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Abstract. In this paper we propose and analyze a localized orthogonal decomposition (LOD) method
for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions.
This Galerkin-type method is based on a generalized finite element basis that spans a low dimensional
multiscale space. The basis is assembled by performing localized linear fine-scale computations on
small patches that have a diameter of order H | log(H)| where H is the coarse mesh size. Without any
assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear
convergence of the H1-error with respect to the coarse mesh size even for rough coefficients. To solve
the corresponding system of algebraic equations, we propose an algorithm that is based on a damped
Newton scheme in the multiscale space.
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1. Introduction

This paper is devoted to the numerical approximation of solutions of semi-linear elliptic problems with rapidly
oscillating and highly varying coefficient functions. We are concerned with second-order partial differential
equations of the type

−∇ · (A∇u) + F (u,∇u) = g

with prescribed (zero-) Dirichlet boundary condition for the unknown function u. Here, g is a given source term,
A is a given highly variable diffusion matrix and F is a given highly variable nonlinear term that represents
advective and reactive processes. In particular, we have a linear term of second order and nonlinear terms of
order 1 and 0. A typical application is the stationary (Kirchhoff transformed) Richards equation that describes
the groundwater flow in unsaturated soils (cf. [1,4,5]). The corresponding equation for the unknown generalized
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pressure u reads

∇ · (K∇u) −∇ · (K kr(M(u))�e) = g,

where K is the hydraulic conductivity in the soil, kr the relative permeability depending on the saturation, M
is some nonlinearity arising from the Kirchhoff transformation and �e denotes the gravity vector. If we add an
infiltration process, the equation receives an additional nonlinear reaction term.

The numerical treatment of such equations is often complicated and expensive. Due to the high variability
of the coefficient functions, one requires extremely fine computational grids that are able to capture all the fine
scale oscillations. Using standard methods such as Finite Element or Finite Volume schemes, this results in
systems of equations of enormous size and therefore in a tremendous computational demand that can not be
handled in a lot of scenarios.

Multiscale methods aim to overcome this difficulty by decoupling the fine scale computations into local
parts. Prominent examples of multiscale methods are the Heterogeneous Multiscale Method (HMM) by E and
Engquist [13] and the Multiscale Finite Element Method (MsFEM) proposed by Hou and Wu [20]. Both methods
fit into a common framework and are strongly related to numerical homogenization (cf. [14,15,18]). HMM and
MsFEM are typically not constructed for a direct approximation of exact solutions but for homogenized solutions
and corresponding correctors instead. This implies that they are only able to approximate the exact solution
up to a modeling error that depends crucially on the homogenization setting (cf. [14]). In the absence of strong
assumptions like periodicity and scale separation, accurate approximations are therefore hard to achieve.

We are concerned with a multiscale method that is based on the concept of the Variational Multiscale
Method (VMM) proposed by Hughes et al. [21]. In comparison to HMM and MsFEM, the VMM aims to a
direct approximation of the exact solution without suffering from a modeling error remainder arising from
homogenization theory. The key idea of the Variational Multiscale Method is to construct a splitting of the
original solution space V into the direct sum of a low dimensional space for coarse grid approximations and
high dimensional space for fine scale reconstructions. In this work, we consider a modification and extension of
this idea that was developed in [27,30] and that was explicitly proposed in [31]. Here, the splitting is such that
we obtain an accurate but low dimensional space V ms (where we are looking for our fine scale approximation
instead of an approximation of a coarse part) and a high dimensional residual space V f . The construction of
V ms involves the computation of one fine scale problem in a small patch per degree of freedom. Mesh-adaptive
versions of the VMM with patch size control are discussed in [27–29,33]. The first rigorous proof of convergence
was recently obtained in [31] for linear diffusion problems under minimal regularity assumptions.

In this contribution, we present an efficient way of handling semi-linear elliptic multiscale problems in the
modified VMM framework, including a proof of convergence based on the techniques established in [31]. Even
though the original problem is nonlinear, the local fine scale problems are purely linear that can be solved in
parallel. The main result of this article is the optimal convergence of the H1-error between exact solution u
and its multiscale approximation ums

H . We show that, if the patch size is of order H | log(H)|, the following error
bound

‖u− ums
H ‖H1(Ω) ≤ CH

holds with a generic constant C independent of the mesh size of the computational grid and the oscillations of
A and F .

The paper is structured as follows. In Section 2 we introduce the setting of this paper, including the as-
sumptions on the considered semi-linear problem. In Section 3 we present and motivate our method and we
state the corresponding optimal convergence result. This result is then proved in Section 4. In Section 5, we
propose an algorithm for the solution of the arising nonlinear algebraic equations. This algorithm is based
on a damped Newton scheme in the multiscale space. Finally, Section 6 supports the theoretical results by a
numerical experiment.
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2. Setting

Let Ω ⊂ R
d be a bounded Lipschitz domain with polyhedral boundary, let V := H1

0 (Ω) and let A ∈
L∞(Ω,Rd×d

sym ) denote a matrix valued function with uniformly strictly positive eigenvalues. We assume that the
space H1

0 (Ω) is endowed with the H1-semi norm given by |v|H1(Ω) := ‖∇v‖L2(Ω) (which is equivalent to the
commonH1-norm inH1

0 (Ω)). By 〈·, ·〉 := (·, ·)L2(Ω) we denote the inner product in L2(Ω) and F : Ω×R×R
d → R

is a nonlinear measurable function.
Given some source term g ∈ L2(Ω) ⊂ H−1(Ω) we are concerned to find u ∈ H1

0 (Ω) (i.e. with a homogeneous
Dirichlet boundary condition) with

〈A∇u,∇v〉 + 〈F (·, u,∇u), v〉 = 〈g, v〉 (2.1)

for all test functions v ∈ H1
0 (Ω). To simplify the notation, we define the operator B : H1

0 (Ω) → H−1(Ω) by

〈B(v), w〉H−1 ,H1
0

:= 〈A∇v,∇w〉 + 〈F (·, v,∇v), w〉 for v, w ∈ H1
0 (Ω),

where 〈·, ·〉H−1,H1
0

denote the dual pairing in H1
0 (Ω).

Here, the diffusion diffusion matrix A may be strongly heterogeneous and highly variable. The non-linearity
F (·, ξ, ζ) may as well oscillate rapidly without any assumptions on the type of the oscillations. One application
can be the Richards equation, which we will discuss more in Section 6.

However, we assume implicitly that the lower-order term F does not dominate the equation. In this regime,
it is sufficient to construct a multiscale space independent of the non-linearity by solving local linear problems
on the fine scale. If the lower-order term is dominant, some constants in our error analysis will be large and
the proposed method needs modifications with respect to the construction of the multiscale basis. A typical
example where the lower-order term is dominant is the modeling of transport of solutes in groundwater where
one has to deal with extremely large Péclet numbers and a corresponding scaling of the advective terms. In
this case, the resolution of oscillations of F is necessary for accurate upscaled and homogenized approximation
(cf. [16, 17]).

For the subsequent analytical considerations and in order to guarantee a unique solution of (2.1), we make
the following assumptions.

Assumption 1.

