9 research outputs found

    Vector quantization

    Get PDF
    During the past ten years Vector Quantization (VQ) has developed from a theoretical possibility promised by Shannon's source coding theorems into a powerful and competitive technique for speech and image coding and compression at medium to low bit rates. In this survey, the basic ideas behind the design of vector quantizers are sketched and some comments made on the state-of-the-art and current research efforts

    Design of finite-state machines for quantization using simulated annealing

    Get PDF
    In this paper, the combinatorial optimization algorithm known as simulated annealing is used for the optimization of the trellis structure or the next-state map of the decoder finite-state machine in trellis waveform coding. The generalized Lloyd algorithm which finds the optimum codebook is incorporated into simulated annealing. Comparison of simulation results with previous work in the literature shows that this combined method yields coding systems with good performance

    On Multiple Description Coding of Sources with Memory

    Full text link

    Power series quantization for noisy channels

    Full text link

    Some new developments in image compression

    Get PDF
    This study is divided into two parts. The first part involves an investigation of near-lossless compression of digitized images using the entropy-coded DPCM method with a large number of quantization levels. Through the investigation, a new scheme that combines both lossy and lossless DPCM methods into a common framework is developed. This new scheme uses known results on the design of predictors and quantizers that incorporate properties of human visual perception. In order to enhance the compression performance of the scheme, an adaptively generated source model with multiple contexts is employed for the coding of the quantized prediction errors, rather than a memoryless model as in the conventional DPCM method. Experiments show that the scheme can provide compression in the range from 4 to 11 with a peak SNR of about 50 dB for 8-bit medical images. Also, the use of multiple contexts is found to improve compression performance by about 25% to 35%;The second part of the study is devoted to the problem of lossy image compression using tree-structured vector quantization. As a result of the study, a new design method for codebook generation is developed together with four different implementation algorithms. In the new method, an unbalanced tree-structured vector codebook is designed in a greedy fashion under the constraint of rate-distortion trade-off which can then be used to implement a variable-rate compression system. From experiments, it is found that the new method can achieve a very good rate-distortion performance while being computationally efficient. Also, due to the tree-structure of the codebook, the new method is amenable to progressive transmission applications

    Multi-image classification and compression using vector quantization

    Get PDF
    Vector Quantization (VQ) is an image processing technique based on statistical clustering, and designed originally for image compression. In this dissertation, several methods for multi-image classification and compression based on a VQ design are presented. It is demonstrated that VQ can perform joint multi-image classification and compression by associating a class identifier with each multi-spectral signature codevector. We extend the Weighted Bayes Risk VQ (WBRVQ) method, previously used for single-component images, that explicitly incorporates a Bayes risk component into the distortion measure used in the VQ quantizer design and thereby permits a flexible trade-off between classification and compression priorities. In the specific case of multi-spectral images, we investigate the application of the Multi-scale Retinex algorithm as a preprocessing stage, before classification and compression, that performs dynamic range compression, reduces the dependence on lighting conditions, and generally enhances apparent spatial resolution. The goals of this research are four-fold: (1) to study the interrelationship between statistical clustering, classification and compression in a multi-image VQ context; (2) to study mixed-pixel classification and combined classification and compression for simulated and actual, multispectral and hyperspectral multi-images; (3) to study the effects of multi-image enhancement on class spectral signatures; and (4) to study the preservation of scientific data integrity as a function of compression. In this research, a key issue is not just the subjective quality of the resulting images after classification and compression but also the effect of multi-image dimensionality on the complexity of the optimal coder design

    Proceedings of the Scientific Data Compression Workshop

    Get PDF
    Continuing advances in space and Earth science requires increasing amounts of data to be gathered from spaceborne sensors. NASA expects to launch sensors during the next two decades which will be capable of producing an aggregate of 1500 Megabits per second if operated simultaneously. Such high data rates cause stresses in all aspects of end-to-end data systems. Technologies and techniques are needed to relieve such stresses. Potential solutions to the massive data rate problems are: data editing, greater transmission bandwidths, higher density and faster media, and data compression. Through four subpanels on Science Payload Operations, Multispectral Imaging, Microwave Remote Sensing and Science Data Management, recommendations were made for research in data compression and scientific data applications to space platforms

    High efficiency block coding techniques for image data.

