1,427 research outputs found

    Exponential Lag Synchronization of Cohen-Grossberg Neural Networks with Discrete and Distributed Delays on Time Scales

    Full text link
    In this article, we investigate exponential lag synchronization results for the Cohen-Grossberg neural networks (C-GNNs) with discrete and distributed delays on an arbitrary time domain by applying feedback control. We formulate the problem by using the time scales theory so that the results can be applied to any uniform or non-uniform time domains. Also, we provide a comparison of results that shows that obtained results are unified and generalize the existing results. Mainly, we use the unified matrix-measure theory and Halanay inequality to establish these results. In the last section, we provide two simulated examples for different time domains to show the effectiveness and generality of the obtained analytical results.Comment: 20 pages, 18 figure

    Bidirectional Reactive Programming for Machine Learning

    Full text link
    Reactive languages are dedicated to the programming of systems which interact continuously and concurrently with their environment. Values take the form of unbounded streams modeling the (discrete) passing of time or the sequence of concurrent interactions. While conventional reactivity models recurrences forward in time, we introduce a symmetric reactive construct enabling backward recurrences. Constraints on the latter allow to make the implementation practical. Machine Learning (ML) systems provide numerous motivations for all of this: we demonstrate that reverse-mode automatic differentiation, backpropagation, batch normalization, bidirectional recurrent neural networks, training and reinforcement learning algorithms, are all naturally captured as bidirectional reactive programs

    Modeling Events and Interactions through Temporal Processes -- A Survey

    Full text link
    In real-world scenario, many phenomena produce a collection of events that occur in continuous time. Point Processes provide a natural mathematical framework for modeling these sequences of events. In this survey, we investigate probabilistic models for modeling event sequences through temporal processes. We revise the notion of event modeling and provide the mathematical foundations that characterize the literature on the topic. We define an ontology to categorize the existing approaches in terms of three families: simple, marked, and spatio-temporal point processes. For each family, we systematically review the existing approaches based based on deep learning. Finally, we analyze the scenarios where the proposed techniques can be used for addressing prediction and modeling aspects.Comment: Image replacement

    A combined experimental and computational approach to investigate emergent network dynamics based on large-scale neuronal recordings

    Get PDF
    Sviluppo di un approccio integrato computazionale-sperimentale per lo studio di reti neuronali mediante registrazioni elettrofisiologich
    corecore