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Maximum Correntropy Filtering for Complex
Networks With Uncertain Dynamical Bias: Enabling
Component-Wise Event-Triggered Transmission

Weihao Song, Zidong Wang, Zhongkui Li, Qing-Long Han and Dong Yue

Abstract—This paper is concerned with the maximum corren-
tropy filtering problem for a class of nonlinear complex networks
subject to non-Gaussian noises and uncertain dynamical bias.
With aim to utilize the constrained network bandwidth and
energy resources in an efficient way, a component-wise dynamic
event-triggered transmission (DETT) protocol is adopted to
ensure that each sensor component independently determines the
time instant for transmitting data according to the individual
triggering condition. The principal purpose of the addressed
problem is to put forward a dynamic event-triggered recursive
filtering scheme under the maximum correntropy criterion such
that the effects of the non-Gaussian noises can be attenuated. In
doing so, a novel correntropy-based performance index (CBPI)
is first proposed to reflect the impacts from the component-wise
DETT mechanism, the system nonlinearity and the uncertain
dynamical bias. The CBPI is parameterized by deriving upper
bounds on the one-step prediction error covariance and the
equivalent noise covariance. Subsequently, the filter gain matrix
is designed by means of maximizing the proposed CBPI. Finally,
an illustrative example is provided to substantiate the feasibility
and effectiveness of the developed maximum correntropy filtering
scheme.

Index Terms—Complex networks, maximum correntropy fil-
tering, non-Gaussian noises, dynamical bias, dynamic event-
triggered protocol.

I. I NTRODUCTION

Along with the burgeoning information technologies with
applications in network sciences, the past several decades have
witnessed a steadily growing research interest in complex
networks that are capable of modeling a wide variety of
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real-world systems. Some representative complex network-
s include, but are not limited to, social networks, airport
networks, World Wide Web, electric power grids, metabolic
networks, neural networks, and genetic regulatory networks
[6], [33], [36], [48]. Roughly speaking, a typical complex
network is constituted by a group of interplayed dynamical
nodes where each individual node shares its local information
with its neighbors with aim to accomplish certain missions in
a collaborative manner.

Inspired by their theoretical significance and extensive ap-
plicability, the dynamical analysis issues for complex networks
have drawn a large amount of research attention leading to
many excellent results reported in the literature, see e.g. [35],
[42]. For example, the output synchronization issue has been
considered in [41] for uncertain general complex networks
based on the neural sliding-mode pinning control strategy. In
[29], the finite/fixed-time synchronization issue has been tack-
led for complex networks subject to stochastic disturbances by
means of a unified pinning controller with regulatable power
parameters.

There has been an ever-increasing demand for acquiring
the states of underlying system plants in general practice
such as monitoring and control of process engineering. Cor-
respondingly, the state estimation (or filtering) issues have
become a research focus for several decades and a great
number of effective estimation/filtering schemes have been
put forward for various systems with different performance
requirements, see e.g. [3], [4], [23], [49] and the references
therein. In particular, in the context of complex networks,
the relevant results have been obtained based primarily on
the Kalman-like (or extended-Kalman-like) filtering approach
[11], [25], theH∞ filtering approach [43], [50], and the set-
membership filtering approach [27], [39]. It should be noted
that most existing results are predominantly applicable to
Gaussian noises as well as energy- or norm-bounded noises.

In engineering practice, owing for example to the signal
reflection and impulsive electromagnetic interference, non-
Gaussian noises are frequently encountered in many practical
scenarios such as underwater acoustic localization and ballistic
target tracking [18], [21]. As such, much effort has been
devoted to the treatment of non-Gaussian noises and several
effective strategies have been developed, for instance, the
celebrated particle filter [2], the Gaussian sum filter [1] and
the variational Bayesian filter [57], to name just a few. Among
others, the maximum correntropy filter [5], [16] has stood out
as an easy-to-implement yet efficacious approach to handle
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the impulsive non-Gaussian noises and measurement outliers,
where the core idea lies in the fact that the correntropy, as
an information theoretic criterion, is able to reflect the higher-
order statistics of the probability density function [28].

Due to its distinguishing merits of flexibility (in filter
design), robustness (against outliers) and computational cost,
the maximum correntropy filtering (MCF) scheme has begun
to stir some initial attention and several excellent results
have been reported in recent years [38], [40], [45], [46]. For
example, a maximum correntropy Kalman filter, combined
with the fixed-point method, has been developed in [5] for
linear systems. In [22], the Chandrasekhar-type recursion has
been derived for the maximum correntropy Kalman filtering
scheme proposed in [16]. It is worth mentioning that limited
work has been done towards the complex networks so far. One
of the few available results is the maximum correntropy filter
developed forlinear complex networks undergoing random
occurring cyber-attacks [37]. When it comes tononlinear
complex networks with engineering-oriented complexities, the
corresponding MCF issue has not been thoroughly studied yet.

It has now been widely recognized that, in most practical
applications, the system dynamics and/or sensor measurements
might be affected by not only the modeled noises but also
the unknown inputs (e.g. unknown disturbances, unmodeled
dynamics, component faults and imperfect calibrations) [17],
[19], [34]. Such unknown inputs, if not delicately tackled,
are likely to incur severe performance deterioration and even
failure of certain tasks (e.g. target tracking). In this regard,
noticeable attention has been paid to the investigation on
joint state and input estimation issues, see [9], [52], [53]
and the references therein. It should be noted that, a kind
of unknown inputs, namely, stochastic bias, has attracted a
particular research interest in the literature [10], [15], [19],
where a prerequisite for most existing results is that the bias
dynamics can be precisely determined, which might not be the
case in practice for many reasons such as environment-induced
parameter perturbations. Taking the typical target tracking
problem as an example, the actuators (e.g. rudders) of the
targets of interest might undergo the uncertain dynamical bias
in a rather complicated environment as a result of abrupt exter-
nal disturbances, random operation errors and electromagnetic
interferences [44]. Consequently, it makes practical sense to
investigate the filtering problem for complex networks subject
to uncertaindynamical bias.

With the nowadays popularity of networked systems, the
network-induced imperfections (e.g. network traffic conges-
tion) has grabbed considerable research attention from both
academia and industry, see e.g. [14], [27], [55], and [54] for
a recent survey. In particular, the so-called event-triggered
transmission protocol has proven to be an effective approach
to mitigating unnecessary network traffic, thereby extenuating
the occurrence of network-induced imperfections [8], [20],
[26], [30], [47], [56]. In comparison with its static counterpart,
the dynamic event-triggered transmission (DETT) protocol has
better potentials in economizing the limited network resources
since its threshold can be dynamically adjusted, see e.g. [7],
[12], [13], [24], [32] for some DETT-based results. It should
be stressed that in most existing results, the measured outputs

have been assumed to share a common triggering condition,
which is sometimes unreasonable since the output magnitude
and the required update frequency of each individual compo-
nent might be different. Towards this direction, a component-
wise DETT protocol has been proposed in investigating the
state estimation problem for linear systems with non-uniform
sampling, which allows for different triggering conditions for
different components [58]. Nevertheless, the corresponding
results for nonlinear complex networks have been very few (if
not none), let alone the consideration of uncertain dynamical
bias and maximum correntropy criterion.

