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Finite-time State Estimation for Delayed Neural
Networks with Redundant Delayed Channels

Zhongyi Zhao, Zidong Wang, Lei Zou and Ge Guo

Abstract—The finite-time state estimation issue is addressed
in this work for discrete time-delayed neural networks. More
than one communication channel is utilized to improve the
communication performance. The transmission delays of each
channel are modeled by a family of stochastic variables which
are independent and identically distributed. The main purpose of
the current work is to construct an appropriate state estimation
scheme under which the corresponding state estimation error
dynamics is finite-time bounded in the mean square. By employ-
ing the stochastic analysis approach and introducing a special
Lyapunov-like functional, we have developed certain sufficient
conditions to achieve the prescribed estimation performance.
Furthermore, the exact expressions of the achieved estimator
parameters are given by solving a special minimization problem
subject to certain inequality constraints. Finally, we propose an
illustrative simulation to examine the correctness as well as the
effectiveness of our proposed state estimation method.

Index Terms—Delayed neural networks, redundant delayed
channels, state estimation, finite-time boundedness

I. I NTRODUCTION

A tremendous amount of research interest have been wit-
nessed in past several decades in neural networks (NNs)
due primarily to their strong self-learning ability adapting to
complex environment as well as their application potentials in
multi-objective optimization and control issues. So far, plenty
of successful applications of NNs have been found in various
of practical areas including the automation control, pattern
recognition, signal processing and optimization calculation [5],
[11], [15], [27], [28], [35]. In recent several years, plenty
of important research results have been derived on various
analysis issues of the dynamic behaviors for NNs (such as
stability, passivity analysis and synchronization), see e.g. [20]–
[22], [30], [33]. Furthermore, It is worth pointing out that
time delays would always exist in signal transmission for
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many artificial NNs and the effects of time delays might give
rise to undesired oscillation and even the instability of the
NNs. Accordingly, the dynamic behaviors of delayed NNs
have been extensively considered and a significant number
of valuable research results have appeared in the literature,
see [7], [16], [23], [24], [31], [44]. Among others, a research
topic that has been drawing particular research attention is
the state estimation/filtering issue for NNs with various time
delays (e.g. distributed, discrete and mixed delays).

As a hot research topic in signal processing and control
areas, state estimation/filtering issue has gained significant
research interest due primarily to their wide application in
industry [2], [29]. For NNs, the state information is always
necessary for dealing with certain tasks including optimization
and control. Unfortunately, the state information of NNs might
not be always fully available (or accessible) due to a number
of reasons (e.g. the large network size and the resource
constraints). As such, the state estimation problem from
available network measurements becomes critically important
for successful utilization of NNs in engineering practice. By
now, different state estimation schemes have been developed
which include, but are not limited to, the well-known Kalman
filtering [13], [18], the H∞ state estimation [9], [41] and
the set-membership state estimation [10], [42] approaches.
To mention just a few, the Kalman filtering technique has
been recognized as a credible estimation method to deal
with linear systems with Gaussian noises, but it might lead
to unsatisfactory performance if the external noises are not
strictly Gaussian. For the system with energy-bounded noises,
theH∞ state estimation is an ideal estimation scheme which
aims to provide a fixed disturbance attenuation level on the
state estimation error. Furthermore, the set-membership state
estimation method is able to handle the estimation task for
systems with unknown-but-bounded noises, which guarantees
that the SEE is confined to certain ellipsoid at each time step.

In most existing results concerning the state estimation
issues, the asymptotic (or exponential) stability is the main
concern that represents a type ofsteady-statebehavior defined
in the infinite-time horizon [3], [8]–[10], [12], [37], [41], [42].
Transient properties, on the other hand, are vitally important
as well for some engineering applications. In many practical
systems, it is always required that the system could achieve
certain transient properties (e.g. finite-time convergence) over
a finite horizon with guaranteed steady-state properties, and
therefore it makes practical sense to study the transient behav-
iors over the finite time interval. Consequently, the so-called
finite-time stability (FTS), finite-time boundedness (FTB) and
finite-time tracking (FTT) have recently attracted quite a lot
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of research attention [13], [34], [38]–[40]. Compared with the
well-investigated FTS, the aim of the FTB is to ensure that
the state trajectory could reach a bounded set within certain
given finite time. It is worth mentioning that, in practical
engineering, FTB is sometimes more reasonable since the
stability might be difficult to achieve due to various reasons
such as persistently bounded disturbances. Up to now, various
FTB control/estimation problems have started to attract some
initial research interest, see e.g. [34], [36], [39]. For instance,
in [39], the finite-time state estimation (FTSE) problem for
recurrent delayed NNs subject to component-based event-
triggered communication has been examined. In order to
quantify the estimation performance, a special performance
named finite-time bounded in the mean square (FTBMS) has
been proposed in [39] where the desired estimator parameter
has been obtained through solving a constrained optimization
problem. In [36], theH∞ control issue has been addressed
for a certain type of Markovian jump systems subject to
the average dwell time switching, in which the time-varying
transition probability is partly unknown. Sufficient conditions
for the FTB of the concerned Markovian jump system have
been derived under which the system trajectory is enforced to
stay within a prescribed bound.

