530 research outputs found

    Prädiktive Regelung und Finite-Set-Beobachter für Windgeneratoren mit variabler Drehgeschwindigkeit

    Get PDF
    This dissertation presents several model predictive control (MPC) techniques and finite-position-set observers (FPSOs) for permanent-magnet synchronous generators and doubly-fed induction generators in variable-speed wind turbines. The proposed FPSOs are novel ones and based on the concept of finite-control-set MPC. Then, the problems of the MPC techniques like sensitivity to variations of the model parameters and others are investigated and solved in this work.Die vorliegende Dissertation stellt mehrere unterschiedliche Verfahren der modellprädiktiven Regelung (MPC) und so genannte Finite-Position-Set-Beobachter (FPSO) sowohl für Synchrongeneratoren mit Permanentmagneterregung als auch für doppelt gespeiste Asynchrongeneratoren in Windkraftanlagen mit variabler Drehzahl vor und untersucht diese. Für die Beobachter (FPSO) wird ein neuartiger Ansatz vorgestellt, der auf dem Konzept der Finite-Control-Set-MPC basiert. Außerdem werden typische Eigenschaften der MPC wie beispielsweise die Anfälligkeit gegenüber Parameterschwankungen untersucht und kompensiert

    Model predictive direct power control of three-level T-type inverter-fed doubly-fed induction generator for wind energy system

    Get PDF
    The paper proposes a simplified direct power control strategy of a doubly-fed induction generator fed by a three-level T-type inverter based on finite control set model predictive control. A mathematical model based on grid voltage orientation was employed to determine the predictive values of the stator flux, rotor current, and capacitor voltages for all feasible rotor-side inverter output voltages. The active and reactive powers were calculated by using the grid voltage and the rotor current. A cost function was applied to track the active and reactive powers, maintain the balance of capacitor voltages, and reduce the common-mode voltage. The best switching control input was chosen by minimizing the cost function and implemented to the inverter. Different operating conditions of wind turbine systems were studied with Matlab/Simulink environment. The simulation results validate the improved performance of the proposed method compared with the classical control in terms of transient response and steady-state conditions

    Wind Power Frequency Control in Doubly FED Induction Generator Using CFMPC-FOPID Controller Scheme

    Get PDF
    Because the majority of wind turbines operate in maximum output power tracking mode, power system frequency cannot be supported. However, if the penetration rate of wind power increases, the system inertia related to frequency modulation may decrease. In addition, frequency stability will be severely affected in the event of significant disturbances to the system load. Due to the high penetration of wind power in isolated power systems, this study suggests a coordinated frequency management approach for emergency frequency regulation. In order to prevent the phenomenon of load frequency control in doubly fed induction generators (DFIGs), a unique efficient control scheme is developed. The Cascaded Fractional Model Predictive Controller coupled with Fractional-Order PID controller (CFMPC-FOPID) is developed to provide the DFIG system with an efficient reaction to changes in load and system parameters. The proposed controller must have a robust tendency to respond quickly in terms of minimum settling time, undershoot, and overshoot. Nonlinear feedback controllers are designed using frequency deviations and power imbalances to achieve the reserve power distribution between generators and DFIGs in a variety of wind speed conditions. It makes upgrading quick and easy. In Matlab/Simulink, a simulation model is built to test the viability of the suggested approach

    Generalized Predictive Control Scheme for a Wind Turbine System

    Get PDF
    In this paper, a generalized predictive control scheme for wind energy conversion systems that consists of a wind turbine and a doubly-fed induction generator is proposed. The design is created by using the maximum power point tracking theory to maximize the extracted wind power, even when the turbine is uncertain or the wind speed varies abruptly. The suggested controller guarantees compliance with current constraints by applying them in the regulator’s conceptual design process to assure that the rotor windings are not damaged due to the over-current. This GPC speed control solves the optimization problem based on the truncated Newton minimization method. Finally, simulation results, which are obtained through the Matlab/Simulink software, show the effectiveness of the proposed speed regulator compared to the widely used Proportional-integral controller for DFIG.The University of the Basque Country (UPV/EHU) (grant number PIF 18/127) has funded the research in this paper