(A1) A ∈ L∞ (Ω,Rd×d
sym

)
with

∞ > β := ‖A‖L∞(Ω) = ess sup
x∈Ω

sup
ζ∈Rd\{0}

A(x)ζ · ζ
|ζ|2 ·

and there exists α such that

0 < α := ess inf
x∈Ω

inf
ζ∈Rd\{0}

A(x)ζ · ζ
|ζ|2 ,

(A2) There exist L1, L2 ∈ R>0 such that uniformly for almost every x in Ω:

|F (x, ξ1, ζ) − F (x, ξ2, ζ)| ≤ L1|ξ1 − ξ2|, for all ζ ∈ R
d, ξ1, ξ2 ∈ R,

|F (x, ξ, ζ1) − F (x, ξ, ζ2)| ≤ L2|ζ1 − ζ2|, for all ζ1, ζ2 ∈ R
d, ξ ∈ R,

F (x, 0, 0) = 0.

(A3) B is strongly monotone, i.e. there exist c0 > 0 so that for all u, v ∈ H1
0 (Ω):

〈B(u) −B(v), u− v〉H−1,H1
0
≥ c0|u− v|2H1(Ω). (2.2)
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Under assumptions (A1)−(A3), the Browder−Minty theorem (cf. [36], Sect. 3, Thm. 1.5 therewithin) yields a
unique solution of problem (2.1).

Typically, the validity of Assumption (A3) can be checked by looking at the properties of the nonlinear
function F . For instance, if there exists a constant α0 ≥ 0, such that ∂ξF (x, ξ, ζ) ≥ α0 for all ζ and almost
every x (i.e. F (x, ·, ζ) is monotonically increasing) and if α0 and L2 are such that L2 ≤ 2α0 and L2 < 2α then
(A3) is fulfilled. This can be checked by a simple calculation:

〈B(u) −B(v), u − v〉H−1,H1
0
≥ α||∇u−∇v||2L2(Ω) + α0||u− v||2L2(Ω) − L2(|u − v|, |∇u−∇v|)L2(Ω)

≥
(
α− L2

2

)
||∇u −∇v||2L2(Ω) +

(
α0 −

L2

2

)
||u− v||2L2(Ω).

Remark 2.1. Let CΩ < diamΩ denote the optimal constant in the Friedrichs inequality for H1
0 (Ω) functions.

Observe that (A1)−(A3) imply that the solution u ∈ H1
0 (Ω) of (2.1) fulfills

‖F (u,∇u)‖L2(Ω) ≤ ‖F (u,∇u) − F (0,∇u)‖L2(Ω) + ‖F (0,∇u) − F (0, 0)‖L2(Ω)

≤ (L1CΩ + L2)|u|H1(Ω) ≤ CΩ
L1CΩ + L2

c0
‖g‖L2(Ω). (2.3)

Note that problem (2.1) also covers equations such as

−∇ · (κ(u)A∇u) + F (u,∇u) = g,

for a strictly positive and sufficiently regular function κ (independent of x). In this case, the equation can be
rewritten as

−∇ ·A∇u + F̃ (u,∇u) = g̃.

In the remainder of this paper, we use the notation q1 � q2 if q1 ≤ Cq2 where C > 0 is a constant that only
depends on the shape regularity of the mesh, but not on the mesh size. Dependencies such as (L1 +L2)α−1 are
always explicitly stated whereas dependencies on the contrast β

α are allowed to be contained in the notation
� for the sake of simplicity.

3. Multiscale method

In this section we propose a local orthogonal decomposition (LOD) method that is based on the concept
introduced by Hughes et al. [21, 22] and the specific constructions proposed in [27, 30] for linear problems. The
required multiscale (MS) basis functions are obtained with the strategy established in [31].

The main idea of the Variational Multiscale Method is to start from a finite element space Vh with a highly
resolved computational grid and to construct a splitting of this space into the direct sum Vh = V l ⊕ V f of
a low dimensional space V l and a “detail space” V f containing all the missing oscillations. Then, a basis of
V l is assembled and we can compute a Galerkin approximation ul of u in V l. However, the success of this
approach strongly depends on the choice of V l. On the one hand, the costs for assembling a basis of V l must
be kept low. On the other hand, the basis functions somehow need to contain information about fine scale
features. For instance, a standard coarse finite element space is cheap to assemble but will fail to yield reliable
approximations. On the contrary, the space spanned by high resolution finite element approximations yields
perfect approximations, but is as costly as the original problem that we tried to avoid. Therefore, the key is
to find an optimal balance between costs and accuracy. In previous works (cf. [21, 27, 28]) the multiscale basis
(MS-basis) of V l was constructed involving the full multiscale operator B that corresponds with the left hand
side of the original problem. In a fully linear setting, this can be a reasonable choice. However, it gets extremely
expensive if B is a nonlinear operator, since it leads to numerous nonlinear equations to solve. Furthermore it
is not clear if the constructed set of basis functions leads to good approximations. One novelty of this work is
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that we do not involve the full operator B in the construction of the MS-basis, but only the linear diffusive part
〈A∇·,∇·〉. Even though the oscillations of F are not captured by the MS-basis, we can show that we are still
able to obtain accurate approximations and to preserve the optimal convergence rates.

3.1. Notation and discretization

Let TH denote a regular triangulation of Ω and let H : Ω → R>0 denote the TH -piecewise constant mesh size
function with H |T = HT := diam(T ) for all T ∈ TH . Additionally, let Th be a regular triangulation of Ω that is
supposed to be a refinement of TH . We assume that Th is sufficiently small so that all fine scale features of B are
captured by the mesh. The mesh size h denotes the maximum diameter of an element of Th. The corresponding
classical (conforming) finite element spaces of continuous piecewise polynomials of degree 1 are given by

VH :=
{
vH ∈ H1

0 (Ω) | ∀T ∈ TH : (vH)|T is affine
}
,

Vh :=
{
vh ∈ H1

0 (Ω) | ∀K ∈ Th : (vh)|K is affine
}
.

By J , we denote the dimension of VH and by NH = {zj| 1 ≤ j ≤ J} the set of interior vertices of TH . For every
vertex zj ∈ NH , let λj ∈ VH denote the associated nodal basis function (tent function), i.e. λj ∈ VH with the
property λj(zi) = δij for all 1 ≤ i, j ≤ J .

From now on, we denote by uh ∈ Vh the classical finite element approximation of u in the discrete (highly
resolved) space Vh, i.e. uh ∈ Vh solves∫

Ω

A∇uh · ∇vh + F (·, uh,∇uh)vh =
∫

Ω

gvh (3.1)

for all vh ∈ Vh. We assume that Vh resolves the micro structure such that the error ‖u− uh‖H1(Ω) falls below a
given tolerance. For standard finite element methods the error typically scales like C ·hs for some s ≥ 1

2 . However,
for regular coefficients, C depends on the derivative of A with respect to the spatial variable. If A oscillates
rapidly, the derivatives become very large and h must be very small to compensate the dominance of C. This
is only fulfilled, when h resolves the micro structure (we refer to [34, 35] for some quantitative characterization
of this so-called resolution condition). We are therefore dealing with pre-asymptotic effects for the standard
methods. The multiscale method that we propose in the subsequent sections is designed to approximate uh

with an error proportional to the coarse mesh size H independent of fine scale oscillations of the data or the
regularity of the solution, i.e., we do not have such pre-asymptotic effects.

