6 research outputs found

    Model predictive direct power control of three-level T-type inverter-fed doubly-fed induction generator for wind energy system

    Get PDF
    The paper proposes a simplified direct power control strategy of a doubly-fed induction generator fed by a three-level T-type inverter based on finite control set model predictive control. A mathematical model based on grid voltage orientation was employed to determine the predictive values of the stator flux, rotor current, and capacitor voltages for all feasible rotor-side inverter output voltages. The active and reactive powers were calculated by using the grid voltage and the rotor current. A cost function was applied to track the active and reactive powers, maintain the balance of capacitor voltages, and reduce the common-mode voltage. The best switching control input was chosen by minimizing the cost function and implemented to the inverter. Different operating conditions of wind turbine systems were studied with Matlab/Simulink environment. The simulation results validate the improved performance of the proposed method compared with the classical control in terms of transient response and steady-state conditions

    Finite control set model predictive control for a three-phase shunt active power filter with a kalman filter-based estimation

    Get PDF
    In this paper, the finite control set model predictive control is combined with the vector operation technique to be applied in the control of a three-phase active power filter. Typically, in the finite control set technique applied to three-phase power converters, eight different vectors are considered in order to obtain the optimum control signal by minimizing a cost function. On the other hand, the vector operation technique is based on dividing the grid voltage period into six different regions. The main advantage of combining both techniques is that for each region the number of possible voltage vectors to be considered can be reduced to a half, thus reducing the computational load employed by the control algorithm. Besides, in each region, only two phase-legs are switching at high frequency while the remaining phase-leg is maintained to a constant dc-voltage value during this interval. Accordingly, a reduction of the switching losses is obtained. Unlike the typical model predictive control methods which make use of the discrete differential equations of the converter, this method considers a Kalman filter in order to improve the behavior of the closed-loop system in noisy environments. Selected experimental results are exposed in order the demonstrate the validity of the control proposalPostprint (published version

    Generalized Predictive Control Scheme for a Wind Turbine System

    Get PDF
    In this paper, a generalized predictive control scheme for wind energy conversion systems that consists of a wind turbine and a doubly-fed induction generator is proposed. The design is created by using the maximum power point tracking theory to maximize the extracted wind power, even when the turbine is uncertain or the wind speed varies abruptly. The suggested controller guarantees compliance with current constraints by applying them in the regulator’s conceptual design process to assure that the rotor windings are not damaged due to the over-current. This GPC speed control solves the optimization problem based on the truncated Newton minimization method. Finally, simulation results, which are obtained through the Matlab/Simulink software, show the effectiveness of the proposed speed regulator compared to the widely used Proportional-integral controller for DFIG.The University of the Basque Country (UPV/EHU) (grant number PIF 18/127) has funded the research in this paper

    Receding-horizon model predictive control for a three-phase VSI with an LCL filter

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This paper presents a Continuous Control Set Model Predictive Control with receding horizon for a threephase voltage source inverter with LCL filter, using a reduced model of the converter. The main advantages of using this reduced model is that an active damping can be achieved while the computational burden is reduced. Besides, in order to eliminate the model uncertainties, and also to achieve a zero steady state error, the proposed converter model includes an embedded integrator. Regarding the control scheme, a Kalman filter is used in order to estimate the three-phase currents without oscillation. The objective is to find the control signals vector that minimizes the error between the current and its reference. It is important to remark that the control signals obtained fromthe cost function can be used directly in a space vector modulator, without the use of additional controllers such as proportionalintegral or proportional-resonant. Compared with the Finite Control Set Model Predictive Control, the proposedmethod operates at fixed switching frequency without using any restriction in the cost function. Simulation and experimental results show that this proposalworks correctly even in case of grid harmonics and voltage sags.Peer ReviewedPostprint (author's final draft

    Optimizing the Dynamic Performance of a Wind Driven Standalone DFIG Using an Advanced Control Algorithm

    Get PDF
    The article seeks to improve the dynamic performance of a standalone doubly fed induction generator (DFIG) which driven by a wind turbine, with the help of an effective control approach. The superiority of the designed predictive controller can be confirmed through evaluating the performance of the DFIG under other control algorithm, which is the model predictive direct torque control (MPDTC), model predictive current control (MPCC) as classic types of control. Firstly, the operating principles of the two controllers are described in details. After that, a comprehensive comparison is performed among the dynamic performances of the designed MPDTC, MPCC techniques and the predictive control strategy, so we can easily present the merits and deficiencies of each control scheme to be able to easily select the most appropriate algorithm to be utilized with the DFIG. The comparison is carried out in terms of system simplicity, dynamic response, ripples’ content, number of performed commutations and total harmonic distortion (THD). The results of the comparison prove the effectiveness and validation of our proposed predictive controller; as it achieves the system simplicity, its dynamic response is faster than that of MPDTC and MPCC, it presents a lower content of ripples compared to MPDTC and MPCC. Moreover, it can minimize the computational burden, remarkably. Furthermore, the numerical results are showing a marked reduction in the THD with a percentage of 2.23 % compared to MPDTC and 1.8 % compared to MPCC. For these reasons, it can be said that the formulated controller is the most convenient to be used with the DFIG to achieve the best dynamic performance

    Finite-Control-Set Model Predictive Control for Low-Voltage-Ride-Through Enhancement of PMSG Based Wind Energy Grid Connection Systems

    Get PDF
    Grid faults are found to be one of the major issues in renewable energy systems, particularly in wind energy conversion systems (WECS) connected to the grid via back-to-back (BTB) converters. Under such faulty grid conditions, the system requires an effective regulation of the active (P) and reactive (Q) power to accomplish low voltage ride through (LVRT) operation in accordance with the grid codes. In this paper, an improved finite-control-set model predictive control (FCS-MPC) scheme is proposed for a PMSG based WECS to achieve LVRT ability under symmetrical and asymmetrical grid faults, including mitigation of DC-link voltage fluctuation. With proposed predictive control, optimized switching states for cost function minimization with weighing factor (WF) selection guidelines are established for robust BTB converter control and reduced cross-coupling amid P and Q during transient conditions. Besides, grid voltage support is provided by grid side inverter control to inject reactive power during voltage dips. The effectiveness of the FCS-MPC method is compared with the conventional proportional-integral (PI) controller in case of symmetrical and asymmetrical grid faults. The simulation and experimental results endorse the superiority of the developed FCS-MPC scheme to diminish the fault effect quickly with lower overshoot and better damping performance than the traditional controller
    corecore