynamics
of the ith agent are given by the following linear dynamic model{

ξ̇i(t) = Aiξi(t) +Bi(ui(t) + fi(t))
yi(t) = Ciξi(t)

(3.1)
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where ξi = [ξi,1, ξi,2, ..., ξi,n]T ∈ IRn, ui(t) ∈ IR and yi(t) ∈ IR are the state vector, the
control input and the output signal respectively of the ith agent. fi(t) ∈ IR represents
the fault signal where fi(t) = 0 is equivalent to a fault-free system while fi(t) 6= 0
indicates the occurrence of an actuator fault in agent i. ∀i ∈ {1, 2, ..., N}, Ai, Bi and
Ci are constant matrices with appropriate dimensions. The following Assumption is
considered in this Section.

Assumption 3.2.1 Each agent measures its output and the relative output with its
neighbours.

The relative measured outputs are defined as yij(t) = yi(t)−yj(t) where j ∈ Ni =
{i1, i2, ..., iNi} ⊆ [1, N ] denotes the set of agents that agent i can sense (ith agent’s im-
mediate neighbours). The vector Xi = [(ξi)T , (ξi1)T , ..., (ξiNi

)T ]T ∈ IRn×(Ni+1) includes
the ith agent states and the states of its neighbours. According to the definition of the
relative information yij(t), the following virtual model for the ith agent can be laid out
as follows {

Ẋi(t) = AiXi(t) + BiUi(t)
Zi(t) = CiXi(t)

(3.2)

where Zi(t) = [yi, yii1 , yii2 , ..., yiiNi
]T ∈ IRNi+1 is all the information that agent

i can sense, Ui(t) = [(ui + fi), (ui1 + fi1), (ui2 + fi2), ..., (uiNi
+ fiNi

)]T ∈ IRNi ,
Ai = Blkdiag(Ai, Ai1 , ..., AiNi

), Bi = Blkdiag(Bi, Bi1 , ..., BiNi
), while Ci is defined

as

Ci =


Ci 0 . . . 0
Ci −Ci1 . . . 0
...

... . . . ...
Ci 0 . . . −CiNi

 (3.3)

Using the virtual model (3.2), the agent i’s model includes its information as well
as its neighbours’ relative information. This is the basis for elaborating the observer
with the aim that an agent can detect not only its own faults but also those that
occur in its neighbours using relative outputs. This Section studies the design of a
distributed residual generator capable of achieving this objective through the use of
output observers.

3.2.2 Main Result

In this Subsection, an output observer design is first provided in Subsubsection 3.2.2.1
followed by an application to actuator fault detection in MASs in Subsubsection 3.2.2.2.
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3.2.2.1 An Output Observer Design

In this section, an output observer is proposed. For that, consider the following single
input linear system

y(n)(t) + an−1y
(n−1)(t) + · · ·+ a1ẏ(t) + a0y(t)

= b0u(t) + b1u̇(t) + · · ·+ bmu
(m)(t) (3.4)

where y(k) denotes the kth time derivative of y and m < n.. Let us first define some
notations to be used throughout this Section, in the form of the following Remark.

Remark 3.2.1 It can be noted that

I1{y(k)(t)} =
∫ t

0
y(k)(τ)dτ = y(k−1)(t)− y(k−1)(0) (3.5)

In a similar manner

I2{y(k)(t)} =
∫ t

0

∫ λ

0
y(k)(τ)dτdλ = y(k−2)(t)− y(k−2)(0)− y(k−1)(0)t (3.6)

Generalising this notation, one gets

• for p 6 k

Ip{y(k)(t)} = y(k−p)(t)−
p−1∑
i=0

y(k−p+i)(0) t
i

i! , (3.7)

• for p > k

Ip{y(k)(t)} = Ip−k{y(t)} −
k−1∑
i=0

y(i)(0) tp−k+i

(p− k + i)! , (3.8)

Let us integrate each side of system (3.4) (n− 1) times. It can be shown that
the (n− 1) th derivative of the Left-Hand-Side (LHS) of Equation (3.4) is given as

LHS(n−1) = ẏ(t) +
n−1∑
k=0

akI(n−1−k){y(t)} − y(0)P0(t)−
n−1∑
k=1

y(k)(0)Pk(t)

−
n−1∑
i=1

y(i)(0) ti−1

(i− 1)! (3.9)

where

Pk(t) = an−1
tk

k! + an−2
tk+1

(k + 1)! + · · ·+ ak+1
tn−2

(n− 2)! =
n−2−k∑
i=0

a(n−1−i)
tk+i

(k + i)! (3.10)

and that the (n− 1) th derivative of its Right-Hand-Side (RHS) is given as

RHS(n−1) =
m∑
k=0

bkI(n−1−k){u(t)} −
m∑
k=0

u(k)(0)Qk(t) (3.11)
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where

Qk(t) =
m−2−k∑
i=0

b(m−1−i)
tk+i

(k + i)! . (3.12)

Combining (3.9) and (3.11), the following is obtained

ẏ(t)− y(0)P0(t) = −
n−1∑
k=0

akI(n−1−k){y(t)}+
n−1∑
k=1

y(k)(0)Pk(t) +
n−1∑
i=1

y(i)(0) ti−1

(i− 1)!

+
m∑
k=0

bkI(n−1−k){u(t)} −
m∑
k=0

u(k)(0)Qk(t) (3.13)

In the above expression only the initial conditions y(k)(0); k = 1, ..., (n − 1) are
unknown except y(0), which is known. The following observer for system (3.13) is
proposed

˙̂y(t)− y(0)P0(t) = −
n−1∑
k=0

akI(n−1−k){ŷ(t)}+
n−1∑
k=1

ŷ(k)(0)Pk(t) +
n−1∑
i=1

ŷ(i)(0) ti−1

(i− 1)!

+
m∑
k=0

bkI(n−1−k){u(t)} −
m∑
k=0

u(k)(0)Qk(t)

+
n−1∑
i=0

kn−1−iIi{y(t)− ŷ(t)} (3.14)

where ki, ∀i ∈ {0, 1, ..., n − 1} are observer gains. By setting the estimation error as
ε(t) = y(t)− ŷ(t), its dynamics are

ε̇(t) = −
n−1∑
k=0

akI(n−1−k){ε(t)}+
n−1∑
k=1

ε(k)(0)Pk(t) +
n−1∑
i=1

ε(i)(0) ti−1

(i− 1)!

−
n−1∑
i=0

kn−1−iIi{ε(t)} (3.15)

The stability of (3.15) is shown through Theorem 3.1.

Theorem 3.1: [Taoufik et al. 2020a]

The output estimation error dynamics (3.15) are asymptotically stable for any
arbitrary initial conditions ŷ(i)(0), ∀i ∈ {1, ..., (n − 1)}, if the polynomial sn +∑n−1
i=0 (ai + ki)si is Hurwitz and a0 + k0 6= 0.

Proof Applying the Laplace transform on equation (3.15) yields

sE(s)− E(0) = −
n−1∑
k=0

ak
1

s(n−1−k)
E(s) +

n−1∑
i=1

ε(i)(0) 1
si

+
n−1∑
k=1

ε(k)(0)L{Pk(t)}

− (kn−1 + kn−2
s

+ ...+ k0
sn−1 )E(s) (3.16)
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where E(s) = L{ε(t)}. Since

L{Pk(t)} =
n−2∑
i=k

a(n−1+k−i)L{
ti

i!},

one has

sE(s) = −
n−1∑
k=0

ak
1

s(n−1−k)
E(s) +

n−1∑
k=1

ε(k)(0)
n−2∑
i=k

a(n−1+k−i)
1
si+1

+
n−1∑
i=1

ε(i)(0) 1
si
− (kn−1 + kn−2

s
+ ...+ k0

sn−1 )E(s) (3.17)

In other words(
s+ kn−1 + an−1 + kn−2 + an−2

s
+ ...+ k0 + a0

sn−1

)
E(s)

= (s+
n−1∑
i=0

ki + ai
sn−1−i )E(s)

=
n−1∑
k=1

ε(k)(0)
n−2∑
i=k

a(n−1+k−i)
1
si+1 +

n−1∑
i=1

ε(i)(0) 1
si

(3.18)

That is

E(s) =

∑n−1
k=1 ε

(k)(0)
∑n−2
i=k a(n−1+k−i)

1
si+1 +

∑n−1
i=1 ε

(i)(0) 1
si

s+
∑n−1
i=0

ai + ki
s(n−1−i)

(3.19)

By multiplying the denominator and nominator in equation (3.19) by s(n−1) one
gets

E(s) = N(s)
D(s) (3.20)

where

N(s) =
n−1∑
k=1

ε(k)(0)
n−2∑
i=k

a(n−1+k−i)s
n−2−i +

n−1∑
i=1

ε(i)(0)sn−1−i (3.21)

and

D(s) = sn +
n−1∑
i=0

(ai + ki)si (3.22)

Hence, observer gains ki, ∀i ∈ {0, 1, ..., n−1} are chosen such that the polynomial
(3.22) is stable and a0 + k0 6= 0. Therefore, applying the final value theorem, where
ε∞ = limt→+∞ ε(t) = lims→0 sE(s), the following can be concluded

ε∞ = lim
s→0

s
(∑n−1

k=1 ε
(k)(0)a(k+1)s

0 + ε(n−1)(0)s0
)

a0 + k0
= 0 (3.23)
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It can thus be deduced that the error dynamics are asymptotically stable. As such,
the estimate ŷ(t) converges to the output y(t) regardless of the initial conditions. This
concludes the proof.

3.2.2.2 Application to Actuator FDI in MASs

In this section, the previously defined output observer is used to generate residual
signals capable of detecting actuator faults occurring in the concerned agent as well
as its neighbours in a distributed manner, by using relative information. The virtual
model (3.2) can be rewritten in the following transfer function form



Yi(s)
Ui(s) + Fi(s)

= bi,0 + bi,1s+ ...+ bi,ms
m

sn + ai,n−1sn−1 + ...+ ai,1s+ ai,0
Zii1(s)

Ui1(s) + Fi1(s) = bi1,0 + bi1,1s+ ...+ bi1,ms
m

sn + ai1,n−1sn−1 + ...+ ai1,1s+ ai1,0
...

ZiiNi
(s)

UiNi
(s) + FiNi

(s) =
biNi

,0 + biNi
,1s+ ...+ biNi

,ms
m

sn + aiNi
,n−1sn−1 + ...+ aiNi

,1s+ aiNi
,0

(3.24)

with Yi(s) = L{yi(t)}, Zij(s) = L{yij(t)}, Ui(s) = L{ui(t)} and Fi(s) = L{fi(t)},
∀i ∈ {1, 2, ..., N} and corresponding j ∈ Ni = {i1, i2, ..., iNi} ⊆ {1, ..., N}. Parameters
bi,p, ∀p ∈ {0, ...,m} and ai,p, ∀p ∈ {0, ..., n− 1} are the transfer function coefficients.