3.2. Quasi interpolation

The key tool in our construction is a linear (quasi-)interpolation operator IH : Vh → VH that is continuous
and surjective. The kernel of this operator is going to be our fine space (or remainder space) V f

h . In [31] a
weighted Clément interpolation operator was used. In this work, we do not specify the choice. Instead, we state
a set of assumptions that must be fulfilled in order to derive an optimal approximation result for the constructed
multiscale method.

Assumption 2. (Assumptions on the quasi-interpolation operator).

(A4) IH ∈ L(Vh, VH), i.e. IH is linear,
(A5) the restriction of IH to VH is an isomorphism with L2-stable inverse (IH |VH )−1, i.e.

‖(IH |VH )−1(vH)‖L2(Ω) ≤ CI−1
H
‖vH‖L2(Ω) for all vH ∈ VH and with a generic constant CI−1

H
only de-

pending on the shape regularity of TH and Th.
(A6) there exists a generic constant CIH , only depending on the shape regularity of TH and Th, such that for

all vh ∈ Vh and for all T ∈ TH there holds

H−1
T ‖vh − IH(vh)‖L2(T ) + ‖∇(vh − IH(vh))‖L2(T ) ≤ CIH‖∇vh‖L2(ωT )
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with

ωT :=
⋃

{K ∈ TH |K ∩ T �= ∅}.

(A7) there exists a generic constant C′
IH

, only depending on the shape regularity of TH and Th, such that for
all vH ∈ VH there exists vh ∈ Vh with

IH(vh) = vH , |vh|H1(Ω) ≤ C′
IH

|vH |H1(Ω) and supp vh ⊂ supp vH .

Observe that (A6) limits the growth of the support of an vH ∈ VH when IH is applied to it, i.e. supp(IH(vH)) =⋃
{K ∈ TH |K ∩ supp(vH) �= ∅}. We also note that the classical nodal interpolation operator does not fulfill

assumption (A6) for d > 1 because the constant CIH blows up for h→ 0. Numerical experiments confirm that
such a choice leads in fact to instabilities in the later method. One possibility is to choose IH as a weighted
Clément interpolation operator. This construction was proposed in [31]. Given v ∈ H1

0 (Ω), IHv :=
∑J

j=1 vjλj

defines a (weighted) Clément interpolant with nodal values

vj :=
(∫

Ω vλj dx
) /(∫

Ω λj dx
)

(3.2)

for 1 ≤ j ≤ J (cf. [11]) and zero in the boundary nodes. Furthermore, there exists the desired generic constant
CIH (only depending on the mesh regularity parameter and in particular independent of HT ) such that for all
v ∈ H1

0 (Ω) and for all T ∈ TH there holds

H−1
T ‖v − IHv‖L2(T ) + ‖∇(v − IHv)‖L2(T ) ≤ CIH‖∇v‖L2(ωT ).

We refer to [11] for a proof of this estimate. This gives us (A6). Assumption (A4) is obvious. The validity of (A5)
and (A7) was proved in [31].

Note that in certain applications, additional features (e.g., orthogonality properties) of the chosen interpola-
tion operator may be exploited for improved error estimates (see, e.g., [31] Rem. 3.2 and [10]).

3.3. Multiscale splitting and modified nodal basis

In this section, we construct a splitting of the high resolution finite element space Vh into a low dimension
multiscale space V ms and some high dimensional remainder space V f

h . From now on, we let IH : Vh → VH denote
an interpolation operator fulfilling the properties (A4)−(A7). Recall that VH ⊂ Vh. We start with defining V f

h

as the kernel of IH in Vh:
V f

h := {vh ∈ Vh | IHvh = 0}.
V f

h represents the features in Vh not captured by VH . Using assumption (A5) we get

Vh = VH ⊕ V f
h , where vh︸︷︷︸

∈Vh

= (IH |VH )−1(IH(vh))︸ ︷︷ ︸
∈VH

+ vh − (IH |VH )−1(IH(vh))︸ ︷︷ ︸
∈V f

h

. (3.3)

Here, the property (IH ◦ (IH |VH )−1))(vH) = vH for all vH ∈ VH implies the equation IH(vh −
(IH |VH )−1(IH(vh))) = IH(vh) − (IH ◦ (IH |VH )−1)(IH(vh)) = 0. We still need to modify the splitting of Vh,
because VH is an inappropriate space for a multiscale approximation. We therefore look for the orthogonal
complement of V f

h in Vh with respect to the inner product 〈A∇·,∇·〉L2(Ω). For this purpose, we define the
orthogonal projection P f : Vh → V f

h as follows. For a given vh ∈ Vh, P f(vh) ∈ V f
h solves〈

A∇P f(vh),∇wf 〉 = 〈A∇vh,∇wf
〉

for all wf ∈ V f
h .

Defining the multiscale space V ms
H,h by V ms

H,h := (1−P f)(VH), this directly leads to the orthogonal decomposition

Vh = V ms
H,h ⊕ V f

h , (3.4)
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because

Vh = kern(P f) ⊕ V f
h = (1−P f)(Vh) ⊕ V f

h

(3.3)
= (1−P f)(VH) ⊕ V f

h = V ms
H,h ⊕ V f

h .

Hence, any function vh ∈ Vh can be decomposed into vh = vms
H + vf with vms

H = (IH |VH )−1(IH(vh)) −
P f((IH |VH )−1(IH(vh))) and vf = vh − (IH |VH )−1(IH(vh)) + P f((IH |VH )−1(IH(vh))). Furthermore it holds
〈A∇vms

H ,∇wf 〉 = 0 for all wf ∈ V f
h . The space V ms

H,h is a multiscale space of the same dimension as the coarse
space VH . However, note that it is only constructed on the basis of the oscillations of A. The oscillations of F
are not taken into account. We will show that V ms

H,h still yields the desired approximation properties.
We now introduce a basis of V ms

H,h. The image of the nodal basis function λj ∈ VH under the fine scale
projection P f is denoted by φh

j = P f(λj) ∈ V f
h , i.e., φh

j satisfies the corrector problem

〈A∇φh
j ,∇w〉 = 〈A∇λj ,∇w〉 for all w ∈ V f

h . (3.5)

A basis of V ms
H,h is then given by the modified nodal basis{

λms
j := λj − φh

j | 1 ≤ j ≤ J
}
. (3.6)

As we can see, solving (3.5) involves a fine scale computation on the whole domain Ω. However, since the right
hand side has small support, we are able to localize the computations. As we will see in the next section, the
correctors show an exponential decay outside of the support of the coarse shape function λj .

First, we define a multiscale approximation that is based on the above orthogonal decomposition of Vh, but
without localization.

Definition 3.1 (Multiscale approximation without localization). The Galerkin approximation ums
H,h ∈ V ms

H,h of
the exact solution u of problem (2.1) is defined as the solution of

〈A∇ums
H,h,∇v〉 + 〈F

(
ums

H,h,∇ums
H,h

)
, v〉 = 〈g, v〉 for all v ∈ V ms

H,h. (3.7)

3.4. Localization

So far, in order to construct a suitable multiscale space, we derived a set of linear fine scale problems (3.5)
that can be solved in parallel. Still, as already mentioned in the previous section, these corrector problems are
fine scale equations formulated on the whole domain Ω which makes them almost as expensive as the original
problem. However, in [31] it was shown that the correction φh

j decays exponentially outside of the support of
the coarse basis function λj . We specify this feature as follows. Let k ∈ N>0. We define nodal patches ωj,k of k
coarse grid layers centered around the node zj ∈ NH by

ωj,1 := suppλj = ∪
{
T ∈ TH | zj ∈ T

}
,

ωj,k := ∪
{
T ∈ TH | T ∩ ωj,k−1 �= ∅

}
for k ≥ 2.

