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Abstract In this paper we present a method for the numerical solution of ellip-
tic problems with multi-scale data using multiple levels of not necessarily nested
grids. The method consists in calculating successive corrections to the solution in
patches whose discretizations are not necessarily conforming. This paper provides
proofs of the results published earlier (see C. R. Acad. Sci. Paris, Ser. I 337 (2003)
679–684), gives a generalization of the latter to more than two domains and con-
tains extensive numerical illustrations. New results including the spectral analysis
of the iteration operator and a numerical method to evaluate the constant of the
strengthened Cauchy-Buniakowski-Schwarz inequality are presented.

Mathematics Subject Classifications (1991) 65N55 · 65N30 · 65N12

1 Introduction

The numerical approximation of the solution of elliptic partial differential equa-
tions in domains such that in certain regions a “better” precision on the solution
is needed leads to many interesting issues. Efficient approaches include adaptive
mesh refinement techniques, domain decomposition methods and multigrid meth-
ods. The objective of this paper is to present a method to solve numerically elliptic
problems with multi-scale data using multiple levels of not necessarily nested grids.

*Supported by CTI Project 6437.1 IWS-IW.

Roland Glowinski · Jiwen He
Department of Mathematics, University of Houston, 4800 Calhoun Road, Houston,
Texas 77204-3008, USA
E-mail: {roland,jiwenhe}@math.uh.edu

Alexei Lozinski · Jacques Rappaz · Joël Wagner (B)
Section of Mathematics, Swiss Federal Institute of Technology, 1015 Lausanne, Switzerland
E-mail: {alexei.lozinski,jacques.rappaz,joel.wagner}@epfl.ch

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL ----------------------------------------File Options:     Compatibility: PDF 1.2     Optimize For Fast Web View: Yes     Embed Thumbnails: Yes     Auto-Rotate Pages: No     Distill From Page: 1     Distill To Page: All Pages     Binding: Left     Resolution: [ 600 600 ] dpi     Paper Size: [ 595 842 ] PointCOMPRESSION ----------------------------------------Color Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitGrayscale Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 150 dpi     Downsampling For Images Above: 225 dpi     Compression: Yes     Automatic Selection of Compression Type: Yes     JPEG Quality: Medium     Bits Per Pixel: As Original BitMonochrome Images:     Downsampling: Yes     Downsample Type: Bicubic Downsampling     Downsample Resolution: 600 dpi     Downsampling For Images Above: 900 dpi     Compression: Yes     Compression Type: CCITT     CCITT Group: 4     Anti-Alias To Gray: No     Compress Text and Line Art: YesFONTS ----------------------------------------     Embed All Fonts: Yes     Subset Embedded Fonts: No     When Embedding Fails: Warn and ContinueEmbedding:     Always Embed: [ ]     Never Embed: [ ]COLOR ----------------------------------------Color Management Policies:     Color Conversion Strategy: Convert All Colors to sRGB     Intent: DefaultWorking Spaces:     Grayscale ICC Profile:      RGB ICC Profile: sRGB IEC61966-2.1     CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data:     Preserve Overprint Settings: Yes     Preserve Under Color Removal and Black Generation: Yes     Transfer Functions: Apply     Preserve Halftone Information: YesADVANCED ----------------------------------------Options:     Use Prologue.ps and Epilogue.ps: No     Allow PostScript File To Override Job Options: Yes     Preserve Level 2 copypage Semantics: Yes     Save Portable Job Ticket Inside PDF File: No     Illustrator Overprint Mode: Yes     Convert Gradients To Smooth Shades: No     ASCII Format: NoDocument Structuring Conventions (DSC):     Process DSC Comments: NoOTHERS ----------------------------------------     Distiller Core Version: 5000     Use ZIP Compression: Yes     Deactivate Optimization: No     Image Memory: 524288 Byte     Anti-Alias Color Images: No     Anti-Alias Grayscale Images: No     Convert Images (< 257 Colors) To Indexed Color Space: Yes     sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT ----------------------------------------IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<     /ColorSettingsFile ()     /AntiAliasMonoImages false     /CannotEmbedFontPolicy /Warning     /ParseDSCComments false     /DoThumbnails true     /CompressPages true     /CalRGBProfile (sRGB IEC61966-2.1)     /MaxSubsetPct 100     /EncodeColorImages true     /GrayImageFilter /DCTEncode     /Optimize true     /ParseDSCCommentsForDocInfo false     /EmitDSCWarnings false     /CalGrayProfile ()     /NeverEmbed [ ]     /GrayImageDownsampleThreshold 1.5     /UsePrologue false     /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /AutoFilterColorImages true     /sRGBProfile (sRGB IEC61966-2.1)     /ColorImageDepth -1     /PreserveOverprintSettings true     /AutoRotatePages /None     /UCRandBGInfo /Preserve     /EmbedAllFonts true     /CompatibilityLevel 1.2     /StartPage 1     /AntiAliasColorImages false     /CreateJobTicket false     /ConvertImagesToIndexed true     /ColorImageDownsampleType /Bicubic     /ColorImageDownsampleThreshold 1.5     /MonoImageDownsampleType /Bicubic     /DetectBlends false     /GrayImageDownsampleType /Bicubic     /PreserveEPSInfo false     /GrayACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /ColorACSImageDict << /VSamples [ 2 1 1 2 ] /QFactor 0.76 /Blend 1 /HSamples [ 2 1 1 2 ] /ColorTransform 1 >>     /PreserveCopyPage true     /EncodeMonoImages true     /ColorConversionStrategy /sRGB     /PreserveOPIComments false     /AntiAliasGrayImages false     /GrayImageDepth -1     /ColorImageResolution 150     /EndPage -1     /AutoPositionEPSFiles false     /MonoImageDepth -1     /TransferFunctionInfo /Apply     /EncodeGrayImages true     /DownsampleGrayImages true     /DownsampleMonoImages true     /DownsampleColorImages true     /MonoImageDownsampleThreshold 1.5     /MonoImageDict << /K -1 >>     /Binding /Left     /CalCMYKProfile (U.S. Web Coated (SWOP) v2)     /MonoImageResolution 600     /AutoFilterGrayImages true     /AlwaysEmbed [ ]     /ImageMemory 524288     /SubsetFonts false     /DefaultRenderingIntent /Default     /OPM 1     /MonoImageFilter /CCITTFaxEncode     /GrayImageResolution 150     /ColorImageFilter /DCTEncode     /PreserveHalftoneInfo true     /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [ 2 1 1 2 ] /VSamples [ 2 1 1 2 ] >>     /ASCII85EncodePages false     /LockDistillerParams false>> setdistillerparams<<     /PageSize [ 576.0 792.0 ]     /HWResolution [ 600 600 ]>> setpagedevice