    Get PDF
    by Lo Kwok-tung.Thesis (Ph.D.)--Chinese University of Hong Kong, 1992.Includes bibliographical references.ABSTRACT --- p.iACKNOWLEDGEMENTS --- p.iiiLIST OF PRINCIPLE SYMBOLS AND ABBREVIATIONS --- p.ivLIST OF FIGURES --- p.viiLIST OF TABLES --- p.ixTABLE OF CONTENTS --- p.xChapter CHAPTER 1 --- IntroductionChapter 1.1 --- Background - The Need for Image Compression --- p.1-1Chapter 1.2 --- Image Compression - An Overview --- p.1-2Chapter 1.2.1 --- Predictive Coding - DPCM --- p.1-3Chapter 1.2.2 --- Sub-band Coding --- p.1-5Chapter 1.2.3 --- Transform Coding --- p.1-6Chapter 1.2.4 --- Vector Quantization --- p.1-8Chapter 1.2.5 --- Block Truncation Coding --- p.1-10Chapter 1.3 --- Block Based Image Coding Techniques --- p.1-11Chapter 1.4 --- Goal of the Work --- p.1-13Chapter 1.5 --- Organization of the Thesis --- p.1-14Chapter CHAPTER 2 --- Block-Based Image Coding TechniquesChapter 2.1 --- Statistical Model of Image --- p.2-1Chapter 2.1.1 --- One-Dimensional Model --- p.2-1Chapter 2.1.2 --- Two-Dimensional Model --- p.2-2Chapter 2.2 --- Image Fidelity Criteria --- p.2-3Chapter 2.2.1 --- Objective Fidelity --- p.2-3Chapter 2.2.2 --- Subjective Fidelity --- p.2-5Chapter 2.3 --- Transform Coding Theroy --- p.2-6Chapter 2.3.1 --- Transformation --- p.2-6Chapter 2.3.2 --- Quantization --- p.2-10Chapter 2.3.3 --- Coding --- p.2-12Chapter 2.3.4 --- JPEG International Standard --- p.2-14Chapter 2.4 --- Vector Quantization Theory --- p.2-18Chapter 2.4.1 --- Codebook Design and the LBG Clustering Algorithm --- p.2-20Chapter 2.5 --- Block Truncation Coding Theory --- p.2-22Chapter 2.5.1 --- Optimal MSE Block Truncation Coding --- p.2-24Chapter CHAPTER 3 --- Development of New Orthogonal TransformsChapter 3.1 --- Introduction --- p.3-1Chapter 3.2 --- Weighted Cosine Transform --- p.3-4Chapter 3.2.1 --- Development of the WCT --- p.3-6Chapter 3.2.2 --- Determination of a and β --- p.3-9Chapter 3.3 --- Simplified Cosine Transform --- p.3-10Chapter 3.3.1 --- Development of the SCT --- p.3-11Chapter 3.4 --- Fast Computational Algorithms --- p.3-14Chapter 3.4.1 --- Weighted Cosine Transform --- p.3-14Chapter 3.4.2 --- Simplified Cosine Transform --- p.3-18Chapter 3.4.3 --- Computational Requirement --- p.3-19Chapter 3.5 --- Performance Evaluation --- p.3-21Chapter 3.5.1 --- Evaluation using Statistical Model --- p.3-21Chapter 3.5.2 --- Evaluation using Real Images --- p.3-28Chapter 3.6 --- Concluding Remarks --- p.3-31Chapter 3.7 --- Note on Publications --- p.3-32Chapter CHAPTER 4 --- Pruning in Transform Coding of ImagesChapter 4.1 --- Introduction --- p.4-1Chapter 4.2 --- "Direct Fast Algorithms for DCT, WCT and SCT" --- p.4-3Chapter 4.2.1 --- Discrete Cosine Transform --- p.4-3Chapter 4.2.2 --- Weighted Cosine Transform --- p.4-7Chapter 4.2.3 --- Simplified