(3.8)

These are the truncated computational domains for the corrector problems (3.5). The fast decay is summarized
by the following lemma.

Lemma 3.2 (Decay of the local correctors [31]). Let assumptions (A1) and (A4)−(A7) be fulfilled. Then, for
all nodes zj ∈ NH and for all k ∈ N>0, the correctors φh

j satisfy the estimates

‖A1/2∇φh
j ‖L2(Ω\ωj,k) � e−rk‖A1/2∇φh

j ‖L2(Ω)

with a generic rate r that is proportional to (α/β)1/2 but independent of variations of A. Recall the definition
of ’�’ at the end of Section 2.



1338 P.K HENNING ET AL.

This fast decay motivates an approximation of φh
j on the truncated nodal patches ωj,k. We therefore define

localized fine scale spaces by intersecting V f
h with those functions that vanish outside the patch ωj,k, i.e.

V f
h(ωj,k) :=

{
v ∈ V f

h | v|Ω\ωj,k
= 0
}

for a given node zj ∈ NH . The solutions φh
j,k ∈ V f

h (ωj,k) of

〈A∇φh
j,k,∇w〉 = 〈A∇λj ,∇w〉 for all w ∈ V f

h (ωj,k), (3.9)

are approximations of φh
j from (3.5) with local support and therefore cheap to solve. We define localized multi-

scale finite element spaces by

V ms,k
H,h = span

{
λms

j,k := λj − φh
j,k | 1 ≤ j ≤ J

}
⊂ Vh. (3.10)

We can now define a LOD approximation by localizing the corrector problems for the basis functions.

Definition 3.3 (LOD approximation). The Galerkin approximation ums,k
H,h ∈ V ms,k

H,h of the exact solution u of
problem (2.1) is defined as the solution of〈

A∇ums,k
H,h ,∇v

〉
+
〈
F
(
ums,k

H,h ,∇u
ms,k
H,h

)
, v
〉

= 〈g, v〉 for all v ∈ V ms,k
H,h . (3.11)

Note, that changing the data functions F and g does not change the multiscale basis {λms
j,k | 1 ≤ j ≤ J}. Once

V ms,k
H,h is computed, it can be reused for various combinations of F and g. This makes the new problems cheap

to solve.

Remark 3.4. Observe that we never need to solve a problem on the scale of the oscillations of F (·, ξ, ζ) in
the case that they are faster than the oscillations of A(·). However, we implicitly assume that the arising
integrals can be computed exactly (or with high accuracy). Practically this implies that a sufficiently high
quadrature rule must be used. So even if the fine grid is not fine enough to resolve the variations of F , at
least the quadrature rule must be fine enough to capture the correct averaged values. From Theorem 3.5 below
we deduce that the influence of the oscillations of F (·, ξ, ζ) remains small, as long as we have an accurate
approximation of the averages on each coarse grid element. A similar observation holds for standard finite
elements, where classical convergence rates can be expected as soon as the oscillations of A are resolved by the
fine grid (independent of the oscillations of F ).

3.5. A priori error estimate

We are now prepared to state the main result of this article, namely the optimal convergence of the method
for the case that the local patches ωj,k have a diameter of order H | log(H)|.

Theorem 3.5. Let u ∈ H1
0 (Ω) denote the exact solution given by problem (2.1), let uh ∈ Vh denote the

corresponding finite element approximation in the Lagrange space with a highly resolved computational grid (i.e.
the solution of (3.1)) and let ums,k

H,h ∈ V ms,k
H,h be the solution of our proposed multiscale method with localization

(i.e. the solution of (3.11)). If assumptions (A1)−(A7) are satisfied and if k � | log(‖H‖L∞(Ω))|, then the
a priori error estimate∥∥∥u− ums,k

H,h

∥∥∥
H1(Ω)

≤ C (L1, L2, α, β, c0)
(
‖H‖L∞(Ω) + ‖u− uh‖H1(Ω)

)
.

holds with a generic constant C that does not depend on mesh sizes and oscillations of A and F . A suitable
choice of the localization parameter k depends on the square root of the contrast, i.e. the multiplicative constant

hidden in k ≈ | log(‖H‖L∞(Ω))| is proportional to
√

β
α .
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A proof of Theorem 3.5 is presented in the subsequent section. In particular, the result is a conclusion from
Theorem 4.3 which is stated in Section 4 below. In Theorem 4.3 we also give details on the generic constant C.
We will see that it essentially depends on (L1+L2)

α . Recall that L1 and L2 denote the Lipschitz constants of F
(cf. (A2)) and that α is the smallest eigenvalue of A. This shows the significance of assuming that the problem
is not dominated by the lower order term. For instance, consider the scenario of a pollutant being transported
by groundwater flow. In this case, A describes the hydraulic conductivity which changes its properties on a
scale of size ε. On the other hand, F describes the gravity driven flow that is scaled with the so called Péclet
number. However, in the described scenario the Péclet number is of order ε−1 (cf. Bourlioux and Majda [7])
implying that O(L1) = ε−1. So the generic constant C is of order ε−1. This means that we need H < ε, i.e.
we still need to resolve the micro structure with the coarse grid TH producing the same costs as the original
problem. If H � ε the estimate stated in Theorem 3.5 is of no value, because the right hand side remains large.

4. Error analysis

This section is devoted to the proof of Theorem 3.5. In particular, we state a detailed version of the result
(see Thm. 4.3 below), where we specify the occurring constants. The proof is splitted into several lemmata. We
start with an a priori error estimate for the multiscale approximation without localization.

Lemma 4.1. Let uh ∈ Vh denote the highly resolved finite element approximation defined via equation (3.1)
and let ums

H,h ∈ V ms
H,h denote the LOD approximation given by equation (3.7). Under assumptions (A1)−(A7),

the a priori error estimate

|uh − ums
H |H1(Ω) � C̃0

(
‖Hg‖L2(Ω) +‖H‖L∞(Ω)CΩ

L1CΩ + L2

c0
‖g‖L2(Ω)

)
holds with

C̃0 :=
(
β + ‖H‖L∞(Ω)(L1CΩ+L2)

c0 · α

)
·

Proof. Due to (3.4), we know that there exist ũms
H,h ∈ V ms

H,h and ũf
h ∈ V f

h , such that

uh = ũms
H,h + ũf

h.

