2,998 research outputs found

    Finite element approximation of multi-scale elliptic problems using patches of elements

    Get PDF
    In this paper we present a method for the numerical solution of elliptic problems with multi-scale data using multiple levels of not necessarily nested grids. The method consists in calculating successive corrections to the solution in patches whose discretizations are not necessarily conforming. This paper provides proofs of the results published earlier (see C. R. Acad. Sci. Paris, Ser. I 337 (2003) 679-684), gives a generalization of the latter to more than two domains and contains extensive numerical illustrations. New results including the spectral analysis of the iteration operator and a numerical method to evaluate the constant of the strengthened Cauchy-Buniakowski-Schwarz inequality are presente

    Numerical homogenization of elliptic PDEs with similar coefficients

    Full text link
    We consider a sequence of elliptic partial differential equations (PDEs) with different but similar rapidly varying coefficients. Such sequences appear, for example, in splitting schemes for time-dependent problems (with one coefficient per time step) and in sample based stochastic integration of outputs from an elliptic PDE (with one coefficient per sample member). We propose a parallelizable algorithm based on Petrov-Galerkin localized orthogonal decomposition (PG-LOD) that adaptively (using computable and theoretically derived error indicators) recomputes the local corrector problems only where it improves accuracy. The method is illustrated in detail by an example of a time-dependent two-pase Darcy flow problem in three dimensions

    Corrector Analysis of a Heterogeneous Multi-scale Scheme for Elliptic Equations with Random Potential

    Full text link
    This paper analyzes the random fluctuations obtained by a heterogeneous multi-scale first-order finite element method applied to solve elliptic equations with a random potential. We show that the random fluctuations of such solutions are correctly estimated by the heterogeneous multi-scale algorithm when appropriate fine-scale problems are solved on subsets that cover the whole computational domain. However, when the fine-scale problems are solved over patches that do not cover the entire domain, the random fluctuations may or may not be estimated accurately. In the case of random potentials with short-range interactions, the variance of the random fluctuations is amplified as the inverse of the fraction of the medium covered by the patches. In the case of random potentials with long-range interactions, however, such an amplification does not occur and random fluctuations are correctly captured independent of the (macroscopic) size of the patches. These results are consistent with those obtained by the authors for more general equations in the one-dimensional setting and provide indications on the loss in accuracy that results from using coarser, and hence less computationally intensive, algorithms

    A localized orthogonal decomposition method for semi-linear elliptic problems

    Get PDF
    In this paper we propose and analyze a new Multiscale Method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. For this purpose we construct a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations in small patches that have a diameter of order H |log H| where H is the coarse mesh size. Without any assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear convergence of the H1-error with respect to the coarse mesh size. To solve the arising equations, we propose an algorithm that is based on a damped Newton scheme in the multiscale space

    Convergence of a discontinuous Galerkin multiscale method

    Get PDF
    A convergence result for a discontinuous Galerkin multiscale method for a second order elliptic problem is presented. We consider a heterogeneous and highly varying diffusion coefficient in L(Ω,Rsymd×d)L^\infty(\Omega,\mathbb{R}^{d\times d}_{sym}) with uniform spectral bounds and without any assumption on scale separation or periodicity. The multiscale method uses a corrected basis that is computed on patches/subdomains. The error, due to truncation of corrected basis, decreases exponentially with the size of the patches. Hence, to achieve an algebraic convergence rate of the multiscale solution on a uniform mesh with mesh size HH to a reference solution, it is sufficient to choose the patch sizes as O(Hlog(H1))\mathcal{O}(H|\log(H^{-1})|). We also discuss a way to further localize the corrected basis to element-wise support leading to a slight increase of the dimension of the space. Improved convergence rate can be achieved depending on the piecewise regularity of the forcing function. Linear convergence in energy norm and quadratic convergence in L2L^2-norm is obtained independently of the forcing function. A series of numerical experiments confirms the theoretical rates of convergence

    Multiscale Partition of Unity

    Full text link
    We introduce a new Partition of Unity Method for the numerical homogenization of elliptic partial differential equations with arbitrarily rough coefficients. We do not restrict to a particular ansatz space or the existence of a finite element mesh. The method modifies a given partition of unity such that optimal convergence is achieved independent of oscillation or discontinuities of the diffusion coefficient. The modification is based on an orthogonal decomposition of the solution space while preserving the partition of unity property. This precomputation involves the solution of independent problems on local subdomains of selectable size. We deduce quantitative error estimates for the method that account for the chosen amount of localization. Numerical experiments illustrate the high approximation properties even for 'cheap' parameter choices.Comment: Proceedings for Seventh International Workshop on Meshfree Methods for Partial Differential Equations, 18 pages, 3 figure

    Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: explicit time-stepping and efficient mass matrix inversion

    Full text link
    We present a class of spline finite element methods for time-domain wave propagation which are particularly amenable to explicit time-stepping. The proposed methods utilize a discontinuous Galerkin discretization to enforce continuity of the solution field across geometric patches in a multi-patch setting, which yields a mass matrix with convenient block diagonal structure. Over each patch, we show how to accurately and efficiently invert mass matrices in the presence of curved geometries by using a weight-adjusted approximation of the mass matrix inverse. This approximation restores a tensor product structure while retaining provable high order accuracy and semi-discrete energy stability. We also estimate the maximum stable timestep for spline-based finite elements and show that the use of spline spaces result in less stringent CFL restrictions than equivalent piecewise continuous or discontinuous finite element spaces. Finally, we explore the use of optimal knot vectors based on L2 n-widths. We show how the use of optimal knot vectors can improve both approximation properties and the maximum stable timestep, and present a simple heuristic method for approximating optimal knot positions. Numerical experiments confirm the accuracy and stability of the proposed methods

    Multiscale methods for problems with complex geometry

    Full text link
    We propose a multiscale method for elliptic problems on complex domains, e.g. domains with cracks or complicated boundary. For local singularities this paper also offers a discrete alternative to enrichment techniques such as XFEM. We construct corrected coarse test and trail spaces which takes the fine scale features of the computational domain into account. The corrections only need to be computed in regions surrounding fine scale geometric features. We achieve linear convergence rate in energy norm for the multiscale solution. Moreover, the conditioning of the resulting matrices is not affected by the way the domain boundary cuts the coarse elements in the background mesh. The analytical findings are verified in a series of numerical experiments
    corecore