    Control Studies of DFIG based Wind Power Systems

    Get PDF
    Wind energy as an outstanding and competitive form of renewable energy, has been growing fast worldwide in recent years because of its importance to reduce the pollutant emission generated by conventional thermal power plants and the rising prices and the unstable supplies of fossil-fuel. However, in the development of wind energy, there are still many ongoing challenges. An important challenge is the need of voltage control to maintain the terminal voltage of a wind plant to make it a PV bus like conventional generators with excitation control. In the literature with PI controllers used, the parameters of PI controllers need to be tuned as a tradeoff or compromise among various operating conditions. In this work, a new voltage control approach is presented. In the proposed approach, the PI control gains are dynamically adjusted based on the dynamic, continuous sensitivity which essentially indicates the dynamic relationship between the change of control gains and the desired output voltage. Hence, this control approach does not require any good estimation or tuning of fixed control gains because it has the self-learning mechanism via the dynamic sensitivity. This also gives the plug-and-play feature of DFIG controllers to make it promising in utility practices. Another key challenge in power regulation of wind energy is the control design in wind energy conversion system (WECS) to realize the tradeoff between the energy cost and control performance subject to stochastic wind speeds. In this work, the chance constraints are considered to address the control inputs and system outputs, as opposed to deterministic constraints in the literature, where the chance constraints include the stochastic behavior of the wind speed fluctuation. Two different control problems are considered here: The first one assumes the wind speed disturbance’s distribution is Gaussian; the second one assumes the disturbance is norm bounded, and the problem is formulated as a min-max optimization problem which has not been considered in the literature. Both problems are formulated as semi-definite program (SDP) optimization problems that can be solved efficiently with existing software tools. And simulation results are provided to demonstrate the validity of the proposed method

    Performance Enhancement of a Variable Speed Permanent Magnet Synchronous Generator Used for Renewable Energy Application

    Get PDF
    The paper aims to develop an improved control system to enhance the dynamics of a permanent magnet synchronous generator (PMSG) operating at varying speeds. The generator dynamics are evaluated based on lowing current, power, and torque ripples to validate the effectiveness of the proposed control system. The adopted controllers include the model predictive power control (MPPC), model predictive torque control (MPTC), and the designed predictive voltage control (PVC). MPPC seeks to regulate the active and reactive power, while MPTC regulates the torque and flux. MPPC and MPTC have several drawbacks, like high ripple, high load commutation, and using a weighting factor in their cost functions. The methodology of designed predictive voltage comes to eliminate these drawbacks by managing the direct voltage by utilizing the deadbeat and finite control set FCS principle, which uses a simple cost function without needing any weighting factor for equilibrium error issues. The results demonstrate several advantages of the proposed PVC technique, including faster dynamic response, simplified control structure, reduced ripples, lower current harmonics, and decreased computational requirements when compared to the MPPC and MPTC methods. Additionally, the study considers the integration of blade pitch angle and maximum power point tracking (MPPT) controls, which limit wind energy utilization when the generator speed exceeds its rated speed and maximize wind energy extraction during wind scarcity. In summary, the proposed PVC enhanced control system exhibits superior performance in terms of dynamic response, control simplicity, current quality, and computational efficiency when compared to alternative methods

    Real time observer and control scheme for a wind turbine system based on a high order sliding modes

    Get PDF
    The introduction of advanced control algorithms may improve considerably the efficiency of wind turbine systems. This work proposes a high order sliding mode (HOSM) control scheme based on the super twisting algorithm for regulating the wind turbine speed in order to obtain the maximum power from the wind. A robust aerodynamic torque observer, also based on the super twisting algorithm, is included in the control scheme in order to avoid the use of wind speed sensors. The presented robust control scheme ensures good performance under system uncertainties avoiding the chattering problem, which may appear in traditional sliding mode control schemes. The stability analysis of the proposed HOSM observer is provided by means of the Lyapunov stability theory. Experimental results show that the proposed control scheme, based on HOSM controller and observer, provides good performance and that this scheme is robust with respect to system uncertainties and external disturbances.The authors are very grateful to the Basque Government by its support through the project EKOHEGAZ (ELKARTEK KK-2021/00092), to the Diputacion Foral de Alava (DFA) by its support through the project CONAVANTER, to Gipuzkoako Foru Aldundia by its support through the project Etorkizuna Eraikiz 2019, and to the UPV/EHU by its support through the project GIU20/063

    A Comparative Analysis of Self-Rectifying Turbines for the Mutriku Oscillating Water Column Energy Plant

    Get PDF
    Oscillating Water Column (OWC) based devices are arising as one of the most promising technologies for wave energy harnessing. However, the most widely used turbine comprising its power take-off (PTO) module, the Wells turbine, presents some drawbacks that require special attention. Notwithstanding different control strategies are being followed to overcome these issues; the use of other self-rectifying turbines could directly achieve this goal at the expense of some extra construction, maintenance, and operation costs. However, these newly developed turbines in turn show diverse behaviours that should be compared for each case. This paper aims to analyse this comparison for the Mutriku wave energy power plant.This work was supported by the MINECO through the Research Project DPI2015-70075-R (MINECO/FEDER, UE) and in part by the University of the Basque Country (UPV/EHU) through PPG17/33. The authors would like to thank the collaboration of the Basque Energy Agency (EVE) through Agreement UPV/EHUEVE23/6/2011, the Spanish National Fusion Laboratory (EURATOM-CIEMAT) through Agreement UPV/EHUCIEMAT08/190, and EUSKAMPUSCampus of International Excellence
    • …
    corecore