Motivated by the aforementioned discussions, in this paper,
we endeavor to handle the MCF problem for a class of
nonlinear complex networks in the presence of non-Gaussian
noises and uncertain dynamical bias under component-wise
DETT protocol. In doing so, we foresee the following three
essential challenges: 1) how to establish an appropriate model
for complex networks with uncertain dynamical bias and
non-Gaussian noises, where the measurement transmissions
are scheduled by the component-wise DETT protocol? 2)
how to design a correntropy-based performance index (CBPI)
that quantifies the joint influence from the considered system
complexities and transmission scheduling mechanism? and
3) how to deal with the analytical complexity induced by
the component-wise DETT protocol? As such, the primary
objective of this current investigation is to overcome the
challenges listed above.

The major contributions of this paper are highlighted from
the following three aspects: 1) the MCF problem is, for
the first time, investigated for nonlinear and non-Gaussian
complex networks subject to uncertain dynamical bias under
the component-wise DETT protocol; 2) a novel CBPI is
established, by resorting to the upper bounds on the prediction
error covariance and the equivalent noise covariance, to take
into account the impacts from uncertain dynamical bias and
component-wise DETT protocol; and 3) an easy-to-implement
algorithm is developed to realize the resource-saving filter,
which is suitable for online computations with desired robust-
ness against non-Gaussian noises.

The rest of this paper is outlined as follows. Section II
specifies the problem under investigation, and presents the
component-wise DETT mechanism as well as the MCF
scheme. In Section III, the proposed CBPI is explicitly ex-
pressed by determining two weighted matrices, based on which
the filter gain matrix is designed. In Section IV, simulation
results are exhibited to verify the effectiveness of the pro-
posed filtering algorithm. Finally, some concluding remarks
are summarized in Section V.
Notation. The notations adopted throughout this paper

are fairly standard.Rn denotes then-dimensional Euclidean
vector space. The superscriptsT and−1 stands for, respective-
ly, the operation of transpose and inverse.‖x‖ and ‖x‖A ,

(xTAx)1/2 represent, respectively, the Euclidean norm and
the weighted norm of a vectorx ∈ R

n, whereA is a positive
definite matrix.E{·} refers to the mathematical expectation
operator.diag{· · · } denotes a block-diagonal matrix.0 andI
denote, respectively, the zero matrix and the identity matrix of
compatible dimensions. Other notations will be interpreted as
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the need arises.

II. PROBLEM FORMULATION

Consider the following class of complex networks com-
posed ofN coupled nodes with dynamical biases:

x̄i,s+1 = Āi,sx̄i,s+f̄s(x̄i,s)+

N
∑

j=1

dij Γ̄x̄j,s+Bi,szi,s+ζi,s (1)

where x̄i,s ∈ R
n̄ denotes the state vector of thei-th node

at time instants, D = [dij ]N×N represents the coupled
configuration matrix and̄Γ = diag{γ1, γ2, · · · , γn̄} stands
for the inner coupling matrix.Āi,s and Bi,s are the known
matrices with appropriate dimensions.ζi,s refers to the process
noise with zero mean and covarianceQ̄i,s > 0. zi,s ∈ R

k is
the random bias with the following dynamics

zi,s+1 = (Gi,s +∆Gi,s)zi,s + ηi,s (2)

whereGi,s represents the known bias transition matrix and
∆Gi,s implies the perturbation term satisfying

E{∆Gi,s+1} = 0,

E{(∆Gi,s+1)(∆GT
i,s+1)} ≤ τiI

whereτi is a given positive scalar,ηi,s denotes the noise with
zero mean and covarianceSi,s > 0. The known nonlinear
function f̄s(·) satisfiesf̄s(0) = 0 and

∥

∥f̄s(u)− f̄s(v)− F̄s(u− v)
∥

∥ ≤ κs‖u− v‖ (3)

whereu, v ∈ R
n̄, F̄s is a known matrix, andκs ≥ 0 is a

known scalar.
The measurement model of thei-th node is characterized

by

yi,s = C̄i,sx̄i,s + νi,s (4)

where yi,s ∈ R
m denotes the measurement output andνi,s

stands for the measurement noise with zero mean and covari-
anceRi,s > 0. Throughout this paper, we assume thatζi,s,
ηi,s, νi,s, x̄i,0, zi,0 and the elements of∆Gi,s are mutually
independent ini ands.

Denote

xi,s =
[

x̄T
i,s zTi,s

]T
, Ai,s =

[

Āi,s Bi,s

0 Gi,s

]

,

∆Ai,s =

[

0 0
0 ∆Gi,s

]

,Γ =

[

Γ̄ 0
0 0

]

,

fs(xi,s) =
[

f̄s(x̄i,s)
T 0

]T
, ωi,s =

[

ζTi,s ηTi,s
]T

,

Ci,s =
[

C̄i,s 0
]

.

Then, the augmented dynamics can be obtained as follows:






















xi,s+1 =(Ai,s +∆Ai,s)xi,s + fs(xi,s)

+

N
∑

j=1

dijΓxj,s + ωi,s

yi,s =Ci,sxi,s + νi,s.

(5)

A. Component-wise dynamic event-triggered mechanism

In this paper, to ameliorate the utilization efficiency of
the limited network bandwidth and energy resources, the
component-wise DETT mechanism is employed to schedule
the process of data transmission. To this end, the measure-
ments of thei-th node are rewritten by

yi,s =
[

yi,1,s yi,2,s · · · yi,m,s

]T

whereyi,l,s (l = 1, 2, · · · ,m) denotes the measurement output
of the l-th sensor component for thei-th node.

Define the event generator functiong(ri,l,s, πi,l, ρi,l, ξi,l,s)
as follows [7], [32]:

g(ri,l,s, πi,l, ρi,l, ξi,l,s) = r2i,l,s − πi,l −
1

ρi,l
ξi,l,s (6)

whereri,l,s = yi,l,s− y̌i,l,s, andy̌i,l,s refers to the transmitted
measurement at latest triggering time instant.πi,l andρi,l are,
respectively, the prescribed triggering threshold and adjustable
parameter.ξi,l,s represents an auxiliary variable governed by
the following dynamics

ξi,l,s = δi,lξi,l,s−1 − r2i,l,s−1 + πi,l (7)

where δi,l denotes a predefined parameter and the initial
auxiliary variable satisfiesξi,l,0 ≥ 0.