Let us set {
ATi = [ai,n−1, ai,n−2, ..., ai,1, ai,0]
BTi = [bi,m, bi,m−1, ..., bi,1, bi,0] (3.25)

and 
Yi = [y(n−1)

i (t), y(n−2)
i (t), ..., ẏi(t), yi(t)]T

Ui = [u(m)
i (t), u(m−1)

i (t), ..., u̇i(t), ui(t)]T

Fi = [f (m)
i (t), f (m−1)

i (t), ..., ḟi(t), fi(t)]T
(3.26)

In the time domain, the first term in (3.24) can be written as

y
(n)
i (t) = −ATi Yi + BTi (Ui + Fi) (3.27)

By integrating it (n− 1) times, one gets

ẏi(t) = −ATi Yi + BTi (Ui + Fi) + δ0
i (t) + φ0

i (t) (3.28)

where the polynomial δ0
i (t) is a known function which depends on the known initial

conditions yi(0) and ui(0), of the ith agent, while the polynomial φ0
i (t) is an unknown

function that is dependent on the unknown initial conditions of the agent, i.e., φ0
i (t) =
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f(ẏ(0), ÿi(0), y(3)
i (0), ...). In particular, these vectors are defined as

δ0
i (t) = ATi


yi(0)
...

In−2(yi(0))
0

− BTi


ui(0)
...

In−2(ui(0))
0


φ0
i (t) = ATi Φi − BTi Ψi +

∑n−2
j=0 y

j+1(0) t
j

j!

(3.29)

where

Φi =



Rin−2(t)
...

In−3(Ri1(t)))
0
0

 ,Ψi =



Sim−1(t)
...

In−3(Si1(t)))
0
0

 .

with 
Rik =

∑k
j=0 y

j(0) t
j

j! − yi(0)

Sik =
∑k
j=1 u

j(0) t
j

j! − ui(0)

The matrices Yi, Ui and Fi are given by
Yi = [yi(t), ..., In−2(yi(t)), In−1(yi(t))]T
Ui = [In−1−m(ui(t)), ..., In−2(ui(t)), In−1(ui(t))]T
Fi = [In−1−m(fi(t)), ..., In−2(fi(t)), In−1(fi(t))]T

(3.30)

It is reasonable to assume that the system is initially fault free and thus the initial
conditions of fault signals fi(0),∀i are null.

Similarly to Eq. (3.28), one can obtain, for the other terms in (3.24)
ẏii1(t) = −ATi1Yii1 + BTi1(Ui + Fi) + δ0

i1(t) + φ0
i1(t)

...
ẏiiNi

(t) = −ATiNi
YiiNi

+ BTiNi
(UiNi

+ FiNi
) + δ0

iNi
(t) + φ0

iNi
(t)

(3.31)

From equations (3.30) and (3.31), the following compact form is obtained

Żi(t) =


ẏi(t)
ẏii1(t)

...
ẏiiNi

(t)



= −Āi


Yi
Yii1
...

YiiNi

+ B̄i


Ui + Fi
Ui1 + Fi1

...
UiNi

+ FiNi

+


δ0
i (t) + φ0

i (t)
δ0
i1(t) + φ0

i1(t)
...

δ0
iNi

(t) + φ0
iNi

(t)


(3.32)
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with Āi = Blkdiag(ATi ,ATi1 , ...,A
T
iNi

) and B̄i = Blkdiag(BTi ,BTi1 , ...,B
T
iNi

).

Applying the observer structure (3.14) on system (3.32) gives

˙̂
Zi(t) =


˙̂y(t)

˙̂yii1(t)
...

˙̂yiiNi
(t)

 = −Āi


Ŷi
Ŷii1
...

ŶiiNi

+ B̄i

×


Ui
Ui1
...

UiNi

+


δ0
i (t)
δ0
i1(t)
...

δ0
iNi

(t)

+Ki


Yi − Ŷi

Yii1 − Ŷii1
...

YiiNi
− ŶiiNi


(3.33)

where Ẑi(t) is the estimate of Zi(t) and Ki contains the observer gains and is defined
as

Ki = Blkdiag
(
[kii,n−1, k

i
i,1, ..., k

i
i,0], [kii1,n−1, k

i
i1,1, ..., k

i
i1,0],

..., [kiiNi
,n−1, k

i
iNi

,1, ..., k
i
iNi

,0]
) (3.34)

The following Theorem can be presented.

Theorem 3.2: [Taoufik et al. 2020a]

The observer (3.33) is an asymptotic observer for system (3.32) in the absence
of faults, for any arbitrary functions δ0

p(t) and φ0
p(t), ∀p ∈ {1, ..., (n − 1)},

if the polynomials sn +
∑n−1
j=0 (ai,j + kii,j)sj , sn +

∑n−1
j=0 (ai1,j + kii1,j)s

j , ..., sn +∑n−1
j=0 (aiNi

,j + kiiNi
,j)sj are Hurwitz and ai,0 + kip,0 6= 0, ∀i ∈ {1, 2, ..., N}, ∀p ∈

Ni ∪ i.

Proof Define Ei = Zi − Ẑi. The error dynamics are written as

Ėi = −(Āi +Ki)


Yi − Ŷi

Yii1 − Ŷii1
...

YiiNi
− ŶiiNi

+ B̄i


Fi
Fi1
...

FiNi

+


φ0
i (t)

φ0
i1(t)
...

φ0
iNi

(t)

 (3.35)

Applying the Laplace transform yields

(
sEi(s)− Ei(0)

)
= −(Āi +Ki)∆̄(s)Ei(s) + B̄iῩ(s)


Fi(s)
Fi1(s)

...
FiNi

(s)

+


φ0
i (s)

φ0
i1(s)
...

φ0
iNi

(s)

 (3.36)
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where 

∆(s)T = [1, ..., 1
sn−2 ,

1
sn−1 ]

Υ(s)T = [ 1
sn−m−1 , ...,

1
sn−2 ,

1
sn−1 ]

∆̄(s) = Blkdiag(∆(s), ...,∆(s)︸ ︷︷ ︸
(Ni+1) times

)

Ῡ(s) = Blkdiag(Υ(s), ...,Υ(s)︸ ︷︷ ︸
(Ni+1) times

)

(3.37)

Similarly to the previous Subsection, (3.36) can be equivalently expressed as

Ei(s) = (sI + (Āi +Ki)∆̄(s))−1
(
B̄iῩ(s)


Fi(s)
Fi1(s)

...
FiNi

(s)

+


φ0
i (s)

φ0
i1(s)
...

φ0
iNi

(s)

+ Ei(0)
)

(3.38)

where I is the identity matrix with appropriate dimensions. Hence, observer gains are
chosen such that the polynomials sI + (Āi +Ki)∆̄(s) are stable. Using the final value
theorem, it can be shown that

lims→0 sEi(s) = −sI(sI + (Āi +Ki)∆̄(s))−1B̄iῩ(s)


Fi(s)
Fi1(s)

...
FiNi

(s)

 (3.39)

Hence in the absence of a fault, the error dynamics are asymptotically stable.

Remark 3.2.2 It can be noticed that the fault detectability condition will be dependent
on the system parameters, if for instance for non null bp,0 6= 0,∀p ∈ {i, i1, ..., iNi}, one
could note that

lims→0 sEi(s) = Blkdiag
(

sbi,0
ai,0 + kii,0

sbi1,0
ai1,0 + kii1,0

. . .
sbiNi

,0

aiNi
,0 + kiiNi

,0

)
Fi(s)
Fi1(s)

...
FiNi

(s)


(3.40)

hence, in the case of a constant fault for example, the error dynamics are different
from 0.

Residual evaluation: Given (3.40), the following residual vector can thus be defined
at agent i

Ri =


rii
rii1...
riiNi

 = Qi


yi − ŷi
yii1 − ŷii1

...
yiiNi

− ŷiiNi
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where Qi is the post residual gain matrix used to highlight the effect of faults. It can
be concluded from Theorem 3.2 that the residual signals are null when there is no
fault, and different from 0 otherwise.

Fault isolation: For isolation purpose, let us define a detection flag τi for each agent,
where if τi = 1, rii 6= 0 and τi = 0 otherwise. It is assumed that an agent i can request
its neighbour’s detection flag τj , j ∈ Ni. Hence, the following decision logic can be
deduced: if rii > 0, then agent i is faulty, if rij > 0, j ∈ Ni and τj = 1, then agent j is
faulty.

Remark 3.2.3 It is worth noting that the scheme proposed in this Section does not
require for the FDI module to have the same dimensions as the system. Indeed, the
proposed output observer relies solely on the input-output relations and does not need
to reconstruct the entire state vector as opposed to most works in the literature (e.g.
[Teixeira et al. 2014, Liu et al. 2016a, Chadli et al. 2017]). However, a major drawback
of the proposed scheme is that it does not take into account the effect of uncertainties,
disturbances in its design.

3.2.3 Simulation Example

In this section, an illustrative numerical example is provided to show the effectiveness
of the proposed output observer residual generator scheme. Consider a team of four
heterogeneous agents governed by linear dynamics and communicating amongst each
other according to the topology in Fig. 3.1, where the matrices are defined as Ai =[
−2 −0.5i
1 0

]
, Bi =

[
1 + 0.1i

0

]
and Ci =

[
1 0

]
.

Figure 3.1: Communication topology.

Without loss of generality, the control commands are chosen as u1(t) = u2(t) =
u3(t) = u4(t) = 1. Since the measurement matrix is the same for each agent, the
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observer gains satisfying Theorem 3.2 are chosen as



k1
1,0 = −2
k1

2,0 = −3
k1

3,0 = −5
k1

1,1 = −15
k1

2,1 = −17
k1

3,1 = −20
k1

1,2 = −10
k1

2,2 = −12
k1

3,2 = −17

,



k2
2,0 = −3
k2

1,0 = −2
k2

4,0 = −7
k2

2,1 = −17
k2

1,1 = −15
k2

4,1 = −18
k2

2,2 = −12
k2

1,2 = −10
k2

4,2 = −14

,



k3
3,0 = −5
k3

1,0 = −2
k3

3,1 = −20
k3

1,1 = −15
k3

3,2 = −17
k3

1,2 = −10

,



k4
4,0 = −7
k4

2,0 = −3
k3

4,1 = −18
k4

2,1 = −17
k4

4,2 = −14
k4

2,2 = −12

.

In order to showcase the effectiveness of our methodology, two abrupt faults f2(t)
and f4(t) are assumed to happen in agents 2 and 4, respectively. The fault f2(t) is a
simulated rectangular pulsed signal with amplitude of 100 with 20 6 t 6 50. The fault
f4(t) is simulated as a rectangular signal that appears at t = 70s and has an amplitude
of 90. It is assumed that no fault occurs in agents 1 and 3. Noises are added to all
agents’ outputs to test the robustness of our approach. By using the isolation logic
discussed in the previous Subsection, one can notice that agent 1 detects the fault at
agent 2, which is confirmed by the flag τ2 = 1 at t = 70 s. Agent 2 detects agent 4’s
fault as confirmed by the flag τ4 = 1 between t = 20 s and t = 50 s, on the other hand,
it is seen that all of agent 2’s residual signals react at t = 70 s, this could mean that
any of the agents 1,2 and 4 could be faulty. It is confirmed however from the flags
τ1 = τ4 = 0 that the source of the fault is agent 2 itself. Agent 3’s residual signals stay
around 0 for the whole duration of the simulation since no faults occur either in agent
3 itself or in its neighbouring agent 1. Similarly to agent 2, both agent 4’s residual
signals react between t = 20 s and t = 50 s, where τ2 = 1 confirms that the faulty
agent is agent 4 itself.