In response to the rapid development of networked com-
munication, more and more signal transmissions are imple-
mented via the communication network. As such, increasing
research efforts have been devoted to the analysis and synthesis
problems with different network-induced effects including
network-induced delays, signal quantization, channel fading,
packet dropouts [1], [6], [14], [17], [43], [45]. For example,
in [6], partly known distribution transmission delays have
been considered and the correspondingH∞ filtering issue of
networked systems has been studied. For artificial NNs, it is
often the case that we are only able to acquire the observations
(e.g. the measurement data) transmitted via network channels
(e.g. communication networks with limited bandwidth) with
certain communication constraints. As such, the state estima-
tion problems for NNs with network-based communication
have recently gained particular research attention. In order
to enhance the reliability of transmitted information, a novel
network-based communication scheme called redundant chan-
nel communication has been employed in [14] to cope with the
H∞ state estimation issue. In such a communication scheme,
one more channel is adopted as a redundant one aiming to re-
duce the possibility of packet losses in the single-channel case.
In [43], the distributedH∞ filtering problem with redundant
channels has been addressed for a type of Markov jump Lur’e
systems subject to stochastic switching topologies over sensor
networks. Generally speaking, communication over redundant
channels is a good scheme to improve the communication
performance since more information could be employed for es-
timation tasks as compared with the signal channel. It is worth
mentioning that, current research works about the redundant
channels have only considered redundant channels with packet
dropouts. As far as the authors’ knowledge goes, the research
on the redundant channels with transmission delays has not
yet been fully studied despite its explicit practical insight in
communication and control areas. This leads to the primary

motivation of our study.
According to the above discussions, in this work, we shall

consider the FTSE problem for a type of delayed NNs with
redundant delayed channels. This is a non-trivial task because
of the following two identified difficulties: 1) how to design
the state estimator for the considered neural networks under
the effects of redundant delayed channels? and 2) how to
achieve the desired estimator parameters to guarantee that the
desired finite-time performance requirement is satisfied? The
main purpose of this paper to provide satisfactory answers to
these two questions.Following are the primary contributions
of the current work. (1) The state estimation issue is, for the
first time, investigated for NNs subject to delayed redundant
channels. (2) A novel SE is developed for dealing with the
finite-time state estimation (FTSE) issue. (3) An optimization
problem is addressed to achieve the desired estimator param-
eters by minimizing the settling-like time (SLT).

The remaining parts of this work are summarized as follows.
The mathematical model of our considered problem is present-
ed in Section II including the mechanism of redundant delayed
channels. Then, in Section III, we achieve sufficient conditions
to deal with the FTB problem for the state estimation error
(SEE) in the mean square by solving a special constrained op-
timization issue. Section IV provide an illustrative simulation
example to confirm the correctness as well as the effectiveness
of the developed estimation method. Section V is a summary
of this paper.

Notation: The notation utilized in this work is quite stan-
dard. In this work,Z+ stands for the set of all nonnegative
integers.Rn×m denotes the set of alln×m real-valued matri-
ces.Rn represents then-dimensional Euclidean space. If the
dimension of a matrix is not specified, it means that the matrix
has compatible dimension. The superscript “T ” denotes matrix
transposition.0 and I denotes, respectively, the zero matrix
and identity matrix with appropriate dimensions. The notation
S ≤ 0 (respectively,S < 0) denotes thatS is a real symmet-
ric and negative semi-definite (respectively, negative definite)
matrix. The notation‖F‖ denotes the usual Euclidean norm of
vectorF . The asterisk “∗” is utilized to denote a term which
is induced by symmetry in symmetric block matrices.E {x}
denotes expectation ofx. The block-diagonal matrix is denoted
by diag{...}. diagn{X} represents the special block-diagonal
matrix with the same blockX (i.e. diag{X,X, · · · , X︸ ︷︷ ︸

n

}).

vecn{Xi} denotes
[
XT

1 XT
2 · · · XT

n

]T
. ⌈.⌉ denotes top

integral function.δ denotes Kronecker delta function of which

definition is δ(i) =

{
1, i = 0
0, i 6= 0

.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this work, we consider a special type of delayed discrete-
time NNs with noise disturbance of the following form:




x(k + 1) =Ax(k) + Ff(x(k)) +Bω(k)

+Gg(x(k − d(k))) + J(k)

y(k) =Cx(k)

z(k) =Lx(k)

x(k) =φ(k), 0 ≥ k ≥ −max{d(k)}

(1)
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where x(k) ∈ Rnx is the neural state vector;f(x(k)) =
vecnx

{fi(xi(k))} andg(x(k)) = vecnx
{gi(xi(k))} denote the

nonlinear activation function;ω(k) stands for a Gaussian noise
satisfying the conditionsE{ω2(k)} = 1 andE {ω(k)} = 0;
J(k) ∈ Rnx is the external bias;y(k) ∈ Rny represents
the output of the neurons;z(k) ∈ Rnz means the signal
to be estimated;φ(k) represents the initial condition.A =
diag{a1, a2, · · · , anx

} denotes the state feedback coefficient
matrix; G andF denote, respectively, the delayed connection
weight matrix and the connection weight matrix;B, C and
L are the known real-valued matrices;d(k) characterizes the
time-varying discrete time delay.

Assumption 1:For any given positive constantk, the time-
delayd(k) satisfies

dm ≤ d(k) ≤ dM (2)

in which dm anddM are the known nonnegative integers.
Assumption 2: [25] For anyt, s ∈ R, s 6= t , the nonlinear

functionsg andf in (1) satisfyg(0) = 0, f(0) = 0 and

l−i ≤ fi (s)− fi (t)

s− t
≤ l+i ; i = 1, 2, · · · , nx (3)

m−
i ≤ gi (s)− gi (t)

s− t
≤ m+

i ; i = 1, 2, · · · , nx

wherel−i ,l+i ,m−
i ,m

+
i denote some known scalars.

Remark 1:As is shown in [25], the scalarsl+i ,l1i , m+
i ,m

1
i

in Assumption 2 could be zero, negative or positive. As such,
it is clear that the nonlinear activation functions are allowed
to be non-monotonic, and these functions are more general
compared with the usual sigmoid functions.