Cosine Transform --- p.4-9Chapter 4.3 --- Pruning in Direct Fast Algorithms --- p.4-10Chapter 4.3.1 --- Discrete Cosine Transform --- p.4-10Chapter 4.3.2 --- Weighted Cosine Transform --- p.4-13Chapter 4.3.3 --- Simplified Cosine Transform --- p.4-15Chapter 4.4 --- Operations Saved by Using Pruning --- p.4-17Chapter 4.4.1 --- Discrete Cosine Transform --- p.4-17Chapter 4.4.2 --- Weighted Cosine Transform --- p.4-21Chapter 4.4.3 --- Simplified Cosine Transform --- p.4-23Chapter 4.4.4 --- Generalization Pruning Algorithm for DCT --- p.4-25Chapter 4.5 --- Concluding Remarks --- p.4-26Chapter 4.6 --- Note on Publications --- p.4-27Chapter CHAPTER 5 --- Efficient Encoding of DC Coefficient in Transform Coding SystemsChapter 5.1 --- Introduction --- p.5-1Chapter 5.2 --- Minimum Edge Difference (MED) Predictor --- p.5-3Chapter 5.3 --- Performance Evaluation --- p.5-6Chapter 5.4 --- Simulation Results --- p.5-9Chapter 5.5 --- Concluding Remarks --- p.5-14Chapter 5.6 --- Note on Publications --- p.5-14Chapter CHAPTER 6 --- Efficient Encoding Algorithms for Vector Quantization of ImagesChapter 6.1 --- Introduction --- p.6-1Chapter 6.2 --- Sub-Codebook Searching Algorithm (SCS) --- p.6-4Chapter 6.2.1 --- Formation of the Sub-codebook --- p.6-6Chapter 6.2.2 --- Premature Exit Conditions in the Searching Process --- p.6-8Chapter 6.2.3 --- Sub-Codebook Searching Algorithm --- p.6-11Chapter 6.3 --- Predictive Sub-Codebook Searching Algorithm (PSCS) --- p.6-13Chapter 6.4 --- Simulation Results --- p.6-17Chapter 6.5 --- Concluding Remarks --- p.5-20Chapter 6.6 --- Note on Publications --- p.6-21Chapter CHAPTER 7 --- Predictive Classified Address Vector Quantization of ImagesChapter 7.1 --- Introduction --- p.7-1Chapter 7.2 --- Optimal Three-Level Block Truncation Coding --- p.7-3Chapter 7.3 --- Predictive Classified Address Vector Quantization --- p.7-5Chapter 7.3.1 --- Classification of Images using Three-level BTC --- p.7-6Chapter 7.3.2 --- Predictive Mean Removal Technique --- p.7-8Chapter 7.3.3 --- Simplified Address VQ Technique --- p.7-9Chapter 7.3.4 --- Encoding Process of PCAVQ --- p.7-13Chapter 7.4 --- Simulation Results --- p.7-14Chapter 7.5 --- Concluding Remarks --- p.7-18Chapter 7.6 --- Note on Publications --- p.7-18Chapter CHAPTER 8 --- Recapitulation and Topics for Future InvestigationChapter 8.1 --- Recapitulation --- p.8-1Chapter 8.2 --- Topics for Future Investigation --- p.8-3REFERENCES --- p.R-1APPENDICESChapter A. --- Statistics of Monochrome Test Images --- p.A-lChapter B. --- Statistics of Color Test Images --- p.A-2Chapter C. --- Fortran Program Listing for the Pruned Fast DCT Algorithm --- p.A-3Chapter D. --- Training Set Images for Building the Codebook of Standard VQ Scheme --- p.A-5Chapter E. --- List of Publications --- p.A-
    corecore