664 Roland Glowinski et al.

A motivation for developing such a method can be found, for example, in
air quality management. Pollution emission sources, and in particular point source
plumes, give rise to models needing careful examination of the space-scale. Getting
an accurate simulation on large scales is linked to a simulation in subregions around
the pollution sources using finer grids. Such a method can be applied straightfor-
wardly to boundary layer problems through the use of patches in critical regions,
or in the coupling of problems with nonconforming grids for example.

We solve the problem on a domain � and consider therein patches �1, �2, . . .
wherein we would like to obtain more accuracy (see Fig. 1). Thus we calculate suc-
cessively corrections to the solution in the patches. The discretizations of the latter
are not necessarily conforming. The method is a domain decomposition method
with complete overlapping. It resembles the Fast Adaptive Composite grid (FAC)
method (see, e.g., [31]) or possibly a hierarchical method (see [16] for example).
However it is of much more flexible use in comparison to the latter.

In Section 2 we first introduce the correction algorithm (Algorithm 1) in the
case of two scales, i.e. with the domain � and one only patch �. We give an a priori
error estimate for the h-convergence in Proposition 1. The convergence properties
of the two-scale algorithm are stated in Proposition 2 through the iteration operator
(10).

In Section 3 we prove some convergence results in an abstract setting. In the
first paragraph we analyze some properties of vector spaces. Next we introduce an
operator (22) that is to be identified with the iteration operator (10) of Algorithm 1.
In Proposition 5 we recall the upper bound of its norm presented in [22]. A spectral
analysis of the operator yields an exact formula for its spectral radius and norm
given in Proposition 6.