In order to enhance the communication reliability, in this
work, redundant communication channels are utilized to deal
with the data transmission between the NN and the remote
SE. Without loss of generality, it is supposed that there are
l communication channels adopted between the NN and the
estimator, which are specifically shown in the Fig.1. We
consider the case that the transmission delay would occur in
each communication channel. Let the output signal transmitted
via thes-th channel be denoted bȳys(k) (s ∈ {1, 2, · · · , l}).
Obviously,ȳs(k) could be written as follows:

ȳs(k) = y
(
k − τs(k)

)
+Dsvs(k) (4)

in which vs(k) represents a Gaussian white noise of thes-th
channel satisfying

E{vi} = 0, i = 1, 2, · · · , l (5)

E{vivj} =

{
1, i = j

0, i 6= j
. (6)

τs(k) (k ∈ Z+, s = 1, 2, ..., l) denotes the transmission
delay of thes-th channel which is assumed to be a sequence
of independent identically distributed random variables. Let
τs(k) ∈ S , {0, 1, ..., τ̄} for all thek ands. Furthermore, the
occurrence probability ofτs(k) = t (t ∈ S) is given by

Pr {τs(k) = t} = pst, s = 1, 2, · · · , l; t = 0, 1, · · · , τ̄ (7)

Channel 1

Channel 2

Channel

Observer

Delayed

NNs
.

.

.

ˆ( )z k

( )z kz kz kz kz kz k

ˆ( )x k

Fig. 1: The estimation scheme with redundant delayed chan-
nels.

Then, denotinḡkt = k − t and using the Kronecker delta
function, ȳs(k) can be reformulated as follows

ȳs(k) =

τ̄∑

t=0

δ
(
t− τs(k)

)
Cx(k̄t) +Dsvs(k) (8)

Obviously, the output signal̄ys(k) contains both the “dis-
tributed delays” and “random variables”, which gives rise to
the main difficulty in designing the estimator based on the
received signal̄y(k) ,

[
ȳT1 (k) ȳT2 (k) · · · ȳTl (k)

]T
.

Remark 2: It is easy to see from the developed measure-
ment model (4) and the probability distribution (7) that the
redundant channels could transmit more information than
single channel. More specifically, it could be found that the
probability of ȳs(k) = y(k̄t) + Dsvs(k) is pst. If only
one communication channel is utilized (e.g. only channel
1 is employed), the probability that̄y(k) contains the in-
formation abouty(k̄t) is p1t. However, if l communication
channels are adopted to transmit data, the probability that
ȳ(k) contains the information abouty(k̄t) is

∑l
i=1 pit, which

is larger than the single-channel case. In other words, as
the number of redundant delayed channels increases, the
probability of ȳ(k) including the information of delayed signal
yi(k̄0), yi(k̄1), · · · , yi(k̄τ̄ ), i = 1, 2, ..., l would increase, and
this enables us to retrieve more useful information. In other
words, redundant channels could largely enhance the commu-
nication performance between the NN and the remote SE.

To achieve the estimates of the states for the NNs (1), we
develop a SE with the following form:




x̂(k + 1) =Ax̂(k) + Ff
(
x̂(k)

)
+Gg

(
x̂
(
k − d(k)

))

+ J(k) +

l∑

s=1

(
Ks

(
ȳs(k)−

τ̄∑

t=0

δ
(
t− τs(k)

)

× Cx̂(k̄t)
))

ẑ(k) =Lx̂(k)

x̂(k) = φ̂(k), 0 ≥ k ≥ −dM
(9)

where x̂(k) ∈ Rnx stands for the estimate of the statex(k)
andẑ(k) means the corresponding estimate of the signalz(k);
φ̂(k) is the initial condition; andK1,K2, ...,Kl stand for the
estimator gain matrices that need to be determined. Then,
letting z̃(k) = z(k)− ẑ(k) ande(k) = x(k)− x̂(k), we could
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obtain the estimation dynamics according to (1) and (9) as
follows:



e(k + 1) = Ae(k) + F f̃(e(k)) +Gg̃(e(k − d(k)))

−
l∑

s=1

(
Ks

τ̄∑

t=0

δ
(
t− τs(k)

)
Ce(k̄t)

)

+Bω(k)−
l∑

s=1

KsDsvs(k)

z̃(k) = Le(k)

(10)

in which

g̃(e(k)) , g(x(k))− g(x̂ (k)),

f̃(e(k)) , f(x(k))− f(x̂ (k)).

Definition 1: [34] Assume that there exist a time-based
function k∗ satisfying the following condition:

E{‖z̃(k)‖2} ≤ ε∗, ∀k ≥ k∗ (11)

where k∗ = k∗(e(0), ε∗) is the SLT function andε∗ > 0
is a given upper bound. Then, the dynamical system (10) is
FTBMS.

The purpose of our research is to handle the FTSE issue
for a type of discrete time-delayed NNs (1). Specifically, our
main attention would be focused on the design issue of the
estimator parameter gainsK1, K2, · · · , Kl such that the SEE
dynamics (10) is FTBMS with minimized SLTk∗.

III. M AIN RESULTS

We firstly achieve the sufficient condition in this Section to
ensure that the SEE dynamics (10) is FTBMS. Before giving
the main results of our work, let us introduce some necessary
lemmas.

Lemma 1: [4] Letting the matricesY1, Y2, Y3 be given in
which Y1 = Y T

1 andY2 = Y T
2 > 0, thenY1 + Y T

3 Y −1
2 Y3 < 0

if and only if
[
Y1 Y T

3

Y3 −Y2

]
< 0, or

[
−Y2 Y3

Y T
3 Y1

]
< 0.

Lemma 2: [25] Let η = [η1, η2, · · · , ηn]T ∈ Rn and
f(η) = [f1(η1), f2(η2), · · · , fn(ηn)]T ∈ Rn be a continuous
nonlinear function satisfyingι−p ≤ fi(ǫ)

ǫ
≤ ι+p , ǫ 6= 0, ǫ ∈

R, 1 ≤ p ≤ n with ι−p and ι+p being known scalars. Suppose
thatΛ = diag(λ1, λ2, · · · , λn) is positive semi-definite. Then

[
η

f(η)

]T [
ΛM1 −ΛM2

−ΛM2 Λ

] [
η

f(η)

]
≤ 0

whereM1 = diag(~ι1,~ι2, · · · ,~ιn), M2 = diag(ῑ1, ῑ2, · · · , ῑn),
~ιi = ι+i ι

−
i and ῑi = ι−i + ι+i .