We use the Galerkin orthogonality obtained from the equations (3.1) and (3.7) to conclude for all v ∈ V ms
H,h,

〈A∇(uh − ums
H,h),∇v〉 + 〈F (uh,∇uh), v〉 − 〈F

(
ums

H,h,∇ums
H,h

)
, v〉 = 0. (4.1)

In particular v = ums
H,h − ũms

H,h ∈ V ms
H,h is an admissible test function in (4.1). Together with IH(ũf

h) = 0, this
yields

c0|uh − ums
H,h|2H1(Ω)

(2.2)

≤ 〈A∇(uh − ums
H,h),∇(uh − ums

H,h)〉
+〈F (uh,∇uh) − F (ums

H,h,∇ums
H,h), uh − ums

H,h〉
(4.1)
= 〈A∇(uh − ums

H,h),∇(uh − ũms
H,h)〉

+〈F (uh,∇uh) − F (ums
H,h,∇ums

H,h), uh − ũms
H,h〉

= 〈A∇(uh − ums
H,h),∇ũf

h〉 +
〈
F (uh,∇uh) − F

(
ums

H,h,∇uh

)
, ũf

h − IH(ũf
h)
〉

+
〈
F
(
ums

H,h,∇uh

)
− F

(
ums

H,h,∇ums
H,h

)
, ũf

h − IH(ũf
h)
〉

� β|uh − ums
H,h|H1(Ω)|ũf

h|H1(Ω)

+‖H‖L∞(Ω)(L1‖uh − ums
H,h‖L2(Ω) + L2|uh − ums

H,h|H1(Ω))|ũf
h|H1(Ω)

� (β + ‖H‖L∞(Ω)(L1CΩ + L2)) · |uh − ums
H,h|H1(Ω) · |ũf

h|H1(Ω).
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With 〈A∇ũms
H,h,∇ũf

h〉 = 0 and with IH(vf) = 0 for all vf ∈ V f we get

α|ũf
h|2H1(Ω) ≤ 〈A∇ũf

h,∇ũf
h〉

=
〈
A∇uh,∇ũf

h

〉
=
〈
g, ũf

h

〉
−
〈
F (uh,∇uh), ũf

h

〉
=
〈
g, ũf

h − IH(ũf
h)
〉
−
〈
F (uh,∇uh), ũf

h − IH

(
ũf

h

)〉
(2.3)

�
(
‖Hg‖L2(Ω) + ‖H‖L∞(Ω)CΩ

L1CΩ + L2

c0
‖g‖L2(Ω)

)
· |ũf

h|H1(Ω).

The theorem follows by combing the results. �

The subsequent lemma is a consequence of the previous one.

Lemma 4.2. Let uh ∈ Vh denote the fine scale approximation obtained from equation (3.1) and let ums,k
H,h ∈

V ms,k
H,h denote the solution of problem (3.11) (fully discrete LOD approximation). If the assumptions (A1)−(A7)

hold true we obtain the estimate

|uh − ums,k
H,h |H1(Ω) � C̃2‖g‖L2(Ω)‖H‖L∞(Ω) + C̃3 min

vms,k
H,h ∈V ms,k

H,h

∥∥∥A 1
2∇
(
ums

H,h − vms,k
H,h

)∥∥∥
L2(Ω)

,

where

C̃1 := (β + (L1CΩ + L2)CΩ) ·
(
β + ‖H‖L∞(Ω)(L1CΩ+L2)

c20 · α

)
,

C̃2 := C̃1 + C̃1 · CΩ
L1CΩ + L2

c0
,

C̃3 :=
β

1
2 + α− 1

2 (L1CΩ + L2)CΩ

c0
·

Proof. Let vms,k
H,h ∈ V ms,k

H,h denote an arbitrary element. Using the Galerkin orthogonality obtained from (3.1)
and (3.11), we start in the same way as in the proof of Lemma 4.1 to get

c0|uh − ums,k
H,h |2H1(Ω)

(2.2)

≤ 〈A∇(uh − ums,k
H,h ),∇(uh − ums,k

H,h )〉

+〈F (uh,∇uh) − F (ums,k
H,h ,∇u

ms,k
H,h ), uh − ums,k

H,h 〉
(4.1)
= 〈A∇(uh − ums,k

H,h ),∇(uh − ums
H,h) + ∇(ums

H,h − vms,k
H,h )〉

+〈F (uh,∇uh) − F (ums,k
H,h ,∇u

ms,k
H,h ), (uh − ums

H,h) + (ums
H,h − vms,k

H,h )〉

≤ (β + (L1CΩ + L2)CΩ)|uh − ums,k
H,h |H1(Ω) |uh − ums

H,h|H1(Ω)

+(β
1
2 + α− 1

2 (L1CΩ + L2)CΩ)|uh − ums,k
H,h |H1(Ω) ‖A

1
2∇(ums

H,h − vms,k
H,h )‖L2(Ω).

Dividing by |uh − ums,k
H,h |H1(Ω) and estimating |uh − ums

H,h|H1(Ω) with Lemma 4.1 yields the result. �

The combination of Lemmas 3.2 and 4.2 yields the main result of this paper.

Theorem 4.3. Let uh ∈ Vh be solution of (3.1) and let ums,k
H,h ∈ V ms,k

H,h be the solution of (3.11). If the assump-
tions (A1)−(A7) hold true and if the number of layers k fulfills k � | log(‖H‖L∞(Ω))|, then it holds∣∣∣uh − ums,k

H,h

∣∣∣
H1(Ω)

� C̃‖H‖L∞(Ω)‖g‖L2(Ω),
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where

C̃ := C̃2 + CΩ
β

c0
C̃3

and with C̃2 and C̃3 as in Lemma 4.2.

Proof. We define wms,k
H,h ∈ V ms

H,k by

wms,k
H,h :=

J∑
j=1

ums
H,h(zj)λms

j,k =
J∑

j=1

ums
H,h(zj)

(
λj − φh

j,k

)
where ums

H,h(zj), j = 1, 2, . . . , J , are the coefficients in the basis representation of ums
H,h from Definition 3.1. Hence,

min
vms,k

H,h ∈V ms,k
H,h

∥∥∥A 1
2∇
(
ums

H,h − vms,k
H,h

)∥∥∥2

L2(Ω)

≤
∥∥∥A 1

2∇
(
ums

H,h − wms,k
H,h

)∥∥∥2

L2(Ω)

�
J∑

j=1

kdums
H,h(zj)2‖A1/2∇

(
φh

j − φh
j,k

)
‖2

L2(Ω).

(4.2)

For details on the last step, we refer to Lemma 4.9 in [31]. Due to the Galerkin orthogonality for the corrector
problems it is possible to show

‖A1/2∇(φh
j − φh

j,k)‖2
L2(Ω) � ‖A1/2∇φh

j ‖2
L2(Ω\ωj,k−1)

, (4.3)

where the idea behind the proof of (4.3) is to use the best approximation property of φh
j,k in V f

h(ωj,k) to replace
it by an arbitrary other function from V f

h(ωj,k). The best choice would be �ωj,k
φh

j , where �ωj,k
is the indicator

function of ωj,k (this choice would directly give the result). However, �ωj,k
φh

j is not in V f
h (ωj,k), which is why

additional interpolation and projection operators are required. The rather technical details for the proof of (4.3)
are therefore given in the first part of the proof of Lemma 4.8 in [31].