For the convenience of subsequent analysis, define an indi-
cator variableλi,l,s as follows:

λi,l,s =

{

1, g(ri,l,s, πi,l, ρi,l, ξi,l,s) > 0;

0, g(ri,l,s, πi,l, ρi,l, ξi,l,s) ≤ 0.
(8)

Then, the available measurement at the filter end, denoted by
ȳi,l,s, can be written as

ȳi,l,s = yi,l,s − (1 − λi,l,s)ri,l,s. (9)

In what follows, let us denote

ȳi,s =
[

ȳi,1,s ȳi,2,s · · · ȳi,m,s

]T
,

ri,s =
[

ri,1,s ri,2,s · · · ri,m,s

]T
,

Λi,s = diag {λi,1,s, λi,2,s, · · · , λi,m,s} .

Accordingly, the compact form of the available measurements
can be reformulated by

ȳi,s = yi,s − (I − Λi,s)ri,s. (10)

B. Maximum-correntropy-based filtering scheme

In this paper, a similarity measure named correntropy is
considered to enhance the robustness against the non-Gaussian
noises. Compared with the widely used minimum mean square
error criterion that only utilizes the second-order statistics, the
utilization of correntropy can capture not only the second-
order statistics but also the higher-order ones, thereby exhibit-
ing great potentials in improving the filtering performance.
More specifically, given any two scalar random variablesX

and Y , the correntropyV (X,Y ) is defined as follows [5],
[28]:

V (X,Y ) = E{ǫ(X,Y )} =

∫∫

x,y

ǫ(x, y)fX,Y (x, y)dxdy

(11)

This article has been accepted for publication in a future issue of this conference proceedings, but has not been fully edited. Content may change 
prior to final publication. Citation information: DOI 10.1109/tnnls.2023.3302190, IEEE Transactions on Neural Networks and Learning Systems



FINAL VERSION 4

where ǫ(X,Y ) denotes the kernel function, andfX,Y (x, y)
is the joint probability density function ofX andY . In this
paper, the kernel function is chosen to be the most popular
Gaussian type, i.e.,

ǫ(x, y) = Gχ(e) = exp(−
e2

2χ2
) (12)

wheree = x− y andχ > 0 refers to the bandwidth of kernel
size.

Considering the fact that it is usually difficult (if not impos-
sible) to obtain the analytical expression of the joint density
fX,Y (x, y) and only a few number of samples{xi, yi}

M
i=1

are accessible, the correntropy is approximately evaluated as
follows:

V (X,Y ) ≈
1

M

M
∑

i=1

exp(−
(xi − yi)

2

2χ2
). (13)

It is clear that in the case of Gaussian kernel, the correntropy
reaches its maximum value only whenX = Y .

In this paper, the filter for thei-th node is constructed with
the following two-stage recursive form:

x̂i,s|s−1 = Ai,s−1x̂i,s−1 + fs−1(x̂i,s−1) +

N
∑

j=1

dijΓx̂j,s−1

(14)

x̂i,s = x̂i,s|s−1 +Ki,s

(

ȳi,s − Ci,sx̂i,s|s−1

)

(15)

where x̂i,s|s−1 and x̂i,s stand for, respectively, the one-step
prediction and state estimate of thei-th node at time instant
s, andKi,s denotes the filter gain matrix to be designed. Note
that if the available measurementsȳi,s are replaced byyi,s
herein, the resultant filter is customized for the case without
component-wise DETT mechanism.

In what follows, the CBPI is constructed for the purpose of
designing the filter gain, i.e.,

J(xi,s) = Gχ

(

‖xi,s − x̂i,s|s−1‖P−1

i,s|s−1

)

+Gχ

(

‖ȳi,s − Ci,sxi,s‖R−1

i,s

) (16)

wherePi,s|s−1 andRi,s denote the weighted matrices, which
will be determined in the subsequent section.

On the basis of the maximum correntropy criterion, the de-
sired filter gainKi,s can be obtained by solving the following
optimization problem:

x̂i,s = argmax
xi,s

J(xi,s). (17)

Remark 1: It should be pointed out that, in most existing
literature (e.g. [16], [46]), the one-step prediction error co-
variance and the measurement noise covariance are introduced
as the weighted matrices in the CBPI with aim to realize the
minimum-variance estimation. Nevertheless, due mainly to the
existence of the component-wise DETT mechanism as well as
the uncertain dynamical bias, it would be a rather challenging
task to parameterize the accurate correntropy dynamics in a
similar way. To this end, a novel performance index of the
form (16) is proposed in this paper, where the latest transmitted
measurements̄yi,s (instead of the newly measured outputs

yi,s) are utilized. In comparison with the standard CBPI, our
proposed one with weighted matricesPi,s|s−1 andRi,s (which
are actually the corresponding upper bounds of the one-step
prediction covariance and equivalent noise covariance) is able
to attenuate the joint effects of the component-wise DETT
mechanism and uncertain dynamical bias.

Remark 2: It is worthwhile to mention that in this paper,
our attention is mainly focused on theremotestate estimation
problem, where the sensors and the remote filters are not
deployed in the same positions. Consider a scenario where
the small unmanned aerial vehicles are utilized as sensors to
detect or track the targets of interest, and the corresponding
measurement data is transmitted to the ground control station
(including the filters) for further processing. To prolong the
lifespan of sensors, the component-wise DETT mechanism can
be exploited to select the necessary data transmissions. Mean-
while, the real-time data transmissions among remote filters
can be retained to guarantee the reliable state estimation. When
the energy supply of filters becomes a major concern, it is of
practical significance to ameliorate the utilization efficiency
of limited resources by averting frequent data transmissions
among filters, which deserves further investigations.

The primary purpose of this paper is to develop a recursive
filter of the structure (14)-(15) for the uncertain non-Gaussian
complex networks described by (1)-(4) under the component-
wise DETT mechanism (6)-(7) as well as the maximum
correntropy criterion (16)-(17).

III. M AXIMUM -CORRENTROPY-BASED FILTER DESIGN

AND DISCUSSION

In this section, a recursive filtering scheme is developed
based on the maximum correntropy criterion. To be more
specific, we first establish an explicit expression for the
proposed performance index by determining the weighted
matricesPi,s|s−1 and Ri,s, and then design the filter gain
matrix by maximizing the proposed performance index.

To begin with, let us denote

x̃i,s|s−1 = xi,s − x̂i,s|s−1, x̃i,s = xi,s − x̂i,s

Pi,s|s−1 = E{x̃i,s|s−1x̃
T
i,s|s−1}, Pi,s = E{x̃i,sx̃

T
i,s}

(18)

where x̃i,s|s−1 and x̃i,s represent, respectively, the one-step
prediction error and the filtering error for thei-th node at
time instants. Pi,s|s−1 andPi,s denote, respectively, the cor-
responding one-step prediction error covariance and filtering
error covariance.