In Section 4 we discuss the constant γ of the strengthened Cauchy-Buniakow-
ski-Schwarz (C.B.S.) inequality which appears in our convergence analysis. In the
case of a patch � included in only one triangle of the coarse triangulation of �
we give a bound for γ in the case of a scalar product corresponding to the bilinear
form of an elliptic operator. We also develop some upper bounds in particular cases
(see Fig. 2) and give a new method to estimate it numerically.

In Section 5 we generalize Algorithm 1 and some results obtained in Section 3
for two spaces to multiple spaces. We establish a generalization of Proposition 5 in
Proposition 9 which is used to prove the convergence of the multi-scale algorithm
in Proposition 8.

Section 6 gives some numerical results. In §6.1 we present numerical estimates
of γ for some cases treated in Section 4 (Table 2) and new grid constellations

�

�1
�2

�3

Fig. 1 Domain � with patches
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(Table 3) that we use in §6.2 to illustrate the convergence behavior of the algo-
rithm. In §6.3 we illustrate the a priori estimate for the convergence in the mesh
size (Fig. 6).

2 Two-scale algorithm

Let � ⊂ R
2 be an open polygonal domain and consider a bilinear, symmetric,

continuous and coercive form

a : H 1
0 (�) × H 1

0 (�) → R.

The usual H 1(�)-norm is equivalent to the a-norm defined by ||v|| = a(v, v)
1
2 ,

∀v ∈ H 1
0 (�). If f ∈ H−1(�), due to Riesz’ representation Theorem there exists a

unique u ∈ H 1
0 (�) such that

a(u, v) = 〈f |v〉, ∀v ∈ H 1
0 (�), (1)

where 〈·|·〉 denotes the duality H−1(�) − H 1
0 (�). Let us point out that (1) is the

weak formulation of a problem of type L(u) = f in �, u = 0 on the boundary ∂�
of �, where L(·) is a second order, linear, symmetric, strongly elliptic operator. An
approximation of u by the finite element method of order r consists in introducing
a regular triangulation TH of � (see [20], Sect. 17), defining

VH = {g : � → R continuous such that g|K ∈ Pr (K), ∀K ∈ TH

and g = 0 on ∂�}, (2)

where Pr (K) is the space of polynomials of degree ≤ r on triangle K ∈ TH , and
calculating uH ∈ VH satisfying

a(uH , v) = 〈f |v〉, ∀v ∈ VH . (3)

Consider now � ⊂ � another open polygonal domain wherein we would like to
obtain a better precision on the solution u than the one given by uH . Take note
that � is not necessarily the union of several triangles K of TH . Besides � can be
determined in practice by an a priori knowledge or an a posteriori error estimator,
for example. Let Th be a regular triangulation of � and consider

Vh = {g : � → R continuous such that g|K ∈ Ps(K), ∀K ∈ Th

and g = 0 on � \ �}.
We call H = maxK∈TH

diam(K) and h = maxK∈Th
diam(K). Setting VHh =

VH + Vh we search as approximation for u the function uHh ∈ VHh satisfying

a(uHh, v) = 〈f |v〉, ∀v ∈ VHh. (4)

Let us observe that in practice, it is not possible to determine a finite element basis
of VHh since, in principle, VH ∩ Vh is not necessarily reduced to zero. Before to
show how to compute uHh, we establish the following a priori estimate:
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Proposition 1 Let q = max(r, s) + 1 and suppose that the solution u of (1) is in
Hq(�). Then the approximation uHh to u satisfies the a priori error estimate

||u − uHh|| ≤ C
(
Hr ||u||Hq(�\�) + hs ||u||Hq(�)

)
,

where C is a constant independent of H and h.

Proof The boundary ∂� being locally Lipschitz, due to the Stein Extension The-
orem (see Adams and Fournier [3], Thm. 5.24), there exists a bounded extension
operator E : Hq(� \ �) → Hq(�), i.e. Ev|�\� = v|�\�, ∀v ∈ Hq(� \ �). Let
u be the solution of (1). We define ũ the extension of u|�\� to � such that ũ = Eu

if ||Eu||Hq(�) ≤ ||u||Hq(�) and ũ = u otherwise. We have that ũ = u in � \ �,

||ũ||Hq(�) ≤ C||u||Hq(�\�), (5)

where here, like in the sequel, C denotes a generic constant, and

||ũ||Hq(�) ≤ ||u||Hq(�). (6)