The application of Lemma 3.2, (3.5), (4.3) and some inverse inequality yield

‖A1/2∇(φh
j − φh

j,k)‖2
L2(Ω) � e−2rk‖A1/2∇φh

j ‖2
L2(Ω)

≤ e−2rk‖A1/2∇λj‖2
L2(Ω)

≤ βe−2rk‖H‖−2
∞ ‖λj‖2

L2(Ω),

with a generic rate r that is proportional to (β/α)1/2. By choosing k = m · | log(‖H‖L∞(Ω))| with m ∈ N, we can
achieve an arbitrary fast polynomial convergence of this term in H (this will also cancel the kd term). However,
we bound this by a linear convergence since this is fastest rate that we can obtain for the whole error. Finally,
the combination of this estimate and (4.2) plus

J∑
j=1

ums
H,h(zj)2‖λj‖2

L2(Ω)�

∥∥∥∥∥∥
J∑

j=1

ums
H,h(zj)λj

∥∥∥∥∥∥
2

L2(Ω)

=

∥∥∥∥∥∥
J∑

j=1

ums
H,h(zj)((IH |VH )−1 ◦ IH)(λj − φh

j )

∥∥∥∥∥∥
2

L2(Ω)

= ‖(IH |VH )−1 ◦ IH)ums
H,h‖2

L2(Ω)

(A5)+(A6)

� ‖∇ums
H,h‖2

L2(Ω) ≤ C2
Ωc

−2
0 ‖g‖2

L2(Ω)

yields the assertion. �
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5. The multiscale newton scheme

In this section we discuss a solution algorithm for handling the nonlinear multiscale problem (3.11). For this
purpose, we consider a damped Newton’s method in the multiscale space V ms,k

H,h . Recall that we are looking for
u ∈ H1

0 (Ω) with

〈B(u), v〉H−1,H1
0

= 〈g, v〉 for all v ∈ H1
0 (Ω),

where we introduced the notation

〈B(v), w〉H−1 ,H1
0

:= 〈A∇v,∇w〉 + 〈F (·, v,∇v), w〉.

Here, B : H1
0 (Ω) → H−1(Ω) is a hemicontinuous and strongly monotone operator due to assumption (A3).

As already mentioned, under these assumptions, the Browder−Minty theorem yields a unique solution of the
above problem. However, we will need an additional assumption on F to guarantee that the Newton scheme
converges.

Assumption 3. Let DF (x, ·, ·) denote the Jacobian matrix of F (x, ·, ·).

(A8) We assume that there exists some constant LD ≥ 0 so that for almost every x in Ω and for all (ξ1, ζ1) ∈
R × R

d and (ξ2, ζ2) ∈ R × R
d

|DF (x, ξ1, ζ1) −DF (x, ξ2, ζ2)| ≤ LD|(ξ1, ζ1) − (ξ2, ζ2)|,

i.e. F (x, ·, ·) ∈ W 2,∞(R × R
d).

For clarity of the presentation we will leave out several indices within this section. In particular, we make use
of the following notation.

Definition 5.1. For simplicity, we define

V ms := V ms,k
H,h with basis λms

j := λms
j,k = λj − φh

j,k for 1 ≤ j ≤ J.

Furthermore, we denote ums := ums,k
H,h . Additionally, let

∂1F (x, ξ, ζ) := ∂ξF (x, ξ, ζ) and ∂2F (x, ξ, ζ) := ∂ζF (x, ξ, ζ).

We now describe the Newton strategy in detail. The fully discrete multiscale problem is to

find ums ∈ V ms : 〈A∇ums,∇λms
j 〉 + 〈F (·, ums,∇ums), λms

j 〉 − 〈g, λms
j 〉 = 0

for all 1 ≤ j ≤ J . Again, using Browder−Minty, ums exists and is unique. Accordingly, we get the following well
posed algebraic version of the problem:

find ᾱ ∈ R
J : G(ᾱ) = 0

and where G : R
J → R

J is given by

(G(α))l :=
J∑

j=1

αj〈A∇λms
j ,∇λms

l 〉 + 〈F

⎛
⎝·,

J∑
j=1

αjλ
ms
j ,

J∑
j=1

αj∇λms
j

⎞
⎠ , λms

l 〉 − 〈g, λms
l 〉. (5.1)

We have the relation ums =
∑J

j=1 ᾱjλ
ms
j . Before we can apply the Newton method to (5.1), we need to ensure

that the iterations of the scheme are well defined.
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Lemma 5.2. Let (X, ‖ · ‖X) denote a Hilbert space with dual space X ′. Let furthermore B : X → X ′ be a
hemicontinuous, Fréchet differentiable and strongly monotone operator on X, i.e. there exists c0 > 0 so that

〈B(v) −B(w), v − w〉X ≥ c0‖v − w‖2
X for all v, w ∈ X and

s �→ 〈B(u+ sv), w〉X

is a continuous function on [0, 1] for all u, v, w ∈ X. Let XN denote a finite dimensional subspace with basis
{ψ1, . . . , ψN} and let b : R

N → VN define the linear bijection with b(α) :=
∑N

i=1 αiψi. If G(α) := b−1(B(b(α))),
then the Jacobi matrix DG(α) ∈ R

n×n has only positive eigenvalues.

Proof. Let B′ denote the Fréchet derivative of B, given by

B′(u)(v) = lim
s→0

B(u+ sv) −B(u)
s

for u, v ∈ X.

This and the strong monotonicity yield

〈B′(u)(v), v〉H−1,H1
0

= lim
s→0

(B(u+ sv) −B(u))(v)
s

= lim
s→0

1
s2

(B(u+ sv) −B(u))(u + sv − u) (5.2)

≥ lim
s→0

1
s2
c0‖sv‖2 = c0‖v‖2.

Next, observe that b induces an inner product on R
N by (α1, α2)b := 〈b(α1), b(α2)〉X . Let α := b−1(u) then we

get

B′(u)(ψi) = lim
s→0

B(u + sψi) −B(u)
s

= lim
s→0

(b ◦ b−1)
(
B
(∑N

j=1 (αj + sδij)ψj

)
− (b ◦ b−1

)(
B
(∑N

j=1 αjψj

))
s

= b

(
lim
s→0

G(α+ sei) −G(α)
s

)
= b(DαG(α)ei).

Using this, we get for arbitrary ξ ∈ R
N and vξ := b(ξ),

(DαG(α)ξ, ξ)b =
N∑
i,j

ξiξj(DαG(α)ei, ej)b

=
N∑
i,j

ξiξj(b(DαG(α)ei), b(ej))X

=
N∑
i,j

ξiξj(B′(u)(ψi), ψj)X

= (B′(u)(vξ), vξ)X

(5.2)

≥ c0‖vξ‖2
X = c0‖ξ‖2

b.

Since all norms in R
N are equivalent we have the desired result. �
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Now, we can apply the Newton method for solving the nonlinear algebraic equation G(ᾱ) = 0. If DαG denotes
the Jacobian matrix of G, we get the following iteration scheme:

α(n+1) := α(n) + �α(n),

where �α(n) solves

DαG
(
α(n)

)
�α(n) = −G

(
α(n)

)
. (5.3)

Here, DαG is given by

Dαi (G(α))l := 〈A∇λms
i ,∇λms

l 〉 +

〈
∂1F

⎛
⎝·,

J∑
j=1

αjλ
ms
j ,

J∑
j=1

αj∇λms
j

⎞
⎠λms

i , λms
l

〉

+

〈
∂2F

⎛
⎝·,

J∑
j=1

αjλ
ms
j ,

J∑
j=1

αj∇λms
j

⎞
⎠ · ∇λms

i , λms
l

〉
.