Theorem 1:Consider the estimator error dynamics (10) and
let the positive scalar0 < γ < 1, estimator gain matrices
K1,K2, ...,Kl and the desired upper bound of SEEε∗ be
given. Then, the dynamical system (10) is FTBMS if there
exist l + 4 positive definite matrices (PDMs)Q > 0, P > 0,
Ri > 0 (i = 1, 2, · · · , l), Λ , diag(λ1, λ2, · · · , λnx

) > 0,
Γ , diag(γ1, γ2, · · · , γnx

) > 0 satisfying

Φ < 0 (12)

LTL ≤ P (13)

θ < (1− γ)ε∗ (14)

whereτ̄i = τ̄ + i and

Ω11 =




Φ00 Φ01 · · · Φ0τ̄

∗ Φ11 · · · Φ1τ̄

∗ ∗ . . .
...

∗ ∗ ∗ Φτ̄ τ̄


 , Φ =

[
Ω11 Ω12

∗ Ω22

]
,

Ω12 =

[
Φ0,τ̄1 Φ0,τ̄2 Φ0,τ̄3

ki,τ̄1 ki,τ̄2 ki,τ̄3

]
,

ki,τ̄+j = vecτ̄{Φi,τ̄j}, j = 1, 2, 3,

Ω22 =



Φτ̄1,τ̄1 Φτ̄1,τ̄2 Φτ̄1,τ̄3

∗ Φτ̄2,τ̄2 Φτ̄2,τ̄3

∗ ∗ Φτ̄3,τ̄3


 ,

Φ00 = ATPA+
l∑

i=1

τ̄Ri − γP − ΛL1 − ΓM1

−
l∑

i=1

pi0A
TPKiC −

l∑

i=1

pi0C
TKT

i PA

+

l∑

i=1

pi0C
TKT

i PKiC

+ 2
∑

1≤i<j≤l

pi0pj0C
TKT

i PKjC

Φst = −
l∑

i=1

γsRi +

l∑

i=1

pisC
TKT

i PKiC

+ 2
∑

1≤i<j≤l

pispjtC
TKT

i PKjC,

s = t ∈ {1, 2, · · · , τ̄}

Φst =
∑

1≤i<j≤l

pispjtC
TKT

i PKjC −
l∑

i=1

pitA
TPKiC

+
∑

1≤i<j≤l

pitpjsC
TKT

j PKiC,

s = 0, t = 1, 2, · · · , τ̄
Φst =

∑

1≤i<j≤l

pispjtC
TKT

i PKjC

+
∑

1≤i<j≤l

pitpjsC
TKT

j PKiC,

1 ≤ s < t ≤ τ̄

Φi,τ̄1 =





ATPF −
l∑

s=1

psiC
TKT

s PF + ΛL2, i = 0

−
l∑

s=1

psiC
TKT

s PF, i = 1, 2, · · · , τ̄

Φi,τ̄2 =

{
ΓM2, i = 0

0, i = 1, 2, · · · , τ̄
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Φi,τ̄3 =





ATPG−
l∑

s=1

psiC
TKT

s PG, i = 0

−
l∑

s=1

psiC
TKT

s PG, 1 ≤ i ≤ τ̄

Φτ̄1,τ̄1 = −Λ + FTPF, Φτ̄1,τ̄2 = 0,

Φτ̄1,τ̄3 = FTPG, Φτ̄2,τ̄2 = (dM − dm + 1)Q− Γ,

Φτ̄2,τ̄3 = 0, Φτ̄3,τ̄3 = GTPG−Q,

l̂p = l+p l
−
p , l̂p =

l+p + l−p

2
, m̂p = m+

p m
−
p ,

m̂p =
m+

p +m−
p

2
, p = 1, 2, · · · , nx,

L1 = diag(l̂1, l̂2, · · · , l̂nx
),M1 = diag(m̂1, m̂2, · · · , m̂nx

),

L2 = diag(l̂1, l̂2, · · · , l̂nx
),M2 = diag(m̂1, m̂2, · · · , m̂nx

),

θ = BTPB +

l∑

s=1

DT
s K

T
s PKsDs.

In addition, if the condition mentioned above is satisfied, the
SLT k∗ can be calculated by

k∗ =

{
0, ε∗ ≥ E{V (0)}

1−σ

⌈logγ (1−σ)ε∗
E{V (0)}⌉, ε∗ <

E{V (0)}
1−σ

(15)

whereσ ∈ (0, 1) is a scalar satisfying

1

1− γ

( l∑

i=1

DT
i K

T
i PKiDi +BTPB

)
= σε∗ (16)

Proof: Choose a Lyapunov-like functional candidate of
the following form:

V (k) =

4∑

j=1

Vj(k)

where

V1(k) =eT (k)Pe(k)

V2(k) =

−1+k∑

j=−d(k)+k

γk−1−j g̃T (e(j))Qg̃(e (j))

V3 (k) =

dM−1∑

i=dm

−1+k∑

j=−i+k

γk−1−j g̃T (e(j))Qg̃(e (j))

V4(k) =
l∑

s=1

τ̄∑

t=1

−1+k∑

j=−t+k

γk−1−jeT (j)Rse(j)

From (10), one obtains that

E {(1 − γ)V1(k) + ∆V1(k)}
=E {V1(k + 1)− γV1(k)}
=E{eT (k + 1)Pe(k + 1)− γeT (k)Pe(k)}

=E

{
eT (k)(ATPA− γP )e(k)