Note that u− ũ ∈ H
q
0 (�). Let rH and rh be the standard interpolants to the spaces

VH and Vh respectively. We introduce ũH = rH ũ and ũh = rh(u − ũ). Define
ũHh = ũH + ũh and vHh = uHh − ũHh. By the definitions of u and uHh we have
a(u, vHh) = a(uHh, vHh). This and the previous definitions lead to the equality
a(vHh, vHh) = a(u−ũHh, vHh), from which we derive using the Cauchy-Schwarz
inequality that ||vHh||2 ≤ ||u − ũHh||||vHh||. Thus

||uHh − ũHh|| ≤ ||u − ũHh||. (7)

With u − uHh = (u − ũHh) + (ũHh − uHh) and (7), we have

||u − uHh|| ≤ ||u − ũHh|| + ||uHh − ũHh|| ≤ 2||u − ũHh||. (8)

Writing u − ũHh = (ũ − ũH ) + [(u − ũ) − ũh], we get by standard interpolation
results

||u − ũHh|| ≤ ||ũ − ũH || + ||(u − ũ) − ũh||
≤ C

(
Hr ||ũ||Hq(�) + hs ||u − ũ||Hq(�)

)
,

and furthermore, with ||u − ũ||Hq(�) ≤ ||u||Hq(�) + ||ũ||Hq(�) and using the
relations (5) and (6), we obtain

||u − ũHh|| ≤ C
(
Hr ||u||Hq(�\�) + hs ||u||Hq(�)

)
. (9)

Hence, combining the results (8) and (9) completes the proof. 	

As we have mentioned above, a priori VH ∩ Vh does not necessarily reduce

to the element zero and it is impossible, practically speaking, to exhibit a finite
element basis of the space VHh and consequently to compute directly uHh. It is the
reason for which we suggest the following algorithm for computing uHh.
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Algorithm 1 1. Set u0 = uH ∈ VH and choose ω ∈ (0; 2).
2. For n = 1, 2, 3, . . . find

(i) wh ∈ Vh such that a(wh, v) = 〈f |v〉 − a(un−1, v), ∀v ∈ Vh ;
un− 1

2 = un−1 + ωwh ;
(ii) wH ∈ VH such that a(wH , v) = 〈f |v〉 − a(un− 1

2 , v), ∀v ∈ VH ;
un = un− 1

2 + ωwH .

When implementing the algorithm, the coarse and the fine parts of un and un− 1
2

are stored separately. In practice this is efficient for calculating the scalar product
a(·, ·) in the right hand side of (i) and (ii).

It is readily seen that this algorithm is a Schwarz type domain decomposition
method [33] with complete overlapping but without any conformity between the
meshes TH and Th (see the work by Chan et al. [19]). This multiplicative Schwarz
method is similar to the Gauss-Seidel method and is called by Xu successive sub-
space correction algorithm (see, e.g., [41]). The spaces VH and Vh defined on the
arbitrary triangulations TH and Th are not necessary orthognal nor share the only
element zero as intersection. Note in particular that the sum which defines VHh is,
a priori, not a direct sum. This property makes the above algorithm different from
most known iterative schemes (see for example the scheme by Laydi [26]). The
algorithm resembles the FAC method, see for example the works from McCormick
et al. [29–31], or possibly a hierarchical method (see for example the papers from
Yserentant [44,45], Bank et al. [10] and Bank and Smith [11]) with a mortar method
(see [2]). It is also similar to the Chimera or overset grid method [17,35]. The new
aspect we introduce here is to link the speed of convergence of this algorithm to the
parameter γ̃ , introduced here below, corresponding to an abstract angle between
the spaces Vh and VH .

We shall now analyze the convergence of the two-scale algorithm.
If Ph : VHh → Vh and PH : VHh → VH are orthogonal projectors from VHh

onto Vh and VH respectively with regard to the scalar product a(·, ·), we have

uHh − un = (I − ωPH )(I − ωPh)(uHh − un−1),

where I denotes the identity operator in VHh. Setting

B = (I − ωPH )(I − ωPh), (10)

we obtain that uHh − un = Bn(uHh − u0).
We set VHh0 = VH ∩ Vh and V ⊥

Hh0 the orthogonal complement of VHh0 in
VHh.