From Fig. 3.2, it can be concluded that the fault detection protocol proposed
for a fleet of communicating heterogeneous systems is effective. It is robust against
the output noise and sensitive to the faults. Furthermore, every agent is capable of
detecting not only its own faults, but the faults occurring in its neighbours as well.

Considering Remark 3.2.3, the next Section proposes a FDI scheme encompassing
not only actuator faults, but also sensor and communication faults, while taking into
account the effects of noise, dynamic disturbances and communication uncertainties.
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(a) (b)

(c) (d)

Figure 3.2: Fault residual signals generated by agents (a) 1, (b) 2, (c) 3 and (d) 4.

3.3 Attack and FDI in heterogeneous MASs with Non-
linear Dynamics

3.3.1 Problem Formulation

Consider a heterogeneous MAS composed of N agents labelled by i ∈ {1, ..., N}, and
described by the following uncertain dynamics{

ξ̇i(t) = Aiξi(t) +Buiui(t) +Bdi
di(t) +Bfi

fai(t) + ϕi(ξi(t))
yi(t) = Ciξi(t) +Ddi

di(t) +Dfi
fsi(t)

, (3.41)

where ξi ∈ IRnx , ui ∈ IRnu , yi ∈ IRny , di ∈ IRnd , fai ∈ IRnfa , fsi ∈ IRnfs are the state
vector, the control input, the output, the L2-norm bounded disturbances and noise, the
actuator fault and the sensor fault signals respectively. Matrices Ai ∈ IRnx×nx , Bui ∈
IRnx×nu , Bdi

∈ IRnx×nd , Bfi
∈ IRnx×nfa , Ci ∈ IRny×nx , Ddi

∈ IRny×nd , Dfi
∈ IRny×nfs

are known constant matrices. ϕi(ξi(t)) ∈ IRnx is a known function representing the
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nonlinearity of agent i.

3.3.1.1 Communication Faults

In this Section, the measured outputs are exchanged between neighbouring agents.
Hence, an agent i receives from each neighbour j ∈ Ni its output (resp. input),
corrupted by parameter uncertainties associated with the communication link between
i and j, ∆aij(t) ∈ IR and by faults due to link faults, packet losses or potential cyber-
attacks denoted fzij(t) ∈ IRnfzij (resp. fuij(t) ∈ IRnfu ), i.e.

zij(t) = aij(1 + ∆aij(t))yj(t) +Dzijf
z
ij(t),

uij(t) = aij(1 + ∆aij(t))uj(t) +Duijf
u
ij(t),

(3.42)

with zii(t) = yi(t) and uii(t) = ui(t). Dzij ∈ IRny×nfzij and Duij ∈ IRnu×nfu are known
constant matrices. It is also assumed that the parameter uncertainties ∆aij(t) satisfy
|∆aij(t)| < aij .

Remark 3.3.1 It is worth noting that the considered faults cover a wide range of
cyber-attacks that have been studied in the literature. For instance, assume that ∆aij =
0 for the sake of clarity,

• In the case of a communication parametric fault [Teixeira et al. 2014] for i,
affecting all its incoming information from agent j, one has

zij(t) = (aij + faij(t)(t))yj(t)
= aijyj(t) + faij (t)yj(t),

where analogously to (3.42), one could note that fzij(t) = faij (t)yj(t) and Dzij =
Iny . faij (t) represents a parametric fault affecting the communication parameter
aij.

• In a denial of service attack situation affecting all incoming information from
agent j, one has fzij(t) = −aijδ(t− tij)yj(t) and Dzij = Iny [Rezaee et al. 2021],
where

δ(t− tij) =
{

1, t > tij
0, else ,

and tij is the instant at which the attack occurs.

• Conversely, in a false data injection situation in the transmitted information,
agent j transmits or agent i receives fake/invalid information, that is, fzij(t) con-
tains the injected malicious information [Boem et al. 2017]. In the case where the
malicious information fzij(t) ∈ IR affects all incoming transmitted data equally,
then one could set Dzij = 1ny .

• Under replay attacks, the attacker intercepts the transmitted information and
replays it with a delay instead of the actual information. In this case, one could
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write [Gallo et al. 2018a], fzij(t) = δij(t− tij)(−aijyj(t) + yj(t−Tij)) and Dzij =
Iny , where

δij(t− tij) =
{

1, t > tij
0, else ,

and tij > 0 is the instant at which the attack occurs and Tij ∈ IR is the time
delay.

The same remarks could be made w.r.t. uij(t). Contrary to agent/node attacks or
faults in the form of the signals fai(t), fsi(t), edge/communication attacks cannot be
detected locally by an emitting agent j, and thus need its neighbours to detect them. It
is worth mentioning that the introduced problem can represent many potential practical
applications to FDI in networked MASs. As discussed in the introduction Section, such
applications include electric power networks and micro-grids, multi-robot and multi-
vehicle systems, etc. [Teixeira et al. 2010, Taoufik et al. 2020b, Ren & Atkins 2007].

3.3.1.2 Concatenated local model

Let us first denote



xvi = [ξTi , ξTi1 , ..., ξ
T
iNi

]T ∈ IRni
x ,

dvi = [dTi , dTi1 , ..., d
T
iNi

]T ∈ IRni
d ,

fvsi = [fTsi
, fTsi1

, ..., fTsiNi

]T ∈ IRni
fs ,

fvai = [fTai
, fTai1

, ..., fTaiNi

]T ∈ IRni
fa ,

zi = [(yi − yi1)T , ..., (yi − yiNi
)T ]T ∈ IRni

z ,

yvi = [yTi1 , ..., y
T
iNi

]T ∈ IRni
z ,

uvi = [uTi1 , ..., u
T
iNi

]T ∈ IRni
u ,

(3.43)

the concatenated state, disturbance, fault signals, relative information, output and
input of agent i (ij ∈ Ni), where nix = nx(Ni + 1), nid = nd(Ni + 1), nifa

= nfa(Ni + 1),
nifs

= nfs(Ni + 1), niz = nyNi and niu = nuNi. A virtual output is given as

zvi = Zi
(
yi
zi

)
+ ∆Zi

(
yi
yvi

)
+Dvzif

z
i ∈ IRni

z , (3.44)
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where 

Zi =
(

Iny 0ny×ni
z

0ni
z×ny

Ai

)
∈ IRni

z×ni
z ,

∆Zi =
(

0ny×ny 0ny×ni
z

0ni
z×ny

Ai∆Ai

)
∈ IRni

z×ni
z ,

∆Ai = diag(∆aii1 , ...,∆aii1︸ ︷︷ ︸
ny times

, ...,∆aiiNi
, ...,∆aiiNi

)

∈ IRni
z×ni

z ,

Ai = diag(aii1 , ..., aii1︸ ︷︷ ︸
ny times

, ..., aiiNi
, ..., aiiNi

)

∈ IRni
z×ni

z ,

Dvzi =

 0ny×ni
fz

−Blkdiag[Dzii1
, Dzii2

, . . . , DziiNi
]


∈ IRni

z×ni
fz ,

zvi = [yTi , zTii1 , ..., z
T
iiNi

]T ∈ IRni
z ,

fzi = [fzii1 , f
z
ii2 , ..., (f

z
iiNi

)T ]T ∈ IRni
fz ,

with nifz
=
∑
j∈Ni

nfzij
6= 0, niz = ny(Ni+1). zvi and fzi are the concatenated measured

vector available for agent i and the associated communication fault signals, respectively.
Āi = Ai + ∆Ai ∈ IRni

z×ni
z is the actual local adjacency matrix of agent i which

takes into account the parametric uncertainty associated with the communication links.
Replacing outputs and inputs with their respective values from (3.41) yields

ẋvi(t) = Ãixvi(t) + B̃uiuvi(t) + B̃ui
ui(t) + B̃di

dvi(t) + B̃fi
fvai(t) + ϕvi(xvi(t))

zvi(t) = Zi(C̃ixvi(t) + D̃di
dvi(t) + D̃fi

fvsi(t)) +Dvzif
z
i (t) + ∆Zi

(
yi(t)
yvi(t)

)
,

(3.45)
where 

ϕvi(xvi(t)) = Col(ϕi(ξi(t)), ..., ϕiNi
(xiNi

(t))),
Ãi = Blkdiag(Ai, Ai1 , ..., AiNi

),
B̃ui

= Col(Bui , 0nx×nu , . . . , 0nx×nu),
B̃ui = Col(0nx×ni

u
,Blkdiag(Bui1

, ..., BuiNi
)),

B̃di
= Blkdiag(Bdi

, Bdi1
, ..., BdiNi

),
B̃fi

= Blkdiag(Bfi
, Bfi1

, ..., BfiNi
),

C̃i, D̃di
and D̃fi

correspond to the following tilde notation

Θ̃i =


Θi 0 . . . 0
Θi −Θi1 . . . 0
...

... . . . ...
Θi 0 . . . −ΘiNi

 ,

with Ãi ∈ IRni
x×ni

x , B̃ui ∈ IRni
x×ni

u , B̃fi
∈ IRni

x×ni
fa , C̃i ∈ IRni

z×ni
x , D̃di

∈ IRni
z×ni

d ,
D̃fi
∈ IRni

z×ni
fs . Let us make the following assumption on the parametric uncertainties
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Assumption 3.3.1 There exist a time-varying matrix δi(t) ∈ IRni
z×ni

z and known
matrices Xi and Mi with appropriate dimensions such that

∆Zi = Xiδi(t)Mi, (3.46)

with σ̄(δi) ≤ δM .

Remark 3.3.2 It is worth noting that this assumption stems from the definition of the
graph topology in this Section, and is standard for bounded uncertainties [Ding 2008].

Under this assumption, one could rewrite system (3.45) as

{
ẋvi(t) = Ãixvi(t) + B̃uiuvi(t) + B̃ui

ui(t) + B̃di
dvi(t) + B̃fi

fvai(t) + ϕvi(xvi(t)),
zvi(t) = ZiC̃ixvi(t) + ZiD̃di

dvi(t) +DFiFi(t)−Xiφi(t),
,

(3.47)

where Fi(t) =
(
fvsi(t)
fzi (t)

)
, DFi =

(
ZiD̃fi

Dvzi

)
, φi(t) = −δi(t)Dφi

xvi(t)
dvi(t)
fvsi(t)

, Dφi
=

Mi


Blkdiag(CTi , ..., CTiNi

)
Blkdiag(DT

di
, ..., DT

diNi

)
Blkdiag(DT

fi
, ..., DfiNi

)


T

.

Note that, in the case where D̃fi
= 0, DFi is selected as DFi = Dvzi . The robust

distributed FDI objective is the design of residual generators for each agent using
locally exchanged information capable of detecting and isolating not only the agent’s
own faults but also the faults of its neighbours as well as attacks targeting incoming
communication links.

The following Assumption and Lemma are going to be used in the next section.

Assumption 3.3.2 The nonlinear functions ϕi(ξi(t)) are Lipschitz, with Lipschitz
constant θi, ∀i = {1, 2, ..., N}, i.e., ∀ξi, ξ̂i ∈ IRnx

||ϕi(ξi)− ϕi(ξ̂i)|| 6 θi||ξi − x̂i||.