Lemma 5.2 ensures that equation (5.3) has a unique solution �α(n), i.e. that the Newton iteration is well posed.
Since G ∈ C1(RN ) has a nonsingular Jacobian matrix DαG (due to Lem. 5.2) and since we have Lipschitz-
continuity of DαG (due to Assumption 3), we have that the Newton scheme converges quadratically as long as
the starting value is close enough to the exact solution (cf. [12]). However, this means that we can only guarantee
local convergence of the method. In order to ensure global convergence, we can use a simple damping strategy
due to Armijo [2]. Here we are looking for a damping parameter ζ ∈ (0, 1] so that α(n+1) := α(n) + ζ�α(n) with
the property |G(α(n+1))| < (1 − ζ

2 )|G(α(n))|. In our case, the convergence of the damped Newton scheme can
be guaranteed by the following lemma which is based on the results by Kelley [26].

Lemma 5.3. Let assumptions (A1)−(A3) and (A8) be fulfilled, then the damped Newton scheme converges, i.e.
there exists a nonempty (damping) interval [ζ0, ζ1] ⊂ (0, 1), so that∣∣∣G(α(n+1)

)∣∣∣ < (1 − ζ

2

) ∣∣∣G(α(n)
)∣∣∣ for all ζ ∈ [ζ0, ζ1].

Here, ζ0 > 0 is independent of α(n) and �α(n), which prevents ζ1 → 0.

Proof. The existence of a damping parameter so that |G(α(n+1))| < |G(α(n))| is an easy observation if we look
at the function h(ζ) := |G(α(n) + ζ�α(n))|2 which fulfills h(0) > 0 and h′(0) = −2G(α(n)) ·G(α(n)) < 0. The
existence of a uniform lower bound ζ0 > 0 was proved by Kelley ([26], Lem. 8.2.1 and Thm. 8.2.1 therewithin).
The results by Kelley require Lipschitz continuity of DαG (guaranteed by Assump. (A8)) and uniform bounded-
ness of |(DαG(α))−1|. The latter one is fulfilled since the proof of Lemma 5.2 shows that the smallest eigenvalue
of (DαG(α)) is equal or larger than c0. This implies that the largest eigenvalue of (DαG(α))−1 is bounded
by c−1

0 , hence |(DαG(α))−1| is uniformly bounded. �

In summary, Lemma 5.3 guarantees globally linear convergence of the method (using damping) and locally
(i.e. in an environment of the solution) even quadratic convergence using the classical Newton scheme without
damping. With these considerations, we can state the full algorithm below. Recall that NH denotes the set of
interior vertices of TH and for zj ∈ NH , λj ∈ VH denotes the corresponding nodal basis function.

Note that in the presented algorithm, each iteration starts with the damping parameter ζn = 1 and we do
not use damping parameters from previous iterations. The advantage is that we automatically get quadratic
convergence of the Newton scheme as soon as we leave the region where damping is required. Therefore, damping
is only used when really necessary.
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Algorithm: dampedNewtonLOD(abstol, reltol, α(0), k)

In parallel foreach zj ∈ NH do
compute φh

j,k ∈ V f
h(ωj,k) with

〈A∇φh
j,k,∇w〉 = 〈A∇λj ,∇w〉 for all w ∈ V f

h(ωj,k).

end

Set V ms,k
H,h := span{λj − φh

j,k | 1 ≤ j ≤ J}. Set λms
j,k = λj − φh

j,k.

Set α(n) := α(0). Set u
ms,k,(n)
H,h :=

∑J
j=1 α

(n)
j λms

j,k. Set

(G(α))i :=
J∑

j=1

αj〈A∇λms
j,k,∇λms

i,k〉 + 〈F (·,
J∑

j=1

αjλ
ms
j,k,

J∑
j=1

αj∇λms
j,k) − g, λms

i,k〉.

Set tol := |G(α(0))|2 · reltol + abstol.

while |G(α(n))|2 > tol do

Set u
ms,k,(n)
H,h :=

∑J
j=1 α

(n)
j λms

j,k.

Define the entries of the stiffness matrix M (n) by

M
(n)
il := 〈A∇λms

l,k,∇λms
i,k〉 + 〈∂1F (·, ums,k,(n)

H,h ,∇u
ms,k,(n)
H,h )λms

l,k, λms
i,k〉

+〈∂2F (·, ums,k,(n)
H,h ,∇u

ms,k,(n)
H,h ) · ∇λms

l,k, λms
i,k〉.

Define the entries of the right hand side by

F
(n)
i := 〈g, λms

i,k〉 − 〈A∇u
ms,k,(n)
H,h ,∇λms

i,k〉 − 〈F (·, ums,k,(n)
H,h ,∇u

ms,k,(n)
H,h ), λms

i,k〉.

Find (�α)(n+1) ∈ R
J , with

M (n)(�α)(n+1) = F (n).

Set ζn := 1. Set α(n+1) := α(n) + ζn�α(n).
while |G(α(n+1))| ≥ (1 − ζn

2
)|G(α(n))| do

Set ζn := 1
2
ζn. Set α(n+1) := α(n) + ζn�α(n).

end

Set α(n) := α(n+1). Set tol := |G(α(n))|2 · reltol + abstol.
end

Set u
ms,k,(n)
H,h :=

∑J
j=1 α

(n)
j λms

j,k.

Proposition 5.4. We use the notation stated in Definition 5.1. Let u ∈ H1
0 (Ω) denote the solution of (2.1),

let uh ∈ Vh denote the solution of (3.1) and let ums ∈ V ms denote the solution of (3.11). Furthermore, we let
ums,(n) := u

ms,k,(n)
H,h define the n’th iterate from the damped Newton LOD Method stated in the algorithm. Under

assumptions (A1)−(A8), the Newton step (5.3) is well posed, yields an unique solution and ums,(n) converges at
least linearly to ums. If furthermore k � | log(‖H‖L∞(Ω))|, the a priori error estimate

‖u− ums‖H1(Ω) ≤ C
(
‖H‖L∞(Ω) + ‖u− uh‖H1(Ω)

)
holds with a generic constant C =O(1) (see Thms. 3.5 and 4.3 for details) and∥∥∥ums − ums,(n)

∥∥∥
H1(Ω)

≤ Ln(H)
∥∥∥ums − ums,(n−1)

∥∥∥
H1(Ω)

.

Here, we have Ln(H) < 1.
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If ums,(n−1) is sufficiently close to ums, we even get quadratic convergence of the Newton scheme, i.e.,∥∥∥ums − ums,(n)
∥∥∥

H1(Ω)
≤ Ln(H)

∥∥∥ums − ums,(n−1)
∥∥∥2

H1(Ω)
.

with

Ln(H) ≤
‖(DαG)−1‖L∞(RN )

L
,

where L denotes the Lipschitz-constant of DαG. As indicated, Ln(H) typically depends on the mesh size. How-
ever, in some cases of semi-linear problems, it is possible to bound Ln(H) independent of the triangulation
(cf. [25]). In particular, if F (x, u,∇u) = F (x, u) (i.e. no dependency on ∇u) we get that Ln(H) = Ln indepen-
dent of the underlying mesh. The proof can be obtained analogously to the proof of Proposition 4.1 in [25]. The
proof fails for general F (x, u,∇u).