+ 2eT (k)ATPF f̃(e (k))

+ 2eT (k)ATPGg̃(e (k − d(k)))

− 2

l∑

s=1

τ̄∑

t=0

pste
T (k)ATPKsCe(k̄t)

+ f̃T (e (k))FTPF f̃(e (k))

+ 2f̃T (e (k))FTPGg̃(e (k − d(k)))

− 2

l∑

s=1

τ̄∑

t=0

pstf̃
T (e (k))FTPKsCe(k̄t)

+ g̃T (e (k − d(k)))GTPGg̃(e (k − d(k)))

− 2

l∑

s=1

τ̄∑

t=0

pstg̃
T (e (k − d(k)))GTPKsCe(k̄t)

+

l∑

s=1

τ̄∑

t=0

pste
T (k̄t)C

TKT
s PKsCe(k̄t)

+ 2
∑

1≤i<j≤l

τ̄∑

s=0

τ̄∑

t=0

pispjt

× eT (k̄s)C
TKT

i PKjCe(k̄t)

+BTPB +
l∑

s=1

DT
s K

T
s PKsDs

}

E {(1 − γ)V2(k) + ∆V2(k)}

=E

{ k∑

j=−−d(k+1)+k

γk−j g̃T (e(j))Qg̃(e(j))

− γ

−1+k∑

j=k−d(k)

γk−1−j g̃T (e(j))Qg̃(e (j))

}

≤E

{ k−dm∑

j=k−dM+1

γk−j g̃T (e(j))Qg̃(e(j))− g̃T (e(k − d(k)))Q

× g̃(e(k − d(k))) + g̃T (e(k))Qg̃(e(k))

}

E {(1− γ)V3(k) + ∆V3(k)}

=E

{−1+dM∑

i=dm

k∑

j=−i+k+1

γk−j g̃T (e(j))Qg̃(e (j))

− γ

−1+dM∑

i=dm

−1+k∑

j=−i+k

γ−j+k−1g̃T (e(j))Qg̃(e (j))

}

=E

dM−1∑

i=dm

{
g̃T (e(k))Qg̃(e (k))

− γig̃T (e(k̄i))Qg̃(e
(
k̄i
)
)

}

=E

{
(dM − dm)g̃T (e(k))Qg̃(e (k))

−
dM−1∑

i=dm

γig̃T (e(k̄i))Qg̃(e
(
k̄i
)
)

}

=E

{
(dM − dm)g̃T (e(k))Qg̃(e (k))
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−
k−dm∑

j=k−dM+1

γk−j g̃T (e(j))Qg̃(e (j))

}

E {(1 − γ)V4(k) + ∆V4(k)}

=E

{ l∑

s=1

τ̄∑

t=1

k∑

j=−t+k+1

γk̄jeT (j)Rse(j)

− γ

l∑

s=1

τ̄∑

t=1

−1+k∑

j=−t+k

γ−j+k−1eT (j)Rse(j)

}

=E

{ l∑

s=1

τ̄∑

t=1

eT (k)Rse(k)

−
l∑

s=1

τ̄∑

t=1

γteT (k̄t)Rse(k̄t)

}

=E

{ l∑

s=1

τ̄ eT (k)Rse(k)

−
l∑

s=1

τ̄∑

t=1

γteT (k̄t)Rse(k̄t)

}

Moreover, it could be obtained from Lemma 2 and Assump-
tion 2 that

̟(k)T
[

−ΛL1 ΛL2

∗ −Λ

]
̟(k) ≥ 0 (17)

̟(k)T
[

−ΓM1 ΓM2

∗ −Γ

]
̟(k) ≥ 0 (18)

where ̟(k) =
[
eT (k) f̃T (e(k))

]T
. As such, it can be

obtained according to inequalities (17)-(18) that

E {(1− γ)V(k) + ∆V(k)}

=

4∑

i=1

E {(1− γ)Vi(k) + ∆Vi(k)}

≤
4∑

i=1

E {(1− γ)Vi(k) + ∆Vi(k)}

+ E

{
̟(k)T

[
−ΛL1 ΛL2

∗ −Λ

]
̟(k)

}

+ E

{
̟(k)T

[
−ΓM1 ΓM2

∗ −Γ

]
̟(k)

}

≤E{ηT (k)Φη(k)} +BTPB +

l∑

s=1

DT
s K

T
s PKsDs

where

η(k) =




ẽ(k)

f̃(e(k))
g̃(e(k))

g̃(e(k − d(k)))


 , ẽ(k) =




e(k̄0)
e(k̄1)

...
e(k̄τ̄ )


 .

Based on the condition (12), we have

E {(1 − γ)V(k) + ∆V(k)} ≤ BTPB +

l∑

s=1

DT
s K

T
s PKsDs

which implies that

E {V(k)} ≤E{γV(k̄1) + θ}
≤E{γ2V(k̄2) + γθ + θ}
≤E{γ3V(k̄3) + γ2θ + γθ + θ}

≤ · · · ≤ E{γkV(0) + 1− γk

1− γ
θ}

≤E{γkV(0) + 1

1− γ
θ}

Let ε∗ be a prescribed upper bound ofE{‖z̃(k)‖2}. Then,
according to (14), there must exist a0 < σ < 1 satisfying

θ = σε∗ (1− γ) (19)

Noticing Definition 1 and (13), we have

E{‖z̃(k)‖2} =E{eT (k)LTLe(k)}
≤E {V(k)}
≤E{γkV(0) + σε∗}

which means that the SLT functionk∗ can be derived as
follows:

k∗ =

{
0, ε∗ ≥ E{V (0)}

1−σ

⌈logγ (1−σ)ε∗
E{V (0)}⌉, ε∗ <

E{V (0)}
1−σ

The proof is complete now.
By now, we have accomplished the analysis task in Theorem