Remark 3.3.3 It is worth noting that Assumption 3.3.2 restricts the class of consid-
ered nonlinearities in Eq. (3.41) and has been considered in many works [Raghavan &
Hedrick 1994].

Lemma 3.1 [Boyd et al. 1994] Given real matrices Fi and Ji of appropriate dimen-
sions, then the following inequality holds for any strictly positive scalar εi:

FiJ
T
i + JiF

T
i 6 εiJiJ

T
i + ε−1

i FiF
T
i .
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3.3.2 Main Result

3.3.2.1 Proposed Distributed Fault Detection and Isolation Scheme

The aim here is to design robust residual generators which are sensitive to all types
of faults in spite of the presence of uncertainties using UIOs. Consider the following
observer

q̇vi(t) = Niqvi(t) +G1iui(t) +G2iUi(t) + Lizvi(t) + Tiϕvi(x̂vi(t))
x̂vi(t) = qvi(t)−Hizvi(t)
ẑvi(t) = ZiC̃ix̂vi(t)

, (3.48)

where Ui(t) = Col(uii1(t), ..., uiiNi
(t)). The matrices Ni, G1i, G2i, Li, Ti and Hi will

be described hereafter. Define the state estimation error as evi(t) = xvi(t) − x̂vi(t).
Then

evi(t) = (I +HiZ
iC̃i)xvi(t)− qvi(t) +HiVvivi(t),

where Di(t) =
(
dvi(t)
φ(t)

)
, Vvi =

(
ZiD̃di

−Xi DFi

)
and vi(t) =

(
Di(t)
Fi(t)

)
. Therefore,

its dynamics is expressed as

ėvi(t) = Nievi(t) + (TiÃi − SiZiC̃i −Ni)xvi(t) + Tiϕ
evi
vi + TiB̃fi

fvai(t)
+(TiB̃ui

−G1i)ui(t) + SiXiφi(t)− SiDFiFi(t) + (TiB̃di
− SiZiD̃di

)dvi(t)
+TiB̃uiuvi(t)−G2i((Au,i∆Au,i +Au,i)uvi(t) +Duifui(t)) +HiVvi v̇i(t)

(3.49)
where

Ti = I +HiZ
iC̃i, (3.50a)

Si = Li +NiHi, (3.50b)

and 

ϕ
evi
vi (t) = ϕvi(xvi(t))− ϕvi(x̂vi(t))

fui(t) = Col(fuii1(t), ..., fuiiNi
(t)),

Dui = Blkdiag(Duii1
, ..., DuiiNi

),
∆Au,i = diag(∆aii1 , ...,∆aii1︸ ︷︷ ︸

nu times

, ...,∆aiiNi
, ...,∆aiiNi

),

Au,i = diag(aii1 , ..., aii1︸ ︷︷ ︸
nu times

, ..., aiiNi
, ..., aiiNi

).

By imposing the following

HiVvi = 0, (3.51a)
TiÃi − SiZiC̃i = Ni, (3.51b)
TiB̃ui

−G1i = 0, (3.51c)
TiB̃ui −G2iAu,i = 0, (3.51d)
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(3.49) becomes

ėvi(t) = Nievi(t) + (TiB̃di
− SiZiD̃di

)dvi(t) + TiB̃fi
fvai(t)− SiDFiFi(t)

−TiB̃ui(A−1
u,iAu,i)∆Au,iuvi(t)− TiB̃uiA−1

u,iDuifui(t) + Tiϕ
evi
vi (t) + SiXiφi(t).

(3.52)

By setting new concatenated uncertainties vector as φ
i
(t) =

(
φi(t)

∆Au,iuvi(t)

)
, the error

dynamics becomes

ėvi(t) = Nievi(t) + (TiB̃di
− SiZiD̃di

)dvi(t) + Tiϕ
evi
vi (t)

−SiDFiFi(t) + (SiXi − TiX̄i)φi(t)− TiBiF i(t),
(3.53)

where Bi =
(
−B̃fi

B̃uiA−1
u,iDui

)
, F i(t) =

(
fai(t)
fui(t)

)
, Xi =

(
Xi 0ni

z×(nu·Ni)

)
, X̄i =(

0ni
x×ni

z
−B̃ui

)
.

On the other hand, define the following residual vector

ri(t) = Wi(zvi(t)− ẑvi(t)), (3.54)

whereWi is a pre-set post residual gain matrix used to highlight the effects of the faults
on the residual signals. In this Section, since it does not directly affect the residual
signals, it is considered that F i(t) affects the residual signals over a finite frequency
domain, which can be uniformly expressed as [Li & Yang 2013]

ΩFi
:= {ωf ∈ IR | κ(ωf − ωf1)(ωf − ωf2) 6 0}, (3.55)

where κ ∈ {1,−1}, ωf1 and ωf2 are given positive scalars characterizing the frequency
range of the fault vector F i. Indeed, if one selects

• κ = 1 and ωf1 < ωf2 , then the set ΩF i
corresponds to the middle frequency range

ΩF i
:= {ωf ∈ IR | ωf1 6 ωf 6 ωf2}.

• κ = 1 and −ωf1 = ωf2 = ωfl
, then the set ΩF i

corresponds to the low frequency
range

ΩFi
:= {ωf ∈ IR | |ωf | 6 ωfl

}.

• κ = −1 and −ωf1 = ωf2 = ωfh
, then the set ΩF i

corresponds to the high
frequency range

ΩFi
:= {ωf ∈ IR | |ωf | > ωfl

}.

The objective here is to simultaneously achieve local state estimation (asymptotic
stability of the error dynamics) and fault/attack detection. Theorems 3.3 and 3.4 are
proposed in this section to solve this problem through a set of matrix inequalities using
the H∞, H− performance indexes. Hence, to summarise, the proposed fault/attack
detection scheme is obtained through simultaneously satisfying the following, for some
performance scalar variables γi, %iβi and ηi ∀i ∈ {1, ..., N}.
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1. To guarantee asymptotic stability of the error dynamics (3.53).

2. To ensure a reasonable sensitivity of the residuals to the possible output attack-
s/faults over all frequency ranges, by satisfying

||TrFi
Fi ||− > γi, (3.56)

where rFi is the residual signal defined for the case with no disturbance dvi = 0,
no uncertainty φ

i
= 0 and no fault F i = 0.

3. To ensure a reasonable sensitivity of the residuals to the possible input attack-
s/faults over a finite frequency range defined in the set ΩF i

, by satisfying

||TrFi
Fi
||− > %i, (3.57)

for all solutions of (3.53) such that,∫∞
0

(
κ(ωf1evi(t) + jėvi(t))(ωf2evi(t)− jėvi(t))T

)
dt

6 0,
(3.58)

where κ, ωf1 , ωf2 are as defined in ΩFi
, and rFi

is the residual signal defined for
the case with no disturbance dvi = 0, no uncertainty φ

i
= 0 and no fault Fi = 0.

4. To guarantee a good disturbances and uncertainties rejection performance w.r.t.
to the residual signals over all frequency ranges, i.e.

||TrDi
dvi
||∞ < ηi, ||TrDi

φ
i
||∞ < βi, (3.59)

where rDi is the residual signal defined without fault Fi = 0 and F i = 0.

For the rest of the manuscript, the time argument is omitted where it is not needed
for clarity.

Theorem 3.3: [Taoufik et al. 2021a]

For dvi = 0, φ
i

= 0, F i = 0, Fi 6= 0, let γi, θmi , σ1i and εi be strictly positive
scalars, the error dynamics (3.53) is asymptotically stable and the performance
index (3.56) is guaranteed if ∀i ∈ {1, ..., N}, there exist symmetric positive
definite matrices Pi, matrices Ui, Ri and unstructured nonsingular matrices Yi
such that the following optimisation problem is solved

max
Pi,Yi,Ui,Ri

γi

subject to 
Ψ1
i Ψ2

i Ψ3
i Ψ4

i

∗ Ψ5
i 0 Ψ6

i

∗ ∗ −εiI Ψ7
i

∗ ∗ ∗ Ψ8
i

 < 0, (3.60)
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UiVvi = 0, (3.61)

where

Ψ1
i = YiÃi + UiZ

iC̃iÃi −RiZiC̃i + ÃTi Y
T
i + ÃTi (ZiC̃i)TUTi − (ZiC̃i)TRTi

+εiθmiI − (ZiC̃i)TW T
i WiZ

iC̃i,

Ψ2
i = −RiDFi − (ZiC̃i)TW T

i WiDFi ,

Ψ3
i = Yi + UiZ

iC̃i,

Ψ4
i = −Yi + Pi + σ1iÃ

T
i Y

T
i + σ1iÃ

T
i (ZiC̃i)TUTi − σ1i(ZiC̃i)TRTi ,

Ψ5
i = −DT

Fi
W T
i WiDFi + γ2

i I,

Ψ6
i = −σ1iD

T
Fi
RTi ,

Ψ7
i = σ1iY

T
i + σ1i(ZiC̃i)TUTi ,

Ψ8
i = −σ1i(Yi + Y T

i ),

and the observer gains are specified as

Si = Y −1
i Ri,

Hi = Y −1
i Ui,

Ni = (I + Y −1
i UiZ

iC̃i)Ãi − Y −1
i RiZ

iC̃i,

G1i = (I + Y −1
i UiZ

iC̃i)B̃ui
,

G2i = (I + Y −1
i UiZ

iC̃i)B̃uiA−1
u,i ,

Li = Y −1
i Ri −NiY

−1
i Ui.

(3.62)

Proof The performance index (3.56) corresponds to the following function

JFi =
∫ ∞

0

(
rTFi

rFi − γ2
i FTi Fi

)
dt > 0. (3.63)

Let us select the candidate Lyapunov function
Vi(evi) = eTvi

Pievi , then

V̇ (evi) = eTvi
(NT

i Pi + PiNi)evi + (ϕevi
vi )TT Ti Pievi

+eTvi
PiTiϕ

evi
vi + FTi (−SiDFi)TPievi

+eTvi
Pi(−SiDFi)Fi.

(3.64)

On the other hand, (3.63) can be expressed as

JFi =
∫∞
0

(
[eTvi

(t)(ZiC̃i)T + FTi (t)DT
Fi

)]W T
i Wi

×(ZiC̃ievi(t) +DFiFi(t))− γ2
i FTi Fi − V̇ (evi)

)
dt

+
∫∞

0

(
V̇ (evi)

)
dt > 0.

(3.65)

According to Assumption 3.3.2, it can be shown that

(ϕevi
vi )Tϕevi

vi = ||ϕevi
vi ||2 6 θ2

i ||xi(t)− x̂i(t)||2
+θ2

i1 ||xi1(t)− x̂i1(t)||2 + ...

+θ2
iNi
||xiNi

(t)− x̂iNi
(t)||2

6 θMie
T
vi
evi ,

(3.66)
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where θMi = max(θ2
i , θ

2
i1 , ..., θ

2
iNi

).