Proposition 2 If ω ∈ (0; 2), then the algorithm (i), (ii) converges, i.e. limn→∞ ||un

−uHh|| = 0. The convergence factor in the norm induced by the scalar product
a(·, ·) is bounded by

||B|| = 1

2
ω (2 − ω) γ̃ +

√
1

4
ω2 (2 − ω)2 γ̃ 2 + (ω − 1)2 < 1,

where γ̃ ∈ [0; 1] is defined by

γ̃ =



sup vh∈Vh∩V ⊥
Hh0,vh =0

vH ∈VH ∩V ⊥
Hh0,vH =0

(vh,vH )
||vh||||vH || , if Vh = VHh0 and VH = VHh0,

0, otherwise.
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We prove Proposition 2 at the end of Section 3 after studying some properties
of vector spaces and doing an abstract analysis of the iteration operator B.

3 Abstract analysis of the iteration operator B

3.1 Theoretical preliminaries: some properties of vector spaces

Let V be a Hilbert space with scalar product (·, ·) and denote by || · || the induced
norm. Consider V1, V2 two closed subspaces of V .

We introduce the number

γ =
{

sup v1∈V1,v1 =0
v2∈V2,v2 =0

(v1,v2)||v1||||v2|| , if V1 = {0} and V2 = {0},
0, otherwise,

(11)

which is the constant from the corresponding strengthened C.B.S. inequality. The
constant γ is the cosine of the abstract angle between the two subspaces V1 and
V2. We have the obvious properties for γ :

1. Constant γ is necessarily included in the interval [0; 1].
2. If V1 ∩ V2 = {0}, then we have γ = 1.
3. Constant γ = 0 if and only if V1 is orthogonal to V2.

We set V0 = V1 ∩ V2 and V ⊥
0 the orthogonal complement of V0 in V . The

second property suggests to introduce the number

γ̃ =



sup v1∈V1∩V ⊥
0 ,v1 =0

v2∈V2∩V ⊥
0 ,v2 =0

(v1,v2)||v1||||v2|| , if V1 = V0 and V2 = V0,

0, otherwise.
(12)

In the sequel we assume that the following hypothesis is satisfied:
Hypothesis (H) There exists a constant C0 such that for all v ∈ V there exist

v1 ∈ V1, v2 ∈ V2 satisfying v = v1 + v2 and

||v1||2 + ||v2||2 ≤ C2
0 ||v||2. (13)

Let us observe that:

1. If (H) is satisfied, we have necessarily V = V1 + V2.
2. If V1 = V2, we have necessarily C0 ≥ 1.
3. In the case V1 = V2 = V the optimal constant C0 in (13) is equal to 1/

√
2 (it

suffices to take v1 = v2 = 1
2v, v ∈ V ).

4. If V1 is orthogonal to V2, we can take C0 = 1 from Pythagore’s Theorem.

Proposition 3 If V = V1 + V2 then Hypothesis (H) is satisfied and γ̃ < 1. If,
moreover, V1 = V2 then

C
opt
0 =

√
1

1 − γ̃
, (14)

is the optimal constant in (13).
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Proof Let us denote Ṽj = Vj ∩ V ⊥
0 , j = 1, 2, then V ⊥

0 = Ṽ1 ⊕ Ṽ2 and V = V0 ⊕
Ṽ1 ⊕ Ṽ2. The Corollary of the Open Mapping Theorem (see Yosida [43], §II.5) for
the one-to-one mapping (ṽ1, ṽ2) ∈ Ṽ1×Ṽ2 → ṽ1+ṽ2 ∈ V ⊥

0 yields the existence of
C̃0 < +∞ such that ∀ṽj ∈ Ṽj , j = 1, 2, we have ||ṽ1||2 +||ṽ2||2 ≤ C̃2

0 ||ṽ1 + ṽ2||2.
We can take C̃0 ≥ 1.