According to (5), (14) and (18), the dynamics of the one-
step prediction error can be given by

x̃i,s|s−1 = Ai,s−1x̃i,s−1 +∆Ai,s−1xi,s−1 + f̃s−1(xi,s−1)

+

N
∑

j=1

dijΓx̃j,s−1 + ωi,s−1

(19)
wheref̃s−1(xi,s−1) = fs−1(xi,s−1)− fs−1(x̂i,s−1).

Recalling the definition of prediction error covariance in
(18) and the fact thatωi,s−1 is independent of̃xi,s−1, x̃j,s−1
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and xi,s−1, it is not difficult to obtain that

Pi,s|s−1

= E{x̃i,s|s−1x̃
T
i,s|s−1}

= Ai,s−1Pi,s−1A
T
i,s−1 + E{∆Ai,s−1xi,s−1x

T
i,s−1∆AT

i,s−1}

+ E{f̃s−1(xi,s−1)f̃s−1(xi,s−1)
T }+Qi,s−1

+ E{(
N
∑

j=1

dijΓx̃j,s−1)(

N
∑

j=1

dijΓx̃j,s−1)
T }

+ E{Ai,s−1x̃i,s−1f̃s−1(xi,s−1)
T }+ E{f̃s−1(xi,s−1)

× x̃T
i,s−1A

T
i,s−1}+ E{Ai,s−1x̃i,s−1(

N
∑

j=1

dijΓx̃j,s−1)
T }

+ E{(
N
∑

j=1

dijΓx̃j,s−1)x̃
T
i,s−1A

T
i,s−1}+ E{f̃s−1(xi,s−1)

× (

N
∑

j=1

dijΓx̃j,s−1)
T }+ E{(

N
∑

j=1

dijΓx̃j,s−1)f̃s−1(xi,s−1)
T }

(20)
whereQi,s−1 = diag{Q̄i,s−1, Si,s−1}.

On the other hand, subtracting (15) fromxi,s and using (10)
lead to the following dynamics of filtering error:

x̃i,s

= x̃i,s|s−1 −Ki,s

(

yi,s − (I − Λi,s)ri,s − Ci,sx̂i,s|s−1

)

= (I −Ki,sCi,s)x̃i,s|s−1 −Ki,sνi,s +Ki,s(I − Λi,s)ri,s.
(21)

In view of (18) and (21), the filtering error covariance can
be derived as follows:

Pi,s

= E{x̃i,sx̃
T
i,s}

= (I −Ki,sCi,s)Pi,s|s−1(I −Ki,sCi,s)
T +Ki,sRi,sK

T
i,s

+ E{Ki,s(I − Λi,s)ri,sr
T
i,s(I − Λi,s)K

T
i,s}

+ E{(I −Ki,sCi,s)x̃i,s|s−1r
T
i,s(I − Λi,s)K

T
i,s}

+ E{Ki,s(I − Λi,s)ri,sx̃
T
i,s|s−1(I −Ki,sCi,s)

T }

− E{Ki,sνi,sr
T
i,s(I − Λi,s)K

T
i,s}

− E{Ki,s(I − Λi,s)ri,sν
T
i,sK

T
i,s}.

(22)
Remark 3:The accurate expressions of the one-step pre-

diction error covariance and the filtering error covariance
have been parameterized in (20) and (22). Nevertheless, the
simultaneous presence of the component-wise DETT mech-
anism, uncertain dynamical bias and nonlinearities renders it
really troublesome to calculate the accurate covariances. In this
regard, an alternative yet effective approach is to seek upper
bounds on the error covariance matrices as the performance
criteria. It is worth mentioning that, compared with the existing
literature with traditional static event-triggered mechanism, the
introduction of the auxiliary variableξi,l,s would contribute to
additional complexity in handling the termE{ri,srTi,s} and
the cross terms related tori,s since the auxiliary variable
is not accessible from the filter end. On the other hand, by
introducing a diagonal indicator matrixΛi,s (with diagonal
elements being1 or 0), the effects of the component-wise

event-triggered transmissions have been clearly reflected in the
dynamics of filtering error covariance.

To deal with the complexity induced by the component-
wise DETT mechanism, the following proposition provides a
feasible approach to establishing an upper bound for the term
E{ri,srTi,s}.

Proposition 1: For thei-th node, let0 < δi,l < 1 andρi,l >
1

δi,l
(l = 1, 2, · · · ,m). The solution to the following recursion

Ξi,l,s = δi,lΞi,l,s−1 + πi,l (23)

with initial condition Ξi,l,0 = ξi,l,0 ≥ 0 is always an upper
bound on the auxiliary variableξi,l,s, i.e., 0 ≤ ξi,l,s ≤ Ξi,l,s.
In addition, the following inequality

ri,sr
T
i,s ≤ υi,sI (24)

holds, where

υi,s ,

m
∑

l=1

(

πi,l +
1

ρi,l
Ξi,l,s

)

.

Proof: Following the similar line of [7], it is clear that,
if 0 < δi,l < 1 andρi,l > 1

δi,l
(l = 1, 2, · · · ,m) hold, one has

ξi,l,s ≥ 0.
Next, we will proveξi,l,s ≤ Ξi,l,s by using the mathematical

induction. Fors = 0, the result is obviously true. Assume that
ξi,l,s−1 ≤ Ξi,l,s−1 holds. Then, at time instants, noting that
r2i,l,s−1

≥ 0, it follows from (7) that

ξi,l,s = δi,lξi,l,s−1 − r2i,l,s−1 + πi,l

≤ δi,lΞi,l,s−1 + πi,l = Ξi,l,s

(25)

which ends the proof of the first part.
In what follows, we move on to the proof of the second

part. Recalling the property of the DETT mechanism (6)-(8)
as well as the inequality (25), it is not difficult to see that

r2i,l,s ≤ πi,l +
1

ρi,l
ξi,l,s ≤ πi,l +

1

ρi,l
Ξi,l,s. (26)

Then, we can obtain that

ri,sr
T
i,s ≤ ‖ri,s‖

2I =

m
∑

l=1

r2i,l,sI ≤
m
∑

l=1

(

πi,l +
1

ρi,l
Ξi,l,s

)

I.

(27)
The proof is now complete.

For convenience of presentation, define

Fs =

[

F̄s 0
0 0

]

, Ī =

[

I 0
0 0

]

.

Based on the results in Proposition 1 as well as the parame-
terized one-step prediction error covariance and filtering error
covariance in (20) and (22), we are going to establish their
corresponding upper bounds in the following proposition.