Since V (evi) = eTvi
Pievi ≥ 0 and using Lemma 3.1 and equation (3.66), (3.65)

can be shown to be equivalent to(
Υi −PiSiDFi − (ZiC̃i)TW T

i WiDFi

? −DT
Fi
W T
i WiDFi + γ2

i I

)
< 0, (3.67)

where Υi = NT
i Pi + PiNi + εiθMiI + ε−1

i PiTiT
T
i Pi − (ZiC̃i)TW T

i WiZ
iC̃i. Using the

Schur complement, (3.67) can be re-written as

T1i + V1iS1i + ST1iVT1i < 0, (3.68)

with

T1i =

εiθMiI − (ZiC̃i)TW T
i WiZ

iC̃i −(ZiC̃i)TW T
i WiDFi 0

∗ −DT
Fi
W T
i WiDFi + γ2

i I 0
∗ ∗ −εiI

 ,

S1i =
(
Ni −SiDFi Ti

)
, V1i =

Pi0
0

 .
Using the congruence transformation

(
I T T1i

)
, (3.68) is equivalent to(

T1i +K1iS1i + ST1iKT1i −K1i + V1i + ST1iYT1i
∗ −(Y1i + YT1i)

)
< 0, (3.69)

for new general matrices K1i and Y1i. Hence, by selecting

KT1i =
(
Y T
i 0 0

)
, Y1i = σ1iYi,

for a scalar σ1i and a nonsingular general matrix Yi, one can obtain the following
sufficient condition 

Π1
i Π2

i YiTi Π3
i

∗ Π4
i 0 Π5

i

∗ ∗ −εiI σ1iT
T
i Y

T
i

∗ ∗ ∗ −σ1i(Yi + Y T
i )

 < 0,

with
Π1
i = YiNi +NT

i Y
T
i + εiθMiI − (ZiC̃i)TW T

i WiZ
iC̃i,

Π2
i = −YiSiDFi − (ZiC̃i)TW T

i WiDFi ,

Π3
i = −Yi + Pi + σ1iN

T
i Y

T
i ,

Π4
i = −DT

Fi
W T
i WiDFi + γ2

i I,

Π5
i = −σ1iD

T
Fi
STi Y

T
i .

Replacing Ni and Ti with their respective values, and applying the linearising
change of variables Ui = YiHi, Ri = YiSi, (3.60) is obtained. Furthermore, pre-
multiplying (3.51a) with Yi yields (3.61). Therefore, solving (3.60) under the imposed
constraints (3.61), and using the observer gains (3.62) guarantees the residual perfor-
mance index (3.56) and the asymptotic stability of the error dynamics (3.49).
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Theorem 3.4: [Taoufik et al. 2021a]

For dvi = 0, φ
i

= 0, Fi = 0, F i 6= 0, let %i, θMi , σ2i and εi be strictly positive
scalars, an arbitrary design matrix Ki, the error dynamics (3.53) is asymptot-
ically stable and the performance index (3.57) is guaranteed if ∀i ∈ {1, ..., N}
over a finite frequency domain defined in (3.55), there exist symmetric positive
definite matrices Xi, symmetric matrices Xi, matrices Ui, Ri and unstructured
nonsingular matrices Yi such that the following optimisation problem is solved

max
Xi,Xi,Yi,Ui,Ri

%i

subject to 
Σ1
i Σ2

i Σ3
i Σ4

i

∗ Σ5
i Σ6

i Σ7
i

∗ ∗ −εiI Σ8
i

∗ ∗ ∗ Σ9
i

 < 0,

κXi > 0,

(3.70)

where

Σ1
i = YiÃi + UiZ

iC̃iÃi −RiZiC̃i + ÃTi Y
T
i − (ZiC̃i)TW T

i WiZ
iC̃i

+(ZiC̃iÃi)TUTi − (ZiC̃i)TRTi − ωf1ωf2Xi + εiθMiI,

Σ2
i = −UiZiC̃iBi + ÃTi Y

T
i K

T
i + (ZiC̃iÃi)TUTi KT

i

−(ZiC̃i)TRTi KT
i ,

Σ3
i = Yi + UiZ

iC̃i,

Σ4
i = −Yi +Xi − jωfaXi + σ2iÃ

T
i Y

T
i + σ2i(ZiC̃iÃi)TUTi

−σ2i(ZiC̃i)TRTi ,
Σ5
i = %2

i I −KiYiBi −KiUiZ
iC̃iBi − BTi Y T

i K
T
i − BTi (ZiC̃i)TUTi KT

i ,

Σ6
i = KiYi +KiUiZ

iC̃i,

Σ7
i = −KiYi − σ2iBTi Y T

i − σ2iBTi (ZiC̃i)TUTi ,
Σ8
i = σ2iY

T
i + σ2i(ZiC̃i)TUTi ,

Σ9
i = −(Xi + σ2iYi + σ2iY

T
i ),

and Bi =
(
−B̃fi

B̃uiA−1
u,iDui

)
. The observer gains are then computed as in

(3.62).

Proof Let us select the candidate Lyapunov function Vi(evi) = eTvi
Xievi , then

V̇ (evi) = eTvi
(NT

i Xi +XiNi)evi + (ϕevi
vi )TT Ti Xievi

+eTvi
XiTiϕ

evi
vi −FTi (TiBi)TXievi − eTvi

Xi(TiBi)F i.
(3.71)

To solve (3.57) over a finite frequency domain as defined in (3.55), one could define
the following function

JF i
=
∫∞

0

(
%2
iFTi F i − rTF i

rF i
− tr(He(Wi)Xi) + V̇ (evi)

)
dt < 0, (3.72)

where Wi = (ωf1evi + jėvi)(ωf2evi + jėvi)∗ and Xi is a symmetric matrix. From (3.58),
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one gets ∫ ∞
0

κWidt 6 0.

Moreover, it can be shown through the Parseval’s theorem [Zhou & Doyle 1998] that∫ ∞
0
Widt = 1

2π

∫ +∞

−∞

(
(ωf1 − ω)(ωf2 − ω)ěi(ω)ěTi (ω)

)
dω,

where ěi(ω) is the Fourier transform of evi(t). Choosing Xi such that κXi > 0, it yields

tr((
∫∞

0 Widt)∗Xi) + tr((
∫∞

0 Widt)Xi) 6 0,

or equivalently, tr(He(Wi)Xi) 6 0. Therefore, (3.57) is guaranteed for all solutions of
(3.53) satisfying (3.58), if

%2
iFTi F i − rTF i

rF i
+ V̇ (evi)− tr(He(Wi)Xi) < 0. (3.73)

By setting ωfa = ωf1+ωf2
2 , then

−tr(He(Wi)Xi)
= −eTvi

ωf1ωf2Xievi − ėTvi
Xiėvi − eTvi

jωfaXiėvi + ėTvi
jωfaXievi

= −eTvi
ωf1ωf2Xievi − eTvi

NT
i XiNievi − (ϕevi

vi )TT Ti XiNievi

+FTi BTi T Ti XiNievi − eTvi
NT
i XiTiϕ

evi
vi − (ϕevi

vi )TT Ti XiTiϕ
evi
vi

+FTi BTi T Ti XiTiϕ
evi
vi + eTvi

NT
i XiTiBiF i + (ϕevi

vi )TT Ti XiTiBiF i
−eTvi

jωfaXiTiϕ
evi
vi + eTvi

jωfaXiTiBiF i − eTvi
jωfaNievi

+eTvi
NT
i jωfaXievi + (ϕevi

vi )TT Ti jωfaXievi −FTi BTi T Ti jωfaXievi

−FTi BTi T Ti XiTiBiF i.

(3.74)

On the other hand, using Lemma 3.1 and (3.66), one has

V̇ (evi) < eTvi
(NT

i Xi +XiNi + εiθMiI

+ε−1
i XiTiT

T
i Xi)evi −FTi (TiBi)TXievi

−eTvi
Xi(TiBi)F i.

(3.75)

Replacing (3.74) and (3.75) into (3.73) givesΞ1
1i Ξ2

1i Ξ3
1i

∗ Ξ4
1i Ξ5

1i
∗ ∗ Ξ6

1i

 < 0, (3.76)

where

Ξ1
1i = −ωf1ωf2Xi −NT

i XiNi − jωfaXiNi + jωfaN
T
i Xi +NT

i Xi +XiNi

+εiθMiI − (ZiC̃i)TW T
i WiZ

iC̃i,

Ξ2
1i = NT

i XiTiBi + jωfaXiTiBi −XiTiBi,
Ξ3

1i = −NT
i XiTi − jωfaXiTi +XiTi,

Ξ4
1i = −BTi T Ti XiTiBi + %2

i I,

Ξ5
1i = BTi T Ti XiTi,

Ξ6
1i = −T Ti XiTi − εiI.
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It can be re-written as

T2i + V2iS2i + ST2iVT2i − ST2iXiS2i < 0, (3.77)

with

T2i =

−ωf1ωf2Xi + εiθMiI − (ZiC̃i)TW T
i WiZ

iC̃i 0 0
∗ %2

i I 0
∗ ∗ −εiI

 ,

S2i =
(
Ni −TiBi Ti

)
, V2i =

Xi − jωfaXi
0
0

 .
Similarly to Theorem 1, (3.77) can be shown to be equivalent to(

T2i +K2iS2i + ST2iKT2i −K2i + V2i + ST2iYT2i
∗ −(Xi + Y2i + YT2i)

)
< 0, (3.78)

for new general matrices K2i and Y2i. Hence, by selecting

KT2i =
(
Y T
i Y T

i K
T
i 0

)
, Y2i = σ2iYi,

for a scalar σ2i, an arbitrary matrix Ki and a nonsingular general matrix Yi, one can
obtain the following sufficient condition

Ξ1
2i Ξ2

2i YiTi Ξ3
2i

∗ Ξ4
2i KiYiTi Ξ5

2i
∗ ∗ −εiI σ2iT

T
i Y

T
i

∗ ∗ ∗ Ξ6
2i

 < 0,

with

Ξ1
2i = YiNi +NT

i Y
T
i − ωf1ωf2Xi + εiθMiI − (ZiC̃i)TW T

i WiZ
iC̃i,

Ξ2
2i = −YiTiBi +NT

i Y
T
i K

T
i ,

Ξ3
2i = −Yi +Xi − jωfaXi + σ2iN

T
i Y

T
i ,

Ξ4
2i = %2

i I −KiYiTiBi − BTi T Ti Y T
i K

T
i ,

Ξ5
2i = −KiYi − σ2iBTi T Ti Y T

i ,

Ξ6
2i = −(Xi + σ2iYi + σ2iY

T
i ).

By replacing Ni and Ti with their respective values, and applying the linearising change
of variables Ui = YiHi, Ri = YiSi, (3.70) is obtained. This guarantees the residual
performance index (3.57) and the asymptotic stability of the error dynamics (3.49).

Remark 3.3.4 Given that the LMIs (3.70) ∀i are in the complex domain, most solvers
cannot directly handle them. Hence, the following equivalent statements are used for a
complex Hermitian matrix L(x)

1. L(x) < 0.
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2.
(

Re(L(x)) Im(L(x))
−Im(L(x)) Re(L(x))

)
< 0.

where Re(L(x)) represents the real part of L(x) and Im(L(x)) its imaginary part. More
details can be found in [Gahinet et al. 1996].