Remark 5.5. Note that the proposed method only requires the computation of the multiscale basis {λms
j | 1 ≤

j ≤ J} once at the beginning. For each iteration step of the damped Newton scheme, (5.3) is a low dimensional
linear problem that can reuse the initially computed multiscale basis. If the multiscale basis was computed using
the nonlinear term F , local corrector problems would have to be solved for each Newton step newly, making
the whole procedure significantly more expensive. We also note that assemblation of the tangent matrix M (n)

and the residual F (n) still requires a quadrature rule that captures the fine scale features. Depending on the
type of the nonlinearity this might have to be done newly for each iteration step, making the quadrature rule
a significant part of each Newton step.

6. Numerical experiment

As mentioned in the introduction, Richards-type equations can be an application of our LOD-Newton frame-
work. In general, the stationary Richards equation cannot necessarily be described by a monotone operator,
however depending on the chosen model and the considered hydrological effects (including hysteresis, root up-
take, friction, reaction fronts, etc.) monotone operators can arise in certain applications. One explicit example
is the (regularized) time-discretized Kirchhoff transformed Richards equation regarded in [6]. For the case that
there is no Signorini boundary condition prescribed, the problem that has to be solved for each time step cor-
responds to a nonlinear elliptic monotone problem (on the full space) that also fulfills the required assumption
of Lipschitz-continuity.

Let us now consider the stationary Kirchhoff-transformed Richards equation

∇ · (K∇u) −∇ · (K kr(M(u))�g) = f, (6.1)

where u denotes the generalized pressure, K the hydraulic conductivity and kr the relative permeability de-
pending on the saturation. kr is a monotone increasing function with values between 0 and 1 (typically bounded
away from 0 to avoid degeneracy). If we have already full saturation, water cannot be conducted anymore, if
the soil is completely dry (saturation is zero), water can be perfectly conducted. Formulas for kr were e.g.
provided by Burdine [9] and Mualem [32]. In applications the variations of the hydraulic conductivity K are
assumed to be constant (or at least slow) in gravity direction �g = (0, 0, �gz), where �gz denotes the gravity factor
of 9.81m/s2. Soil probes are often only taken once in vertical direction, but a lot of samples are required to de-
scribe the variations of conductivity in horizontal direction. As a reduction of complexity one can often assume
that ∇ · (K�g) = ∂z(Kzz�gz) = 0 to consider the reduced equation

∇ · (K∇u) − (kr ◦M)′(u) (K�g) · ∇u = f. (6.2)

Here we haveM(u) := θ◦κ−1, where θ denotes the saturation (depending on the pressure) and κ−1 the inverse of
the Kirchhoff transformation κ(p) :=

∫ p

0 kr(θ(q)) dq. The saturation θ can be obtained by the capillary pressure
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Table 1. Results for fine grid with ε > h = 2−6 ≈ 0.016 > ε
3
2 which resolves the oscillations

of the linear term, but not the oscillations of the nonlinear term. The truncation parameter k
determines the patch size by (3.8). We observe an average EOC of 2.37 for the L2-error and an
average EOC of 1.33 for the H1-error.

H k
∥∥∥ums,k

H,h − uh

∥∥∥
L2(Ω)

∥∥∥ums,k
H,h − uh

∥∥∥
H1(Ω)

2−2 1 0.1455 1.6985

2−3 2 0.0097 0.3737

2−4 3 0.0023 0.1772

2−5 3 0.0008 0.1067

relation (soil-water retention curves). Various explicit formulas for θ are available, see e.g. Van Genuchten [24],
Brooks-Corey [8] or the Gardner model [23]. Depending on the chosen model (kr ◦M)′ might not be a Lipschitz
continuous function, still regularization is possible. In the following numerical experiment, we consider a test
problem that has the structure derived from a regularized Burdine–Brooks–Corey model. The corresponding
explicit formulas for (kr ◦M) are taken from [3]. Contrary to the model (6.2), we use a nonlinear advection
term that is faster oscillating than the diffusion term. The reason is that we want to emphasize our claim, that
the oscillations of the nonlinearity F do in fact not influence the convergence. Before stating the test problem
related to (6.2), let us note that the method and the analytical results of this paper directly transfer to equations
in divergence form like (6.1), i.e. the gradient in the weak formulation can be on the test function, as long as
F (x, u) does not dependent on the gradient ∇u.

We consider the following nonlinear advection-diffusion problem. Let Ω :=]0, 1[2 and ε := 0.05. Find uε with

−∇ · (Aε(x)∇uε(x)) +
1
2
F ε(x, uε)∂x2u

ε(x) = − 3
10

in Ω

uε(x) = 0 on ∂Ω,

where Aε is given by

Aε(x1, x2) :=
1

8π2

(
2
(
2 + cos

(
2π x1

ε

))−1 0
0 1 + 1

2cos
(
2π x1

ε

))

and

F ε(x, u) :=
1

8π2

(
2 + cos

(
2π
x1

ε
3
2

))⎧⎪⎨
⎪⎩
√

u
2 + 3

2 for − 3 ≤ u ≤ − 5
4

p(u) for − 5
4 ≤ u ≤ −1

0 for u ≥ −1

,

where p(u) = au3 + bu2 + cu+ d is such that F ε(x, ·) ∈ C1(−3,∞) for all x ∈ Ω. The (unknown) exact solution
of this problem takes values between 0 and −1.75.

The numerical experiments presented in this section were performed with a little different implementation of
the localization strategy than the one described in Section 3.4. We used the localized basis functions proposed
in [19], which have the completely same analytical properties than (3.9)−(3.10), with the only difference that
they are computed with respect to unit vectors instead of gradients of basis functions in order to slightly stabilize
the computations.

The tolerance tol in the Newton algorithm is set to 10−10. We keep the resolution of the (uniformly refined)
fine grid fixed with h = 2−6 < ε. The computations were made for four different coarse grid resolutions
H = 2−2, . . . , 2−5.



1348 P.K HENNING ET AL.

For given H , we guess the truncation parameter k (according to (3.8)) by | log(H)|. By log we mean the
logarithm to the basis e. For H = 2−l, l = 2, . . . , 5 we obtain log(4) ≈ 1.386, log(8) ≈ 2.08, log(16) ≈ 2.77 and
log(32) ≈ 3.47. Optimistically rounding we set the truncation parameter k to 1 for H = 2−2, 2 for H = 2−3,
3 for H = 2−4 and 3 for H = 2−5. The corresponding results are depicted in Table 1. We observe that the
proportionality coefficient in the choice of the diameter of the patches O(diam(ωj,k)) ∼ H | log(‖H‖L∞(Ω))| can
chosen to be on 1 without suffering from pre-asymptotic effects. In fact, we obtain an experimental order of
convergence (EOC) of 2.37 for the L2-error and an EOC of 1.33 for the H1-error. The patches remain small
and computational demand for solving the local problems remains very small. For further numerical studies of
the method and the choice of patch sizes in the linear case, we refer to [31].

Acknowledgements. We would like to thank the anonymous reviewers for their valuable suggestions and their constructive
criticism that helped us to improve the paper.
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