Proposition 2: For the i-th node, given positive scalars
αi,j (j = 1, 2, · · · , 5) and βi,j (j = 1, 2), the solutions to
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the following two difference equations

Pi,s|s−1

= (1 + αi,3 + αi,4)Ai,s−1Pi,s−1A
T
i,s−1

+ τitr{(1 + αi,1)Pi,s−1 + (1 + α−1

i,1 )x̂i,s−1x̂
T
i,s−1}I

+ (1 + α−1

i,3 + αi,5)
{

(1 + αi,2)κ
2
str{ĪPi,s−1Ī}I

+ (1 + α−1

i,2 )Fs−1Pi,s−1F
T
s−1

}

+Qi,s−1

+ (1 + α−1

i,4 + α−1

i,5 )N

N
∑

j=1

d2ijΓPj,s−1Γ

(28)
and

Pi,s

= (1 + βi,1)(I −Ki,sCi,s)Pi,s|s−1(I −Ki,sCi,s)
T

+ (1 + βi,2)Ki,sRi,sK
T
i,s

+ (1 + β−1

i,1 + β−1

i,2 )υi,sKi,s(I − Λi,s)K
T
i,s

(29)

with initial conditionsPi,0 = Pi,0 > 0 represent, respectively,
the upper bounds on the one-step prediction error covariance
and filtering error covariance, i.e.,

Pi,s|s−1 ≤ Pi,s|s−1, Pi,s ≤ Pi,s.

Proof: To begin with, let us analyze the unknown terms
on the right-hand side of (20) one by one. Concentrating on
the second term on the right-hand side of (20) and recalling
the elementary inequalityxyT + yxT ≤ αi,1xx

T + α−1

i,1 yy
T

for x, y ∈ R
n and any positive scalarαi,1, it is not difficult

to obtain that

E{∆Ai,s−1xi,s−1x
T
i,s−1∆AT

i,s−1}

≤ τitr{(1 + αi,1)Pi,s−1 + (1 + α−1

i,1 )x̂i,s−1x̂
T
i,s−1}I.

(30)

In light of (3), the third term on the right-hand side of (20)
can be rearranged as follows:

E{f̃s−1(xi,s−1)f̃s−1(xi,s−1)
T }

≤ E{(1 + αi,2)‖fs−1(xi,s−1)

− fs−1(x̂i,s−1)− Fs−1x̃i,s−1‖
2I

+ (1 + α−1

i,2 )Fs−1x̃i,s−1x̃
T
i,s−1F

T
s−1}

≤ E{(1 + αi,2)κ
2
s‖Ī x̃i,s−1‖

2I

+ (1 + α−1

i,2 )Fs−1x̃i,s−1x̃
T
i,s−1F

T
s−1}

= (1 + αi,2)κ
2
str{ĪPi,s−1Ī}I

+ (1 + α−1

i,2 )Fs−1Pi,s−1F
T
s−1

(31)

whereαi,2 is a positive scalar.
Now, we focus on the fifth term on the right-hand side of

(20). Based on the aforementioned elementary inequality, it is
straightforward to see that

E







(
N
∑

j=1

dijΓx̃j,s−1)(
N
∑

j=1

dijΓx̃j,s−1)
T







≤ N

N
∑

j=1

d2ijΓPj,s−1Γ.

(32)

Subsequently, let us move on to deal with the cross terms
in (20). Selecting the positive scalarsαi,3, αi,4 andαi,5, one
has

E{Ai,s−1x̃i,s−1f̃s−1(xi,s−1)
T }

+ E{f̃s−1(xi,s−1)x̃
T
i,s−1A

T
i,s−1}

≤ αi,3Ai,s−1Pi,s−1A
T
i,s−1

+ α−1

i,3E{f̃s−1(xi,s−1)f̃s−1(xi,s−1)
T },

(33)

E{Ai,s−1x̃i,s−1(

N
∑

j=1

dijΓx̃j,s−1)
T }

+ E{(
N
∑

j=1

dijΓx̃j,s−1)x̃
T
i,s−1A

T
i,s−1}

≤ αi,4Ai,s−1Pi,s−1A
T
i,s−1

+ α−1

i,4E{(
N
∑

j=1

dijΓx̃j,s−1)(

N
∑

j=1

dijΓx̃j,s−1)
T },

(34)

and

E{f̃s−1(xi,s−1)(

N
∑

j=1

dijΓx̃j,s−1)
T }

+ E{(
N
∑

j=1

dijΓx̃j,s−1)f̃s−1(x̃i,s−1)
T }

≤ αi,5E{f̃s−1(xi,s−1)f̃s−1(x̃i,s−1)
T }

+ α−1

i,5E{(
N
∑

j=1

dijΓx̃j,s−1)(
N
∑

j=1

dijΓx̃j,s−1)
T }.

(35)

Substituting (30)-(35) into (20) results in

Pi,s|s−1

≤ (1 + αi,3 + αi,4)Ai,s−1Pi,s−1A
T
i,s−1

+ τitr{(1 + αi,1)Pi,s−1 + (1 + α−1

i,1 )x̂i,s−1x̂
T
i,s−1}I

+ (1 + α−1

i,3 + αi,5)
{

(1 + αi,2)κ
2
str{ĪPi,s−1Ī}I

+ (1 + α−1

i,2 )Fs−1Pi,s−1F
T
s−1

}

+Qi,s−1

+ (1 + α−1

i,4 + α−1

i,5 )N

N
∑

j=1

d2ijΓPj,s−1Γ.

(36)
Next, let us consider the cross terms on the right-hand side

of (22). Similar to the above derivations, the cross terms satisfy
the following relationships:

E{(I −Ki,sCi,s)x̃i,s|s−1r
T
i,s(I − Λi,s)K

T
i,s}

+ E{Ki,s(I − Λi,s)ri,sx̃
T
i,s|s−1(I −Ki,sCi,s)

T }

≤ βi,1(I −Ki,sCi,s)Pi,s|s−1(I −Ki,sCi,s)
T

+ β−1

i,1 E{Ki,s(I − Λi,s)ri,sr
T
i,s(I − Λi,s)K

T
i,s}

(37)

and

− E{Ki,sνi,sr
T
i,s(I − Λi,s)K

T
i,s}

− E{Ki,s(I − Λi,s)ri,sν
T
i,sK

T
i,s}

≤ βi,2Ki,sRi,sK
T
i,s

+ β−1

i,2 E{Ki,s(I − Λi,s)ri,sr
T
i,s(I − Λi,s)K

T
i,s}.

(38)
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Recalling (24) and the fact that(I − Λi,s)(I − Λi,s) =
(I − Λi,s), one has

E{Ki,s(I − Λi,s)ri,sr
T
i,s(I − Λi,s)K

T
i,s}

≤ υi,sKi,s(I − Λi,s)K
T
i,s.