Theorem 3.5: [Taoufik et al. 2021a]

For Fi = 0, F i = 0, dvi 6= 0, φ
i
6= 0, let βi, ηi, θMi , σ3i and εi be strictly positive

scalars, the error dynamics (3.53) is asymptotically stable and the performance
indexes (3.59) are guaranteed if ∀i ∈ {1, ..., N}, there exist symmetric positive
definite matrices Qi, matrices Ui, Ri and unstructured nonsingular matrices Yi
such that for all possible uncertainties, under the imposed constraint (3.61)

min
Qi,Yi,Ui,Ri

βi + ηi

subject to 
Φ1
i Φ2

i Φ3
i Φ4

i Φ5
i

∗ Φ6
i Φ7

i 0 Φ8
i

? ∗ Φ9
i 0 Φ10

i

∗ ∗ ∗ −εiI Φ11
i

∗ ∗ ∗ ∗ Φ12
i

 < 0, (3.79)

where

Φ1
i = YiÃi + UiZ

iC̃iÃi −RiZiC̃i + ÃTi Y
T
i + εiθMiI

+(ZiC̃iÃi)TUTi − (ZiC̃i)TRTi + (ZiC̃i)TW T
i WiZ

iC̃i,

Φ2
i = YiB̃di

+ UiZ
iC̃iB̃di

−RiZiD̃di
+ ZiC̃iW

T
i WiZ

iD̃di
,

Φ3
i = RiXi − YiX̄i − UiZiC̃iX̄i − (ZiC̃i)TW T

i WiXi,

Φ4
i = Yi + YiHiZ

iC̃i,

Φ5
i = −Yi +Qi + σ3iÃ

T
i Y

T
i + σ3i(ZiC̃iÃi)TUTi − σ3i(ZiC̃i)TRTi ,

Φ6
i = (ZiD̃di

)TW T
i WiZ

iD̃di
− η2

i I,

Φ7
i = −XT

i W
T
i WiZ

iD̃di
,

Φ8
i = σ3iB̃

T
di
Y T
i + σ3iB̃

T
di

(ZiC̃i)TUTi − σ3iZ
iD̃T

di
RTi ,

Φ9
i = XT

i W
T
i WiXi − β2

i I,

Φ10
i = σ3iXT

i R
T
i − σ3iX̄

T
i Y

T
i − σ3iX̄

T
i (ZiC̃i)TUTi ,

Φ11
i = σ3iY

T
i + σ3i(ZiC̃i)TUTi ,

Φ12
i = −σ3i(Yi + Y T

i ).

The observer gains are then computed as in (3.62).

Proof Let us select the candidate Lyapunov function Vi(evi) = eTvi
Qievi , then

V̇ (evi) = eTvi
(NT

i Qi +QiNi)evi + (ϕevi
vi )TT Ti Qievi

+eTvi
QiTiϕ

evi
vi + φT

i
(t)(SiXi − TiX̄i)TQievi + eTvi

Qi(SiXi − TiX̄i)φi(t)
+dTvi

(TiB̃di
− SiZiD̃di

)TQievi + eTvi
Qi(TiB̃di

− SiZiD̃di
)dvi(t).

(3.80)
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The performance index is equivalent to

JDi =
∫ ∞

0

(
rTDi

rDi − β2
i φ

T
i
φ
i
− η2

i d
T
vi
dvi

)
dt < 0. (3.81)

Combining the two yields

JDi =
∫∞
0

([
eTvi

(ZiC̃i)T + dTvi
(ZiD̃di

)T
]
W T
i Wi

[
ZiC̃ievi(t) + ZiD̃di

dvi(t)
]

−η2
i d
T
vi
dvi − eTvi

(ZiC̃i)TW T
i WiXiφi(t)− d

T
vi

(ZiD̃di
)TW T

i WiXiφi(t)
−β2

i φ
T
i
φ
i
+ φT

i
XT
i W

T
i WiXiφi − φ

T
i
XT
i WiW

T
i Z

iC̃ievi

−φT
i
XT
i W

T
i WiZ

iD̃di
dvi + V̇ (evi)

)
dt−

∫∞
0 V̇ (evi)dt

< 0.

(3.82)

The above inequality can be expressed as(
Γi1 Γi2 + Υde

i

? Υdd
i

)
< 0,

where

Γi1 = NT
i Qi +QiNi + (ZiC̃i)TW T

i WiZ
iC̃i + εiθMiI + ε−1

i QiTiT
T
i Qi

Γi2 = Qi
(
TiB̃di

− SiZiD̃di
(SiXi − TiX̄i)

)
Υde
i =

(
ZiC̃iW

T
i WiZ

iD̃di
−(ZiC̃i)TW T

i WiXi

)
Υdd
i =

(
(ZiD̃di

)TW T
i WiZ

iD̃di
− η2

i I −XT
i W

T
i WiZ

iD̃di

? XT
i W

T
i WiXi − β2

i I

)

Similarly to Theorem 3.3, the above is equivalent to

T3i + V3iS3i + ST3iVT3i < 0, (3.83)

where

T3i

=


(ZiC̃i)TW T

i WiZ
iC̃i + εiθMiI ZiC̃iW

T
i WiZ

iD̃di

∗ (ZiD̃di
)TW T

i WiZ
iD̃di

− η2
i I

∗ ∗
∗ ∗

−(ZiC̃i)TW T
i WiXi 0

−XT
i W

T
i WiZ

iD̃di
0

XT
i W

T
i WiXi − β2

i I 0
∗ −εiI

 ,

S3i =
(
Ni TiB̃di

− SiZiD̃di
SiXi − TiX̄i Ti

)
, V3i =


Qi
0
0
0

 .
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By selecting
KT3i =

(
Y T
i 0 0 0

)
, Y3i = σ3iYi,

for a scalar σ3i and a nonsingular general matrix Yi, one can obtain the following
sufficient condition

Λ1
i Λ2

i Λ3
i YiTi Λ4

i

∗ Λ5
i −XT

i W
T
i WiZ

iD̃di 0 Λ6
i

? ∗ Λ7
i 0 Λ8

i

∗ ∗ ∗ −εiI σ3iT
T
i Y

T
i

∗ ∗ ∗ ∗ −σ3i(Yi + Y T
i )

 < 0,

where
Λ1
i = YiNi +NT

i Y
T
i + (ZiC̃i)TW T

i WiZ
iC̃i + εiθMiI,

Λ2
i = YiTiB̃di

− YiSiZiD̃di
+ ZiC̃iW

T
i WiZ

iD̃di
,

Λ3
i = YiSiXi − YiTiX̄i − (ZiC̃i)TW T

i WiXi,

Λ4
i = −Yi +Qi + σ3iN

T
i Y

T
i ,

Λ5
i = (ZiD̃di

)TW T
i WiZ

iD̃di
− η2

i I,

Λ6
i = σ3iB̃

T
di
T Ti Y

T
i − σ3iZ

iD̃T
di
STi Y

T
i ,

Λ7
i = XT

i W
T
i WiXi − β2

i I,

Λ8
i = σ3iXT

i S
T
i Y

T
i − σ3iX̄

T
i T

T
i Y

T
i .

Replacing Ni and Ti with their respective values, and applying the linearising change
of variables Ui = YiHi, Ri = YiSi, (3.79) is obtained. This guarantees the residual
performance index (3.59) and the asymptotic stability of the error dynamics (3.49).

Remark 3.3.5 One could note that it is possible to relax constraint (3.61). Indeed,
this equality constraint implies that the span of the rows of Ui is included in ker(Vvi).
Hence, one could turn this into a minimisation of its maximum singular value which
could be minimised, i.e., for a scalar ϑi > 0

min
Ui

ϑi

subject to
−ϑiI + UiVviϑ

−1
i (UiVvi)T < 0. (3.84)

Applying the Schur complement to (3.84) yields the following LMI(
ϑiI UiVvi

∗ ϑiI

)
< 0. (3.85)

Remark 3.3.6 Note that here, as opposed to what is typically done in literature, we
do not impose that TiB̃di

− SiZiD̃di
= SiXi = 0. Indeed, maintaining this constraint

while solving the proposed inequalities can be unfeasable for some systems. Contrary to
other works using unknown input observer, our approach does not require invertibility
conditions except on Yi which is inherently required by the proposed LMIs. Thus, no
rank condition is required for the existence of the unknown input observer to solve the
LMIs.
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3.3.2.2 Residual Evaluation:

In order to isolate the faulty element (the specific faulty agent and/or faulty link),
the residuals are evaluated by comparing them with an off-line computed threshold
defined hereafter. For this purpose, let us select the following RMS evaluation functions
[Ding 2008], ∀p ∈ Ni ∪ i

Jei,p(t) = ||rpi (t)||RMS

=
( 1
Tw

∫ t+Tw
t (rpi (τ))T rpi (τ)dτ

) 1
2
,

(3.86)

where Tw is a finite evaluation window with

rTi (t) = [(rii(t))T , (r
i1
i (t))T , ..., (riNi

i (t))T ],

and rpi (t) ∈ IRny ,∀p ∈ Ni ∪ i. Noise, disturbances, communication uncertainties (etc.)
are treated as unstructured unknown inputs and the RMS threshold is computed as

Jeipth
= sup

attack/fault free
||rpi (t)||RMS, (3.87)

where one could set Jeith = max{Jeiith
, ..., JeiiNi th

}. For isolation purpose, let us define
the secure detection flags πi, such that if Jei,i(t) 6 Jeith then πi = 0 and πi = 1
when Jei,i(t) > Jeith. An agent i is assumed to request the secure detection flag of its
neighbours when a fault or an attack has been detected through the generated residual
functions Jei,j(t), j ∈ Ni.

In order to summarise the proposed scheme, two algorithms are proposed here-
after. The optimisation Algorithm 2 is ran offline and proposes steps to compute the
observer matrix gains using a finite-frequency mixed H∞/H− approach by simultane-
ously combining Theorems 3.3-3.5 and Remark 3.3.5. Define the multi-objective cost
function

si = λi1ηi + λi2βi + λi3ϑi
λi4γi + λi5%i

, (3.88)

where λi1, λi2, λi3, λi4, λi5 are positive trade-off weighing constants.

Remark 3.3.7 It should be noted that Algorithm (3.88) ensures that the best solution
with respect to the cost function (3.88) is obtained. This renders the residual functions
as sensible as possible to the fault and attack signals while guaranteeing the best possi-
ble attenuation performance of the disturbances and communication uncertainties with
respect to the residual evaluation functions. It is also worth mentioning that the pro-
posed method introduces additional design variables to the optimisation problem (e.g.
matrix variables Yi), and no products between Lyapunov matrices (Pi, Qi or Xi) and
the observer matrices Ni. It allows the use of different Lyapunov matrices for each
Theorem, and solving Algorithm 1 with the common design variable Yi which, unlike
Lyapunov matrices, is only required to be nonsingular. This fact, along with the addi-
tion of variables σ1i, σ2i, σ3i and matrix Ki, allows more degree of freedom and reduces
the conservatism of the overall solution.
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Algorithm 2 Observer-Detector module parameter computation at agent i (offline)

1. Construct the local model (3.47)

2. Define ΩFi
and choose the multi-objective weights λi1, λi2, λi3, λi4 and λi5,

3. Set σ1i, σ2i, σ3i, Wi, Ki and εi,

4. Minimise si by simultaneously solving Theorems 3.3-3.5 and (3.85) in Remark
3.3.5,

5. Compute the observer matrix gains Si, Hi, Ni, G1i, G2i and Li from (3.62) and
Ti from (3.50a),

6. Compute the thresholds (3.87).

Algorithm 3 given in the following, is ran on-line and summarises the detection
and isolation logic where an agent i is said to be faulty if fai(t) 6= 0 and/or fsi(t) 6= 0.