1. Next, we are going to move onto the design issue of the
estimator parametersKi (i = 1, 2, · · · , l).

Theorem 2:Consider the estimator error dynamics (10).
Let the positive scalar0 < γ < 1 and the desired upper
boundε∗ of SEE be given. Then, the dynamical system (10)
is FTBMS if there existl + 4 PDMs Q > 0, P > 0,
Ri > 0 (1 ≤ i ≤ l), Γ , diag(γ1, γ2, · · · , γnx

) > 0, Λ ,

diag(λ1, λ2, · · · , λnx
) > 0, and l matricesZ1, Z2, · · · , Zl

satisfying

Ξ < 0 (20)

LTL ≤ P (21)

Ω < 0 (22)

where

Ξ̄ = −P, Ξ =

[
Ξ11 ∗
Ξ21 Ξ22

]
, Ξ11 =

[
Σ̃11 ∗
Σ̃21 Σ̃22

]
,

Ξ21 =
[
Ξ̃T Ξ̃T

0 · · · Ξ̃T
τ̄ Ξ̃T

1l · · · Ξ̃T
l−1,l

]T
,

Ξ22 = diag
{
Ξ̄, Ξ̄0, · · · , Ξ̄τ̄ , Ξ̄1l, · · · , Ξ̄l−1,l

}
,

Σ̃11 =




00ג ∗ ∗ ∗ ∗ ∗
10ג 11ג ∗ ∗ ∗ ∗
20ג 0 22ג ∗ ∗ ∗
30ג 0 0 33ג ∗ ∗
...

...
...

...
. . . ∗

Πτ̄0 0 0 0 · · · τ̄ג τ̄




,

Σ̃21 =



τ̄1,0ג τ̄1,1ג · · · τ̄1,τ̄ג

τ̄2,0ג τ̄2,1ג · · · τ̄2,τ̄ג

τ̄3,0ג τ̄3,1ג · · · τ̄3,τ̄ג


 ,
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Σ̃22 =



τ̄1,τ̄1ג ∗ ∗
τ̄2,τ̄1ג τ̄2,τ̄2ג ∗
τ̄3,τ̄1ג τ̄3,τ̄2ג τ̄3,τ̄3ג


 ,

ijג =





−γP +
∑l

s=1 τ̄Rs − ΛL1 − ΓM1

−∑l
s=1 psiA

TZsC −∑l
s=1 psiC

TZT
s A, i, j = 0

−∑l
s=1 γ

iRs, i = j, i, j = 1, 2, . . . , τ̄

−∑l
s=1 psiC

TZT
s A, j = 0, i = 1, 2, . . . , τ̄

τ̄1,iג =





−∑l
s=1 psiF

TZsC + ΛL2, i = 0

−∑l
s=1 psiF

TZsC, i = 1, 2, . . . , τ̄
−Λ, i = τ̄ + 1

τ̄2,iג =





ΓM2, i = 0
0, 1 ≤ i ≤ τ̄1
(dM − dm + 1)Q− Γ, i = τ̄2

τ̄3,iג =





−∑l
s=1 psiG

TZsC, 1 ≤ i ≤ τ̄

0, i = τ̄1, τ̄2
−Q, i = τ̄3

Ξ̃ =
[
PA 0 · · · 0 PF 0 PG

]

Ξ̃0 =




√
p10Z1C 0 · · · 0 0 0 0√
p20Z2C 0 · · · 0 0 0 0

...
...

...
...

...
...

...√
pl0ZlC 0 · · · 0 0 0 0


 ,

Ξ̄0 = diagl{−P},

Ξ̃1 =




0
√
p11Z1C · · · 0 0 0 0

0
√
p21Z2C · · · 0 0 0 0

...
...

...
...

...
...

...
0

√
pl1ZlC · · · 0 0 0 0


 ,

Ξ̄1 = diagl{−P},
...

Ξ̃τ̄ =




0 0 · · · √
p1τ̄Z1C 0 0 0

0 0 · · · √
p2τ̄Z2C 0 0 0

...
...

...
...

...
...

...
0 0 · · · √

plτ̄ZlC 0 0 0


 ,

Ξ̄τ̄ = diagl{−P},

Ξ̃il =




p(i+1)0Zi+1C p(i+1)1Zi+1C · · ·
pi0ZiC pi1ZiC · · ·

p(i+2)0Zi+2C p(i+2)1Zi+2C · · ·
pi0ZiC pi1ZiC · · ·

...
...

. . .
pl0ZlC pl1ZlC · · ·
pi0ZiC pi1ZiC · · ·

p(i+1)τ̄Zi+1C 0 0 0
piτ̄ZiC 0 0 0

p(i+2)τ̄Zi+2C 0 0 0
piτ̄ZiC 0 0 0

...
...

...
...

plτ̄ZlC 0 0 0
piτ̄ZiC 0 0 0




, i = 1, 2, · · · , l − 1,

Ξ̄il = diag2(l−i){−P}, i = 1, 2, · · · , l − 1,

Ω =




BTPB − (1 − γ)ε∗ ∗ ∗ ∗ ∗
Z1D1 −P ∗ ∗ ∗
Z2D2 0 −P ∗ ∗

...
...

...
. . .

...
ZlDl 0 0 0 −P




Furthermore, if (P,Q,R1, R2, · · · , Rl,Λ,Γ, Z1, Z2, · · · , Zl)
is a feasible solution of (20)-(22), then the parameters of the
admissible finite-time SE can be acquired through matrices
Zi(i = 1, 2, · · · , l) as follows:

Ki = P−1Zi, i = 1, 2, · · · , l (23)

Proof: First, we denote

αi0 =
[ √

pi0KiC 0 · · · 0 0 0 0
]

αi1 =
[
0

√
pi1KiC · · · 0 0 0 0

]

...