(39)

Then, substituting (37)-(39) into (22) leads to

Pi,s

≤ (1 + βi,1)(I −Ki,sCi,s)Pi,s|s−1(I −Ki,sCi,s)
T

+ (1 + βi,2)Ki,sRi,sK
T
i,s

+ (1 + β−1

i,1 + β−1

i,2 )υi,sKi,s(I − Λi,s)K
T
i,s.

(40)

Based on the relationships (36) and (40) as well as the
mathematical induction method, it is not difficult to verify
that Pi,s|s−1 andPi,s are, respectively, the upper bounds on
the one-step prediction error covariance and the filtering error
covariance. The proof is now complete.

In view of Proposition 2, the weighted matrixPi,s|s−1 is
parameterized by the one-step prediction error covariance.
Next, we further determine the form of another weighted
matrix Ri,s by considering the effect of the component-wise
DETT mechanism. From (10), it is clear that

ȳi,s − Ci,sxi,s

= yi,s − (I − Λi,s)ri,s − Ci,sxi,s

= Ci,sxi,s + νi,s − (I − Λi,s)ri,s − Ci,sxi,s

= νi,s − (I − Λi,s)ri,s.

(41)

Then, one has

E{(ȳi,s − Ci,sxi,s)(ȳi,s − Ci,sxi,s)
T }

= E{(νi,s − (I − Λi,s)ri,s)(νi,s − (I − Λi,s)ri,s)
T }

≤ (1 + βi,2)Ri,s + (1 + β−1

i,2 )υi,s(I − Λi,s)

, Ri,s,

(42)

which can be regarded as an upper bound on the equivalent
measurement noise covariance.

By resorting to the weighted matricesPi,s|s−1 and Ri,s

determined in (28) and (42), we are able to parameterize the
explicit expression of the CBPI (16). Accordingly, motivated
by [16], the MCF scheme is designed as follows.

Bearing in mind the fact that the design purpose of filter
(i.e., gainKi,s) is to maximize the CBPI (16), we take partial
derivative with respect toxi,s and let

∂J(xi,s)

∂xi,s
= 0.

Then, it is obtained that

−
1

χ2
Gχ

(

‖xi,s − x̂i,s|s−1‖P−1

i,s|s−1

)

× P−1

i,s|s−1
(xi,s − x̂i,s|s−1)

+
1

χ2
Gχ

(

‖ȳi,s − Ci,sxi,s‖R−1

i,s

)

× CT
i,sR

−1

i,s (ȳi,s − Ci,sxi,s) = 0.

(43)

For ease of analysis, let us denote

Ui,s =
Gχ

(

‖ȳi,s − Ci,sxi,s‖R−1

i,s

)

Gχ

(

‖xi,s − x̂i,s|s−1‖P−1

i,s|s−1

) . (44)

Then, (43) can be rewritten by

P−1

i,s|s−1
(xi,s − x̂i,s|s−1) = Ui,sC

T
i,sR

−1

i,s (ȳi,s − Ci,sxi,s),

(45)
which, by adding the zero term

Ui,sC
T
i,sR

−1

i,sCi,sx̂i,s|s−1 − Ui,sC
T
i,sR

−1

i,sCi,sx̂i,s|s−1,

can be further reformulated as

(P−1

i,s|s−1
+ Ui,sC

T
i,sR

−1

i,sCi,s)xi,s

= (P−1

i,s|s−1
+ Ui,sC

T
i,sR

−1

i,sCi,s)x̂i,s|s−1

+ Ui,sC
T
i,sR

−1

i,s (ȳi,s − Ci,sx̂i,s|s−1).

(46)

Clearly, we can obtain that

x̂i,s = x̂i,s|s−1 +Ki,s(ȳi,s − Ci,sx̂i,s|s−1) (47)

where

Ki,s = (P−1

i,s|s−1
+ Ui,sC

T
i,sR

−1

i,sCi,s)
−1Ui,sC

T
i,sR

−1

i,s . (48)

It should be pointed out thatxi,s is also involved in the ex-
pression ofUi,s (and hence inKi,s), which means that it would
be really tricky to derive an analytic form of the state estimate
x̂i,s via (47). To this end, the fixed-point iterative algorithm is
introduced in [5] with the iterative initial state being the one-
step prediction. In this paper, following the similar line of
[22], [45], the fixed-point algorithm with only one iteration is
employed to guarantee the calculation efficiency. Specifically,
the one-step prediction̂xi,s|s−1 is utilized to approximatexi,s

in both the numerator and denominator on the right-hand side
of (44), which implies that

Ûi,s = Gχ

(

‖ȳi,s − Ci,sx̂i,s|s−1‖R−1

i,s

)

. (49)

Then, the filter gain matrix can be calculated by

Ki,s = (P−1

i,s|s−1
+ Ûi,sC

T
i,sR

−1

i,sCi,s)
−1Ûi,sC

T
i,sR

−1

i,s . (50)

To facilitate the future implementation, the developed MCF
algorithm under the component-wise DETT mechanism is
summarized in Algorithm 1.

Remark 4: It should be emphasized that, for the tradition-
al Kalman-like filtering algorithms based on the variance-
constrained approach, the filter gain matrix is designed to
minimize the trace of the filtering error covariance or its upper
bound by letting

∂tr(Pi,s)

∂Ki,s
= 0.

In this case, recalling the expression ofPi,s in (29), one has

(1 + βi,1)(−2Pi,s|s−1C
T
i,s + 2Ki,sCi,sPi,s|s−1C

T
i,s)

+ 2(1 + βi,2)Ki,sRi,s

+ 2(1 + β−1

i,1 + β−1

i,2 )υi,sKi,s(I − Λi,s) = 0.

Then, the filter gain matrix for thei-th node can be obtained
as follows:

Ki,s =(1 + βi,1)Pi,s|s−1C
T
i,s

[

(1 + βi,1)Ci,sPi,s|s−1C
T
i,s

+ (1 + βi,2)Ri,s

+ (1 + β−1

i,1 + β−1

i,2 )υi,s(I − Λi,s)
]−1

.

(51)
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Algorithm 1 MCF algorithm under the component-wise DET-
T mechanism.

Step 1. Algorithm initialization
For each nodei (i = 1, 2, · · · , N), set the initial
estimateŝxi,0 and initial covariance matricesPi,0.
Choose the positive scalarsαi,j (j = 1, 2, · · · , 5)
and βi,j (j = 1, 2), and select the proper kernel
bandwidthχ. The maximum time instant is set to
beK.

Step 2. One-step prediction
Calculate the one-step prediction̂xi,s|s−1 and the
upper boundPi,s|s−1 on the prediction error co-
variance based on (14) and (28), respectively.

Step 3. State estimate update
• Collect the available measurementsȳi,s under

scheduling of the component-wise DETT scheme
(6) and (7).