Algorithm 3 Decision logic for agent i (online)

1. Apply the evaluation functions (3.86),

2. If ∃j ∈ Ni such that Jei,j(t) > Jeith, and Jei,i(t) 6 Jeith then request πj . If πj 6= 0
then node j is faulty,
else the link (i, j) incident to agent i is faulty,

3. If Jei,p(t) > Jeith, ∀p ∈ Ni ∪ i, then agent i is faulty. Request πj , j ∈ Ni, if πj 6= 0
then agent j is also
faulty, else the link {i, j} incident to node i is faulty,

4. If Jei,p(t) < Jeith, ∀p ∈ Ni ∪ i, then no fault/attack
has occurred.

3.3.3 Simulation Example

To show the effectiveness of the proposed algorithm, let us consider a heterogeneous
MAS composed of one-link flexible joint manipulator robots. In the following, there
are three followers labelled 1 to N = 3 and one virtual leader labelled 0. They are
connected according to the directed graph topology represented in Fig. 3.3. The
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associated adjacency matrix is given as

A =

0 0.5 0.5
1 0 0
0 0 0

 .

Figure 3.3: Communication topology.

Their dynamics is expressed as [Raghavan & Hedrick 1994]



θ̇mi = ωmi ,

ω̇mi = ki
Jmi

(θli − θMi)−
Bi
Jmi

ωmi + Kτi

Jmi

ui,

θ̇li = ωli ,

ω̇li = − ki
Jli

(θli − θMi)−
mighi
Jli

sin(θli),

where θmi is the rotation angle of the motor, θli is the rotation angle of the link, ωmi

and ωli are their angular velocities. The following table summarises the parameters.

Parameter Unit

Link inertia Jli kgm2

Motor inertia Jmi kgm2

Viscous friction coefficient Bi NmV −1

Amplifier gain Kτi NmV −1

Torsional spring constant ki Nm · rad−1

Link length hi m

Mass mi kg

Gravitational acceleration g ms−1

Table 3.2: Parameters and units.

By setting, for all i = 1, 2, 3, ξTi =
(
θmi ωmi θli ωli

)
=
(
xi1 xi2 xi3 xi4

)
and xT0 =

(
x01 x02 x03 x04

)
where x0 is the virtual leader state, the state space
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representation can be given as

Ai =



0 1 0 0

− ki
Jmi

− Bi
Jmi

ki
Jmi

0

0 0 0 1
ki
Jli

0 − ki
Jli

0


, Bui =


0
Kτi

Jmi

0
0

 ,

Bdi
=


0

0.1
0

0.5

 , ϕi(xi(t)) =


0
0
0

−migbi
Jli

sin(θli)

 ,

Bfi
= Bui , Df1 =

(
1
1

)
, Df2 = Df3 =

(
0
0

)
,

Dd1 =
(

0.05
0.1

)
, Dd2 =

(
0.1
0.2

)
, Dd3 =

(
0.5
0.7

)
,

C1 =
(

1 0 0 0
0 1 0 0

)
, C2 =

(
0 0 1 0
0 0 0 1

)
, C3 =

(
1 0 0 0
0 0 1 0

)
,

Dz13 = 1, Du13 = 1, Dz31 = 1, Du31 = 1, Dz12 = I, Du12 = 1, Dz21 = I, Du21 = 1.

In the following simulations, the parameter uncertainties are considered as
∆aij(t) = 0.1 sin(aijt) and the perturbations di(t) as Gaussian white noise with
values in [−0.2, 0.2]. For the followers, the parameters are chosen as m1 = m2 =
m3 = 0.21kg, k1 = 0.18Nm · rad−1, k2 = 0.1Nm · rad−1, k3 = 0.22Nm · rad−1,
B1 = 4.6 × 10−2NmV −1, B2 = 3.6 × 10−2NmV −1, B3 = 5.6 × 10−2NmV −1, Jm1 =
Jm2 = Jm3 = 3.7× 10−3kgm2, Jl1 = Jl2 = Jl3 = 9.3× 10−3kgm2, Kτ1 = 0.08NmV −1,
Kτ2 = 0.085NmV −1, Kτ3 = 0.09NmV −1, g = 9, 8m/s2, h = 0.3m. The leader pa-
rameters are given as m0 = 0.21kg, k0 = 0.18Nm · rad−1, B0 = 4.6 × 10−2NmV −1,
Jm0 = 3.7× 10−3kgm2, Jl0 = 9.3× 10−3kgm2, Kτ0 = 0.08NmV −1.

It is thus easy to verify that θM1 = θM2 = θM3 = 3.3. The initial condi-
tions are given as x0(0) = (0, 0, 0, 0), x1(0) = (0.1, 0, 0.2, 0), x2(0) = (0.5, 0, 0.1, 0),
x3(0) = (0.3, 0, 0.4, 0). In this example, a tweaked version of the leader-follower con-
trol algorithm proposed in [Ding & Zheng 2016] is used based on the estimated state:

ui = −Mi
[∑3

j=1 aij(x̂i − x̂
j
i ) + g0i(x̂i − ξ0)

]
,

where
x̂Tvi

=
(
x̂ii x̂i1i ... x̂

iNi
i

)
eTvi

=
(
eii ei1i ... e

iNi
i

)
=
(
eii1 ... eii4 e

iNi
i1 ... e

iNi
i4

)
,

x̂pi ∈ IR4, epi = ξp − x̂pi ∈ IR4, ∀p ∈ Ni ∪ i, Mi is a control gain matrix and g0i defines
the communication link between agent i and leader 0 (g0i = 1 when 0 communicates
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with i and g0i = 0 otherwise). The control gains are given as
M1 =

[
1.6207 0.2210 −0.5444 3.2570

]
,

M2 =
[
1.6924 0.2308 −0.5685 3.4011

]
,

M3 =
[
1.7642 0.2405 −0.5925 3.5452

]
.

The multi-objective weights are chosen as λi1 = λi2 = λi3 = λi4 = λi5 = 1, ∀i. The
vector F i is assumed to belong to the finite-frequency domain [0, 0.1). It is worth noting
that inequalities (3.60), (3.70), (3.79) and (3.85) can be solved using an appropriate
solver (YALMIP, etc. [Lofberg 2004]).

∀i ∈ {1, 2, 3}, Algorithm 2 is applied for σ1i = 1, σ2i = 0.2, σ3i = 0.1,
Ki = −2Bui , εi = 0.04 and Wi = I, yielding η1 = 0.2, β1 = 0.2, ϑ1 =
0.01, γ1 = 0.1, %1 = 0.81, η2 = 0.15, β2 = 0.15, ϑ2 = 0.02, γ2 = 0.1, %2 = 0.85,
η3 = 0.04, β3 = 0.4, ϑ3 = 0.01, γ3 = 0.7, %3 = 0.77.

Remark 3.3.8 It should be highlighted that the computation of the matrix gains is
done offline and once. Based on Theorems 3.3-3.5, for each agent, the observer matrix
gains are computed according to Algorithm 1. Therefore, a set of LMIs has to be
solved offline and once. One can note that the dimension and number of LMIs linearly
increase as the state and number of agents increase. Here, 4N LMIs (N is the number
of agents) should be solved. For an agent i, their dimensions are: (3nix + nifs

+ nifz
)×

(3nix + nifs
+ nifz

) for Theorem 3.3, (3nix + nifa
+ Ninfu) × (3nix + nifa

+ Ninfu) for
Theorem 3.4, (3nix + nid + niz + niu) × (3nix + nid + niz + niu) for Theorem 3.5 and
nix×nix for Remark 3.3.5. These dimensions are given in Table 3.3 for the illustrative
example. Additionally, for each agent, the size of the FDI modules (i.e. Eq. (3.48)) is
only dependent on the number of neighbouring agents regardless of the agents’ control
inputs, which makes the proposed scheme highly scalable.

Agent LMIST1 LMIST2 LMIST3 LMISR5
1 40× 40 39× 39 46× 46 12× 12
2 27× 27 26× 26 30× 30 8× 8
3 13× 13 13× 13 14× 14 4× 4

Table 3.3: LMI dimensions for each agent, where: LMIST1: LMI Size in Theorem
3.3, LMIST2: LMI Size in Theorem 3.4, LMIST3: LMI Size in Theorem 3.5, LMIST1:
LMI Size in Remark 3.3.5.

Remark 3.3.9 It is interesting to note that for implementation of the method pro-
posed in this Section, each agent sends its corrupted output and its corrupted control
input (dimension nu +ny). This can increase the communication cost in contrast with
[Davoodi et al. 2016] for instance, where the FDI modules only require estimated out-
puts to be broadcasted (dimension ny). However, as opposed to [Davoodi et al. 2016],
the proposed method does not require the agents to be equipped with relative information
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sensors. Indeed, requiring that the agents are equipped with both relative information
sensors and wireless communication modules, can limit the cost effectiveness of the
method proposed therein.

Let us consider hereafter two scenarios. In the first one, two faults occur in
the network: a sensor fault fs1(t) at agent 1 and an actuator fault fa3(t) at agent
3, as represented in Fig. 3.4. Figs. 3.5-3.7 show the generated residual evaluation
functions by agents 1, 2 and 3 respectively. The worst case analysis of the evaluation
functions corresponding to the non faulty operation of the network under disturbances
and uncertainties leads to the following thresholds Je1th = 0.048, Je2th = 0.03 and Je3th =
0.027 under the evaluation window Tw = 10s. It is usually not easy to accurately
compute the value of the supremum of the RMS function in (3.87) to simultaneously
prevent false alarms and avoid missed detections.

Figure 3.4: Faults signal in scenario 1.

Figure 3.5: Residual evaluation functions at agent 1 in scenario 1. The dashed red
lines represent the threshold.

Remark 3.3.10 As such, a series of Monte-Carlo simulations have been conducted
where the supremum of the RMS function in (3.87) is calculated under the healthy
operation of the MAS, with different noises, disturbances and uncertainties. The cor-
responding maximum value has been taken as an appropriate threshold. The sampling
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Figure 3.6: Residual evaluation functions at agent 2 in scenario 1.

period is set as Ts = 10−1 s. One could see from Figs. 3.5-3.7 that the faults could
be clearly distinguished. Additionally, according to Algorithm 3, one can see from Fig.
3.5 that all generated functions Je1,1(t), Je1,2(t) and Je1,3(t) increase at around t = 20s
and exceed the defined threshold due to the sensor fault fs1(t) occurring at agent 1.
This confirms that a fault has occurred at agent 1. Fig. 3.6 further confirms this, since
only Je2,1(t) increases due to this fault. At t = 40s, the actuator fault fa3(t) occurs at
agent 3, where one can see in Fig. 3.5 that agent 1 detects it (its residual evaluation
function for agent 3, i.e. Je1,3(t), is greater than Je1th even though both Je1,1(t) and
Je1,2(t) are lower that Je1th). Hence, according to Algorithm 3, agent 1 can distinguish
that the fault fs1(t) has disappeared and that agent 3 is now faulty. This is confirmed
for agent 3 in Fig. 3.7.