αiτ̄ =
[
0 0 · · · √

piτ̄KiC 0 0 0
]

i = 1, 2, ..., l

αj =
[
αT
1j αT

2j · · · αT
lj

]T

j = 0, 1, ..., τ̄

βij =

[
pj0KjC pj1KjC · · · pjτ̄KjC 0 0 0
pi0KiC pi1KiC · · · piτ̄KiC 0 0 0

]

1 ≤ i < j ≤ l

βi =
[
βT
i,i+1 βT

i,i+2 · · · βT
i,l

]T
, 1 ≤ i ≤ l − 1

Θ =
[
Ξ̃T αT

0 · · · αT
τ̄ βT

1 · · · βT
l−1

]

̺ = l(l − 1) + (τ̄ + 1)l + 1

Υ = diag̺{P, P, · · · , P}

Using Lemma 1 and applying the change of variables
throughZj = PKj (j = 1, 2, · · · , l), it can be seen that
Φ = Ξ11+ΘTΥΘ = Ξ11−(ΥΘ)T (−Υ)−1(ΥΘ) < 0 is guar-
anteed by the LMI (20). Note also that (14) can be rewritten
as

∑l
i=1 D

T
i K

T
i PKiDi + BTPB − (1 − γ)ε∗ < 0, which

is guaranteed by the LMI (22) from Lemma 1. According to
Theorem 1, the SEE dynamics is FTBMS. The proof of this
theorem is now complete.

Having designed the finite-time estimator, we are now
going to aim at solving an optimization problem for the SEE
dynamics (10), that is, we would like to minimize the SLT.

Theorem 3:Let the prescribed positive scalar0 < γ < 1,
the desired upper boundε∗ of SEE and the upper bound of
‖e(i)‖2 and‖g̃(e(i))‖2 (i = 0,−1, · · · ,−dM ), ~ei and g̃(~ei),
be given. The SEE dynamics (10) is FTBMS if there exist
2l + 6 PDMs Q > 0, P > 0, Ri > 0 (1 ≤ i ≤ l), Γ =
diag(γ1, γ2, · · · , γnx

) > 0, Λ = diag(λ1, λ2, · · · , λnx
) > 0,

SP > 0, SQ > 0, SRi
> 0 (1 ≤ i ≤ l) and l matricesZ1, Z2,

· · · , Zl such that the optimization problem

min
X̄,SX̄ ,Λ,Γ,Z1,Z2,··· ,Zl

trace{SP + SQ +

l∑

i=1

SRi
} (24)

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TSMC.2018.2874508, IIEEE Transactions on Systems, Man, and Cybernetics: Systems



FINAL VERSION 8

with constraints (20), (21), (22) and constraints
[
−SP PT

P −I

]
< 0,

[
−SQ QT

Q −I

]
< 0,

[
−SRi

Ri
T

Ri −I

]
< 0, i = 1, 2, · · · , l

(25)

has feasible solution, whereX̄ and SX̄ denote,
respectively, set {P,Q,R1, R2, · · · , Rl} and set
{SP , SQ, SR1

, SR2
, · · · , SRl

}. Furthermore, when (24)
is feasible, the estimator parameters can be given by (23) and
the upper bound of minimum SLTk∗, ~k∗, can be calculated
by

~k∗ = logγ
(1− σ)ε∗
E{ν} (26)

where

ν =E{‖P‖F · ~e0

+

−1∑

j=−dM

γ−1−j(dM − dm + 1)‖Q‖F · g̃(~ej)

+
l∑

s=1

τ̄∑

t=1

−1∑

j=−t

γ−1−j‖Rs‖F · ~ej}

(27)

Proof: According to Theorem 2, it can be proved that
the dynamical system (10) is FTBMS and (23) is the explicit
expression of the desired estimator parameters. Moreover, by
using Lemma 1, constraint (25) is equivalent toPTP ≤ SP ,
QTQ ≤ SQ, RT

i Ri ≤ SRi
(1 ≤ i ≤ l). Noticing the fact

that, for a positive-definite matrixP and a vectorx, xTPx ≤
‖P‖F ·‖x‖2 =

√
trace(PTP )·‖x‖2 and the form ofE{V(0)},

we can gain the conclusion that the optimization problem
(24) could achieve the optimization ofE{V(0)}. According
to Theorem 1, the SLT functionk∗ can be calculated by (15)
and one can find that the smaller theE{V(0)}, the minimum
the SLTk∗. This completes the proof of this theorem.

Remark 3: In the above theorem, we have proposed suf-
ficient conditions to achieve the FTB of the SEE dynamics
in the mean square with the optimized SLT function through
an optimization problem with particular solution matrices.
Moreover, the explicit expressions of estimator parameters for
(9) and the optimized SLT have been given in the meanwhile.

Remark 4: In the past decades, fault detection and fault-
tolerant control have gained more and more research interest
due to their obvious significance [19].In this paper, we have
investigated the case that the probability distribution of trans-
mission delay existing in each channel is known. Note that,
the delay step considered is bounded, which means that the
channel failure and sensor faults have not been considered
here. One of our future research topics is to extended our
main results to the finite-time state estimation problem subject
to sensor faults or channel failure by adopting some adequate
fault detection methods.

IV. N UMERICAL EXAMPLE

We shall give an illustrative numerical simulation in this
section to confirm the correctness and effectiveness of the

proposed theorem. Consider the NNs (1) and the output model
(4) with the following parameters:

A =




1 0 0
0 0.28 0
0 0 0.1


 , F =




0.1 0.05 0.03
0.06 0.1 0.05
0.05 0.1 0.08


 ,

G =




0.03 0.07 0.1
0.02 0.03 0.04
0.06 0.02 0.04


 , B =




0.05
0.02
0.01


 ,

C =

[
0.2 0.4 0.3
0.25 0.3 0.2

]
, L =

[
1.5 1 0.5
0.9 1 2

]
,

D1 =

[
0.01
0.02

]
, D2 =

[
0.01
0.02

]
, D3 =

[
0.01
0.02

]
,

J(k) =




0.08 cos(k)
0.05 sin(k)
0.06 cos(k)


 , d(k) = mod(

k

2
).