• Calculate the filter gain matrixKi,s based on
(42), (49) and (50).

• Update the state estimatêxi,s and the upper
boundPi,s on the filtering error covariance based
on (15) and (29), respectively.

Step 4. If s < K, then sets = s + 1 and go toStep 2;
otherwise stop the recursion.

It is clear that the above derivations only make use of the
second-order moment information of the filtering error, and
hence the resulted filter would be inapplicable to the scenarios
with non-Gaussian noises. Frankly speaking, such a problem
greatly motivates this current investigation.

Remark 5: It should also be mentioned that the number
of required floating point operations has been widely utilized
to approximately evaluate the computational complexity of a
given algorithm. Following the similar line of [5], we can con-
clude that the computational complexity of the proposed MCF
algorithm (composed of (14), (15), (28), (29), (42), (49) and
(50)) isC1 = 12n3+(14+4N)n2+12mn2+4m2+6nm2+
(3N + 4)n+ 6mn+9m+∆f +N +22+O(m3) + 2O(n3)
(where n = n̄ + k and ∆f denote, respectively, the state
dimension of the augmented system (5) and the computational
complexity determined by the specific form of nonlinear
function fs(·)), and that of the variance-constrained filtering
algorithm (comprised by (14), (15), (28), (29) and (51)) is
C2 = 12n3+(13+4N)n2+12mn2+3m2+6nm2+(3N +
4)n+2mn+ 8m+∆f +N +23+O(m3). In summary, the
proposed algorithm has moderate computational complexity
in comparison with the traditional variance-constrained one,
while guaranteeing a substantial performance improvement
under the non-Gaussian environment.

Remark 6:So far, considerable research enthusiasms have
been devoted to the state estimation or filtering problem for
complex networks with various network-induced phenomena,
and a rich body of elegant results has been reported in recent
years. Compared with the existing literature, this paper may
shed some new insights from the following three aspects: 1)
the problem under investigation is new in the sense that it takes

into simultaneous account the non-Gaussian noises, the system
nonlinearity, the uncertain dynamical bias and the component-
wise DETT protocol; 2) the maximum correntropy criterion is
adopted with a novel performance index which embraces the
effects of uncertain dynamical bias and component-wise DETT
protocol; and 3) the proposed filtering algorithm inherits
the recursive form of the Kalman-like filters and exhibits
appealing robustness against the non-Gaussian noises under
the component-wise DETT mechanism, which is therefore
suitable for the online implementations in practice.

IV. SIMULATION VALIDATIONS

In this section, an illustrative example is presented to
demonstrate the effectiveness of the developed filtering
methodology. Consider the complex network (1)-(4) with six
nodes as well as the following parameters:

Ā1,s =

[

0.85 + 0.1 sin(s) 0.6
−0.2 0.85

]

, B1,s =

[

0.4 0.5
0.4 −0.25

]

Ā2,s =

[

0.7 −0.05 + 0.1 sin(s)
−0.3 0.7

]

, B2,s =

[

0.8 0.4
0.3 −0.2

]

Ā3,s =

[

0.8 0.4
−0.4 0.65 + 0.2 cos(s)

]

, B3,s =

[

0.7 −0.1
0.2 0.3

]

,

Ā4,s =

[

0.8 + 0.1 cos(s) 0.4
−0.2 0.75

]

, B4,s =

[

0.6 −0.1
0.2 0.2

]

,

Ā5,s =

[

0.9 0.1
−0.1 + 0.1 sin(s) 0.7

]

, B5,s =

[

0.5 −0.1
0.1 0.3

]

,

Ā6,s =

[

0.85 −0.05 + 0.1 cos(s)
−0.1 0.75

]

, B6,s =

[

0.6 −0.1
0.1 0.2

]

,

G1,s =

[

0.5 0.4
−0.3 0.6

]

, G2,s =

[

0.6 0.4
0.4 0.3

]

,

G3,s =

[

0.6 0.2
0.3 0.4

]

, G4,s =

[

0.3 0.2
0.1 0.3

]

, G5,s =

[

0.5 0.2
0.1 0.2

]

,

G6,s =

[

0.4 −0.1
0.1 0.2

]

, C̄1,s =

[

1.2 0
0 1.3

]

,

C̄2,s =

[

1.8 0
0 1.2

]

, C̄3,s =

[

1.5 0
0 1.4

]

, C̄4,s =

[

1.6 0
0 1.4

]

,

C̄5,s =

[

1.9 0
0 1.5

]

, C̄6,s =

[

1.5 0
0 1.2

]

, Γ̄ =

[

0.1 0
0 0.1

]

.

The nonlinear function is described by

f̄s(x̄i,s) =

[

0.1 −0.01 + 0.05 cos(s)
0.01 0.15

]

x̄i,s+

[

0.08 sin(x̄1
i,s)

0.1 sin(x̄2
i,s)

]

where x̄l
i,s (l = 1, 2) denotes thelth component of the state

x̄i,s. Other modeling parameters are selected asτi = 0.01,
dij = 0.2 (i 6= j) anddii = −1 for i = 1, 2, . . . , 6.

In the simulation, the initial conditions are chosen asx̄1,0 =
[0 0]T , x̄2,0 = [−1 1]T , x̄3,0 = [2 − 1]T , x̄4,0 = [−1 2]T ,
x̄5,0 = [−2 − 1]T , x̄6,0 = [0 − 1]T , z1,0 = [−1 − 2]T ,
z2,0 = [2 3]T , z3,0 = [2 − 4]T , z4,0 = [2 − 3]T , z5,0 =
[−1 2]T , z6,0 = [1 2]T andPi,0 = 2I (i = 1, 2, . . . , 6). For
the component-wise DETT protocol, we letρi,l = 4, δi,l =
0.9, ξi,l,0 = 1 for i = 1, 2, . . . , 6 and l = 1, 2. Moreover,
π1,1 = 1, π1,2 = 2, π2,1 = 2, π2,2 = 1, π3,1 = 1, π3,2 = 1,
π4,1 = 1.5, π4,2 = 2, π5,1 = 1, π5,2 = 1.2, π6,1 = 1.2
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and π6,2 = 1. The root mean square error (RMSE) on state
estimate is calculated over 500 Monte Carlo runs to facilitate
the evaluation/comparison of filtering performance.

In what follows, two scenarios with different noise condi-
tions are taken into account to compare the tracking perfor-
mance of the proposed MCF algorithm (abbreviated as PMCF)
and the variance-constrained filtering algorithm (denoted as
VCF) in Remark 4.

Case 1: In this case, both the process noise and measure-
ment noise are Gaussian mixture noises, i.e.,

ζi,s ∼ 0.9N (0, diag{0.01, 0.01}) + 0.1N (0, diag{1, 1}),

ηi,s ∼ 0.9N (0, diag{0.001, 0.001})+ 0.1N (0, diag{0.1, 0.1}),

νi,s ∼ 0.8N (0, diag{0.5, 0.5}) + 0.2N (0, diag{500, 500}).