It is worth mentioning that the sensor fault matrices Df2 and Df3 are not full
column rank. Hence, the methods proposed in [Davoodi et al. 2016, Li et al. 2021] for
instance, cannot be applied. Moreover, the effectiveness of the proposed method has
been shown for heterogeneous MASs under directed topologies. Besides, compared with
the decentralised observer proposed in [Chen & Lin 2014] for example, in which faults
occurring at agent i can only be detected by the agent itself, our distributed observer
can detect both the agent’s faults and its neighbours’ faults. At last, it can be noticed
that the matching condition, i.e. rank(CiBfi

) = nfa, required in many existing works
(e.g. [Zhang et al. 2015]), is not needed in our methodology. Indeed, this condition is
not satisfied for agents 2 and 3.

In the second scenario, two types of faults are considered: a data injection attack
incident to agent 1 targeting the link going from agent 3 to 1, i.e. fz13(t) = fu13(t)
occurring at 15s 6 t 6 40s, and a replay attack incident to agent 2 at the link going
from agent 1 to 2 at t = 70s, i.e. fz21(t) and fu21(t) with a delay of T12 = 70s. fz13(t),
fu13(t), fz21(t) and fu21(t) are represented in Fig. 3.8. Figs. 3.9-3.11 show the generated
evaluation functions by agents 1, 2 and 3 respectively in the second scenario. The worst
case analysis of the evaluation functions corresponding to the attack-less operation of
the network under disturbances and uncertainties leads to the following thresholds
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Figure 3.7: Residual evaluation functions at agent 3 in scenario 1.

Je1th = 0.016, Je2th = 0.017, Je3th = 0.02. It is clear from the evaluation functions that

Figure 3.8: Simulated attack signals in scenario 2, where fz21(t) = [fz21,1(t), fz21,2(t)]T .

Figure 3.9: Residual evaluation functions at agent 1 in scenario 2.

the attacks can be distinguished when surpassing the computed thresholds. Indeed,
from Fig. 3.9, one can see that the data injection attack in the link from 3 to 1 has
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been detected according to Algorithm 3. It is confirmed that this fault is an edge fault
upon requesting agent 3’s detection flag, as Je3,3 stays below the defined threshold
throughout the duration of the attack. From Fig. 3.10, the replay attack in the link
from agent 1 to 2 has been detected by Je2,1(t) at t = 70s which is confirmed by the
fact that Je1,1 does not react to the attack.

Figure 3.10: Residual evaluation functions at agent 2 in scenario 2.

Figure 3.11: Residual evaluation functions at agent 3 in scenario 2.

The control efforts corresponding to the faultless case and scenario 1 and 2 are
depicted in Fig. 3.12. Figs. 3.13-3.15 shows the estimation errors generated by the FDI
modules for agents 1, 2 and 3 respectively. It can clearly be seen that the estimation
errors converge to zero in the absence of any fault or attack.

From these simulations, it can be seen that the proposed FDI scheme is able to
detect and isolate attacks, actuator faults and sensor faults in the presence of distur-
bances, noise and communication uncertainties.

One can make the remark on the potential use of the proposed scheme for recon-
figuration purposes. Hence, in order to avoid the leader follower tracking error from
suffering from the attacks by preventing further catastrophic effects after detection,
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(a) (b)

(c)

Figure 3.12: Control efforts in: (a) the faultless case, (b) scenario 1 and (c) scenario 2.

we propose removing the faulty link from the control algorithm. The new proposed
algorithm can be rewritten as

ui = −Mi
[∑3

j=1 aijEij(t)(x̂i − x̂
j
i ) + g0i(x̂i − x0)

]
where

Eij(t) =
{

1 Jej,i(t) < Jeith,

0 otherwise

For this, it is necessary to make the further assumption that after a link interruption,
the topology graph stays connected, i.e., the leader is still the root of the graph. The
difference between the tracking errors in case of the persistence of faulty edges and
their removal is shown in Figures 3.16-3.18 and Figures 3.19-3.21 respectively. It can
be seen that the leader follower consensus is reached when the edges under attack are
removed, whereas the consensus cannot be reached in the occurrence of an attack.
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(a) (b)

(c)

Figure 3.13: Estimation errors in the faultless and attackless case at: (a) agent 1, (b)
agent 2 and (c) agent 3.

3.4 Conclusions

In this Chapter, a new approach for actuator FDI in MASs with linear dynamics using
relative information has been proposed, where output observers has been developed in
Section 3.2. It was shown that the proposed FDI scheme can detect and isolate faulty
agents in every neighbourhood using knowledge on the input-output relations. In Sec-
tion 3.3, the problem of FDI in Lipschitz nonlinear MASs with disturbances, subject
to actuator, sensor and communication faults has been addressed. A multi-objective
finite-frequency H−/H∞ design along with nonlinear UIOs have been proposed. Suf-
ficient conditions have been derived in terms of a set of LMIs. The combination of
UIOs, removal of strict rank conditions and finite-frequency method has been shown
to provide extra degrees of freedom in the FDI filter design. Additionally, the multi-
objective method guarantees that the evaluation functions are robust with respect to
all admissible disturbances and uncertainties and sensitive to all types of faults. Illus-
trative numerical examples have been studied in order to showcase the effectiveness of
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(a) (b)

(c)

Figure 3.14: Estimation errors in scenario 1 at: (a) agent 1, (b) agent 2 and (c) agent
3.

the proposed schemes.
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(a) (b)

(c)

Figure 3.15: Estimation errors in scenario 2 at: (a) agent 1, (b) agent 2 and (c) agent
3.

Figure 3.16: Tracking error at agent 1 in the presence of attacks.
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Figure 3.17: Tracking error at agent 2 in the presence of attacks.

Figure 3.18: Tracking error at agent 3 in the presence of attacks.

Figure 3.19: Tracking error at agent 1 in the presence of attacks when the faulty edge
{1, 3} is removed at t = 17s.
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Figure 3.20: Tracking error at agent 2 in the presence of attacks when the faulty edge
{2, 1} is removed at t = 70.1s.

Figure 3.21: Tracking error at agent 3 in the presence of attacks.
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CHAPTER4
General Conclusions and
Perspectives

4.1 General Conclusions

The main focus of this thesis was the study of distributed fault and attack detection
and isolation in connected MASs. It was shown from the state of the art that most of
the existing FDI schemes suffer from various limitations with respect to different chal-
lenges such as FDI for MASs with temporal constraints, FDI for MASs with switching
topologies, FDI for MASs with heterogeneous agents and directed topologies and FDI
for MASs subject to cyber-attacks and physical faults. As such different novel dis-
tributed and robust algorithms have been proposed in order to tackle these issues.
The main results of this dissertation are summarised as follows

• Chapter 1 presented some basic introductory concepts with regards to MASs,
attack and FDI in MASs and their applications were given. Basic algebraic
graph theory concepts and some useful mathematical tools were presented for
describing the communication topology among agents in a MAS. Additionally,
a brief literature review and state of the art of recent works on attack and FDI
in the context of connected MASs was conducted, various limitations of these
works were identified, and the motivation of the thesis was thoroughly stated.

• Chapter 2 was concerned with global robust attack and FDI in connected MASs,
using the fixed-time property in order to tackle the problem of transient be-
haviour, facilitate the residual generation process and allow for fast convergence
in switching topology settings. First in Section 2.3 of the Chapter, a distributed
methodology for the detection of actuator faults in a class of linear MASs with
unknown disturbances was proposed, whose main features are highlighted in the
following. The formulation of the distributed actuator FDI problem for a class
of linear MASs with disturbances is performed through the use of a cascade of
fixed-time SMOs, where each agent having access to their state, and neighbouring
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information exchanges, can give an exact estimate of the state of the overall MAS.
An LMI-based approach is applied to design distributed global residual signals
at each agent, based on mixed H_/H∞ norms. The above combined approaches
allow treating the actuator fault detection problem while keeping a distributed
design approach, as information obtained by each interacting agent only comes
from its neighbours. Then, in Section 2.4 of the Chapter, the previous point is ex-
tended to nonholonomic systems, where a new distributed robust fault detection
scheme for MASs composed of agents with nonlinear nonholonomic dynamics
was proposed. In this proposed scheme, the use of predefined-time stability tech-
niques to derive adequate distributed SMOs was investigated, which enable to
reconstruct the global system state in a predefined-time and generate proper
residual signals. The proposed scheme ensures global fault detection, where each
agent is capable of detecting its own faults and those occurring elsewhere in the
system using only local information (contrary to most of the existing works).
Finally, in Section 2.5 of the Chapter, the results obtained in the first point are
extended to the case of MASs with higher order integrator dynamics, where only
the first state variable is measurable. Here, a new approach to identify faults
and deception attacks in a cooperating MASs with a switching topology is intro-
duced. The proposed protocol makes an agent act as a central node monitoring
the whole system activities in a distributed fashion whereby a bank of distributed
predefined-time SMOs for global state estimation are designed, which are then
used to generate residual signals capable of identifying cyber-attacks despite the
switching topology. In all of the proposed proposed algorithms in Chapter 2, the
input command is assumed not to be transmitted.

• Chapter 3 was concerned with the problem of attack and FDI in connected het-
erogeneous MASs where the undirected topology restriction was removed. In
Section 3.2 of the Chapter, the problem of distributed fault detection for a team
of heterogeneous MASs with linear dynamics was solved, where a new output
observer scheme was proposed which was effective for both directed and undi-
rected topologies. The main advantage of this approach is that the design, being
dependant only on the input-output relations, renders the computational cost,
information exchange and scalability very effective compared to other FDI ap-
proaches that employ the whole state estimation of the agents and their neigh-
bours as a basis for their design. In Section 3.3 of the Chapter, a more general
model was studied, where actuator, sensor and communication faults/attacks
are considered in the robust detection and isolation process for nonlinear hetero-
geneous MASs with disturbances and communication parameter uncertainties,
where the topology was not required to be undirected. This was done using a
distributed finite-frequency mixed H_/H∞ nonlinear UIO-based approach.

• Simulation examples were given for each of the proposed algorithms to show their
effectiveness and robustness.
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4.2 Future Perspectives

It is evident that despite the results that have been obtained in this dissertation, there
exists various aspects that could be further studied in future works. Some of these
topics constituting future research are highlighted in the following

• In Chapter 2, the communication topologies are assumed to be undirected. This
assumption that the methods proposed therein rely on, could be relaxed and
extended to the case of MASs switching directed communication topologies.

• The fixed-time property has been used in developing FDI schemes for homoge-
neous MASs. This could be extended to heterogeneous MASs. Additionally,
one interesting prospect, is the design of fault and/or attack tolerant control
protocols based on information provided by the fixed-time observers.

• In Chapter 3, instead of considering Lipschitz nonlinear systems, one could in-
vestigate other classes of nonlinear uncertain systems including chained-form
dynamics. Furthermore, the Chapter studies schemes for the case where the
topology is fixed. The extension of these results to the case of detection and
isolation under switching topologies could be envisaged.

• The potential of the proposed schemes in reconfiguration was shown in Chapter
3, hence, based on the proposed FDI schemes in this thesis, it would be possible
to design some attack and fault accommodation and reconfiguration strategies
in connected MASs.

• The algorithms proposed in this thesis consider the information exchanges to be
received with synchronously and with no delays. Hence, an interesting scope is
to study such schemes for the case where information is received with a certain
delay. Moreover, discretisation of the proposed algorithms and experimental
validation could be considered in future work.
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