The activation function is chosen as

f(x(k)) =
[
tanh

(
0.3x1(k)

)
tanh

(
0.1x2(k)

)

tanh
(
− 0.2x3(k)

)]T

g(x(k)) =
[
tanh

(
0.2x1(k)

)
tanh

(
− 0.7x2(k)

)

tanh
(
0.5x3(k)

)]T

and it can then be calculated that

L1 = diag{−1,−1,−1},M1 = diag{−1,−1,−1},

L2 =




0 0 0
0 0 0
0 0 0


 ,M2 =




0 0 0
0 0 0
0 0 0


 .

Assume that there are three communication channels be-
tween the NN and estimator. The corresponding stochastic
transmission delayτi(k) (i = 1, 2, 3) satisfy the following
probability distribution:

Pr{τi(k) = 0} = 0.85, Pr{τi(k) = 1} = 0.1,

Pr{τi(k) = 2} = 0.05

Let γ = 0.6 and ε∗ = 0.5. According to the results in
Theorem 3, we adopt the MATLAB LMI toolbox to cope with
the optimization problem (24) whose solution matrices have
prescribed particular structure with the LMI constraints (20),
(21) and (22). Then, the estimator gain matricesK1,K2 and
K3 can be achieved as follows:

K1 =




−1.8618 2.7192
0.0326 0.0298
−0.0471 0.0789




K2 =




−1.8618 2.7192
0.0326 0.0298
−0.0471 0.0789




K3 =




−1.8618 2.7192
0.0326 0.0298
−0.0471 0.0789




The corresponding simulation results are given in Figs. 2-
5, in which Figs. 2-3 plot the state trajectories ofzi(k)
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(i = 1, 2) and their estimationŝzi(k) (i = 1, 2) with the initial
condition x(0) =

[
3 −5 1.6

]T
, x̂(0) =

[
0 0 0

]T
,

φ(i) = φ̂(i) = 0 (i < 0). Fig. 4 shows the dynamical
evolution of the SEẼz(k). Fig. 5 shows the Euclidean norm
of the SEEz̃(k) and the prescribed upper boundε∗. The SLT
function k∗ can be computed ask∗ = 16, and it is easy to
see that the square of Euclidean norm of the SEEz̃(k) stays
below its upper boundε∗ in Fig. 5. For comparison purposes,
the influence of redundant delayed channels on estimation
performance have been observed in TABLE I, whereN stands
for the number of delayed channels andk∗ represents the SLT
function. It could be found from this simulation that increasing
the number of redundant delayed channels would help lead to
the reduction of the SLTk∗, which proves the effectiveness of
our proposed estimator design algorithm. The impact of the
communication channel parameters on estimation performance
is given in TABLE II, where

ave ,
1

~N · ~M

~N∑

i=1

~M∑

j=1

‖e(j)‖2

t̄ ,
1

~N

~N∑

i=1

ti

with ~N , ~M and ti being respectively the number of the
simulation trials, the step size and the running time of the
i-th simulation trial. The transmission delayτi(k) (i = 1, 2, 3)
of three cases are shown as follows:

• case 1:Pr{τi(k) = 0} = 0.85, Pr{τi(k) = 1} = 0.1,
Pr{τi(k) = 2} = 0.05

• case 2:Pr{τi(k) = 0} = 0.9, Pr{τi(k) = 1} = 0.1,
Pr{τi(k) = 2} = 0

• case 3:Pr{τi(k) = 0} = 0.95, Pr{τi(k) = 1} = 0.025,
Pr{τi(k) = 2} = 0.025

Through TABLE II, the effectiveness of our proposed design
method has been further proved.

TABLE I: The relationship between the numberN of redun-
dant delayed channels and the upper bound~k∗ of SLT function
k∗

N ~k∗
3 16.4847
4 13.8552
5 13.6816

TABLE II: The influence of the communication channels’
parameters on estimation performance

performance index ~k∗ ave t̄
case 1 16.4847 0.0642 8.1180
case 2 13.7452 0.0543 1.7856
case 3 13.2471 0.0465 3.1821

V. CONCLUSION

The FTSE problem has been addressed in this work for a
type of delayed NNs subject to redundant delayed channels.
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Fig. 2: The state evolutions ofz1(k) and ẑ1(k).

0 10 20 30 40 50 60 70 80 90 100
Time (k)

0

5

10

15

A
m
p
li
tu
d
e

z2(k)
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Fig. 3: The state evolutions ofz2(k) and ẑ2(k).
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Fig. 4: The components̃zi(k) (i = 1, 2).

To improve communication performance, redundant channels
have been used to design the finite-time SE with novel
structure and the time delay phenomena existing in redun-
dant channels have been concerned. By introducing a special
Lyapunov-like functional corresponding to SEE dynamics and
using the stochastic analysis technology, we have achieved
sufficient conditions ensuring that the SEE dynamics actualizes
FTBMS. Then, the desired estimator gains have been given by
solving a special constrained optimization problem. Finally, a

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. 
Citation information: DOI10.1109/TSMC.2018.2874508, IIEEE Transactions on Systems, Man, and Cybernetics: Systems



FINAL VERSION 10

0 10 20 30 40 50 60 70 80 90 100
Time (k)

0

0.5

1

1.5

2

2.5

A
m
p
li
tu
d
e

‖z̃(k)‖2

ε⋆

Fig. 5: The size of SEẼz(k) and its upper boundε⋆.

numerical simulation has been adopted to show the correctness
and the effectiveness of the developed design method of finite-
time estimator. Further research topics include theH∞ control
problem andH∞ filtering problem with redundant delayed
channels/protocols [9], [10], [26], [32], [46]–[48]
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