The simulation results are shown in Figs. 1-4. It can be
observed from Figs. 1-3 that compared with the VCF method,
our proposed algorithm can well track the true state trajectories
of three representative nodes, i.e. nodes 1, 3 and 5. In Fig. 4,
the triggering instants for the first node are displayed, which
verifies that the sensor components have different triggering
rates under the component-wise DETT protocol.
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Fig. 1: True value and state estimates for node 1 inCase 1.

The average RMSEs on state estimate, calculated over the
total simulation times, are summarized in Table I, where only
the results for nodes 1, 3 and 5 are displayed for brevity.
Obviously, in this case, the kernel bandwidth can be neither too
large nor too small. When the kernel bandwidth becomes very
larger, the performance of the proposed algorithm is similar to
that of the VCF method. It should be pointed out that when the
kernel bandwidth is set asχ = 0.08 in this case, the proposed
algorithm has a noticeable performance improvement over the
traditional method based on variance-constrained strategy.

To examine the effect of the triggering parameters onto the
filtering performance and resource consumption, the average
transmission rate is defined as the mean of the transmission
rate (the ratio of the triggering times to total simulation times)
over 500 Monte Carlo runs. The simulation results in terms
of average RMSEs and transmission rates are provided in
Table II, from which we are able to conclude that a proper
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Fig. 2: True value and state estimates for node 3 inCase 1.
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Fig. 3: True value and state estimates for node 5 inCase 1.
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Fig. 4: Triggering instants for node 1 inCase 1.
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TABLE I: Performance comparisons for different algorithms
and parameters under Gaussian mixture noises.

Node 1 Node 3 Node 5
RMSE

1

1
RMSE

2

1
RMSE

1

3
RMSE

2

3
RMSE

1

5
RMSE

2

5

VCF 8.2005 7.4317 6.4892 6.9062 5.0592 6.1273
PMCF (χ = 0.01) 1.6610 1.0168 0.8645 0.7956 0.8902 0.6973
PMCF (χ = 0.08) 0.9584 0.8249 0.8456 0.7044 0.5898 0.5891
PMCF (χ = 0.5) 4.2965 3.0973 4.3674 2.7436 2.0805 1.7407
PMCF (χ = 5) 8.1172 7.3320 6.3757 6.7044 4.9704 5.8088
PMCF (χ = 10) 8.1419 7.3618 6.4129 6.7666 4.9972 5.9080

TABLE II: Average RMSEs and transmission rates for
different triggering parameters under Gaussian mixture

noises.

ρi,l = 1.2 ρi,l = 4 ρi,l = ∞

Node 1

RMSE
1

1
1.0465 0.9584 0.8358

RMSE
2

1
0.9180 0.8249 0.7127

TR
1

1
49.65% 54.62% 66.37%

TR
2

1
38.44% 41.60% 51.31%

Node 2

RMSE
1

2
0.9543 0.8686 0.7283

RMSE
2

2
0.8779 0.8010 0.6956

TR
1

2
38.59% 41.74% 52.57%

TR
2

2
41.22% 45.87% 59.14%

Node 3

RMSE
1

3
0.9020 0.8456 0.7735

RMSE
2

3
0.7565 0.7044 0.6381

TR
1

3
45.58% 51.02% 63.31%

TR
2

3
44.81% 50.21% 62.61%

Node 4

RMSE
1

4
0.7556 0.6980 0.6368

RMSE
2

4
0.7736 0.7137 0.6319

TR
1

4
41.58% 45.66% 56.33%

TR
2

4
36.81% 39.88% 49.53%

Node 5

RMSE
1

5
0.5928 0.5898 0.5611

RMSE
2

5
0.6190 0.5891 0.5515

TR
1

5
42.33% 47.15% 59.74%

TR
2

5
38.14% 42.67% 55.08%

Node 6

RMSE
1

6
0.6299 0.5976 0.5639

RMSE
2

6
0.6897 0.6666 0.6321

TR
1

6
38.31% 42.83% 55.62%

TR
2

6
38.66% 43.79% 56.52%

triggering parameter can be chosen to cater for the practical
engineering requirements. On the other hand, it is worth
mentioning that whenρi,l = ∞, the component-wise DETT
protocol reduces to its component-wise static counterpart.
Clearly, the dynamic version has great potentials in relaxing
the network communication burden.

Case 2: In this case, the process noise is of the Gaussian
form and the measurement noise is shot noise, i.e.,

ζi,s ∼ N (0, diag{0.01, 0.01}),

ηi,s ∼ N (0, diag{0.001, 0.001}),

νi,s ∼ N (0, diag{0.5, 0.5}) + Shot noise.

For the first sensor component of node 1, one realization
of the measurement noise at the time instants when shot
noise occurs is depicted in Fig. 5. The simulation results are
summarized in Figs. 6-12, which again verify the effectiveness

of the proposed filtering scheme in terms of dealing with
the typical shot non-Gaussian noises and saving the limited
network resources.
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Fig. 5: One realization of the measurement noise at the time
instants when shot noise occurs.
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Fig. 6: True value and state estimates for node 1 inCase 2.

V. CONCLUSIONS

In this paper, the MCF problem has been dealt with for a
class of nonlinear and non-Gaussian complex networks subject
to uncertain dynamical bias under the DETT mechanism. To
guarantee that each sensor component can determine its own
triggering instant in an independent manner, the component-
wise DETT protocol has been exploited to govern the pro-
cess of data transmission. By resorting to the established
upper bounds on the one-step prediction error covariance
and the equivalent noise covariance, a novel CBPI has been
parameterized to extenuate the influence of the non-Gaussian
noises and the component-wise DETT protocol. Accordingly,
a recursive filter has been designed based on the maximum
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Fig. 7: True value and state estimates for node 2 inCase 2.
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Fig. 8: True value and state estimates for node 3 inCase 2.
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Fig. 9: True value and state estimates for node 4 inCase 2.
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Fig. 10: True value and state estimates for node 5 inCase 2.
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Fig. 11: True value and state estimates for node 6 inCase 2.
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Fig. 12: Triggering instants for node 1 inCase 2.
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correntropy criterion, which exhibits distinguishing advantages
in terms of not only the robustness against non-Gaussian
noises, but the resource saving as well. Finally, simulation
results have been given to demonstrate the effectiveness of the
proposed MCF algorithm. In the future, two possible research
directions would be 1) investigating the influences of the node
couplings onto the filtering performance; and 2) exploring the
extensions of the developed results to other systems, such as
the recurrent time-varying neural networks [31], the wireless
sensor networks [53], and the multi-agent systems [51].
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