For all v ∈ V we have a unique decomposition

v = v0 + ṽ1 + ṽ2 with v0 ∈ V0, ṽj ∈ Ṽj , j = 1, 2. (15)

Hence, we can put

v1 = v0 + ṽ1 ∈ V1 and v2 = ṽ2 ∈ V2, (16)

so that v = v1 + v2 and

||v1||2 + ||v2||2 = ||v0||2 + ||ṽ1||2 + ||ṽ2||2
≤ C̃2

0 (||v0||2 + ||ṽ1 + ṽ2||2) = C̃2
0 ||v||2,

i.e. Hypothesis (H) is satisfied with C0 = C̃0.
Let us now consider the case V1 = V0 and V2 = V0. Using Definition (12), there

exists a sequence vm = ṽm
1 + ṽm

2 with ṽm
1 ∈ Ṽ1, ṽm

2 ∈ Ṽ2 and ||ṽm
1 || = ||ṽm

2 || = 1
such that

(ṽm
1 , ṽm

2 ) → −γ̃ . (17)

Suppose ad absurdum that γ̃ = 1. Thus

||ṽm
1 ||2 + ||ṽm

2 ||2
||vm||2 = 1

1 + (ṽm
1 , ṽm

2 )
→ +∞,

which contradicts Hypothesis (H). Hence γ̃ < 1.
Using again the decomposition (15) for any v ∈ V and setting v1 ∈ V1,

v2 ∈ V2 as in (16), we have ||v1||2 +||v2||2 ≤ ||v0||2 +||ṽ1 + ṽ2||2 +2|(ṽ1, ṽ2)| ≤
||v||2 + 2γ̃ ||ṽ1||||ṽ2||. Since 2||ṽ1||||ṽ2|| ≤ ||ṽ1||2 + ||ṽ2||2 ≤ ||v1||2 + ||v2||2, we
get

||v1||2 + ||v2||2 ≤ 1

1 − γ̃
||v||2.

Thus we can choose C0 =
√

1
1−γ̃

in (13). It suffices to use (17) in (12) to show

that
√

1
1−γ̃

is the best constant we can choose.

In the case V1 = V0 or V2 = V0 we have that γ̃ = 0 and if, moreover, V1 = V2,
then C

opt
0 = 1, i.e. (14) is also valid. 	


We introduce Pj : V → Vj ⊂ V the orthogonal projectors from V upon Vj ,
j = 1, 2, and call V ⊥

j the orthogonal complement of Vj in V .
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Proposition 4 Let V be of finite dimension and V = V1 + V2. There exist 2p

(p ≥ 0) vectors v
(m)
1 ∈ V1 and v

(m)
2 ∈ V2, m = 1, . . . , p, such that

||v(m)
1 || = ||v(m)

2 || = 1, (v
(m)
1 , v

(m)
2 ) = γm, m = 1, . . . , p,

with

1 > γ1 ≥ γ2 ≥ · · · ≥ γp > 0, (18)

and V can be decomposed into the direct sum

V = (V1 ∩ V2) ⊕ (V ⊥
1 ∩ V2) ⊕ (V1 ∩ V ⊥

2 ) ⊕ L1 ⊕ · · · ⊕ Lp, (19)

where Lm = span{v(m)
1 , v

(m)
2 }, m = 1, . . . , p, and all the summands in (19) are

mutually orthogonal subspaces of V , which are invariant with respect to both
operators P1 and P2, i.e. PjLm ⊂ Lm, j = 1, 2.

Proof Let us prove that for any integer k, 0 ≤ k ≤ p with p to be identified
later in the proof, the space V can be decomposed into a direct sum with mutually
orthogonal summands

V = V0 ⊕ Wk ⊕ L1 ⊕ · · · ⊕ Lk (20)

where V0 = V1∩V2, the spaces Lm are the two-dimensional subspaces of V appear-
ing in (19) and all the subspaces V0 and L1, . . . , Lk, Wk ⊂ V ⊥

0 are invariant with
respect to both operators P1 and P2. The decomposition (20) will be constructed
by induction on k.

We start with k = 0 and set W0 = V ⊥
0 . Note that V0 and W0 are invariant

subspaces of operators P1 and P2. On the k-th step of our construction (k ≥ 1) we
suppose that (20) is established for k−1. Let V (k)

1 = V1∩Wk−1, V (k)
2 = V2∩Wk−1

and define

γk =



max
v1∈V

(k)
1 ,v2∈V

(k)
2||v1||=||v2 ||=1

(v1, v2), if V
(k)
1 = {0} and V

(k)
2 = {0},

0, otherwise.
(21)

If γk = 0 we stop the induction and set p = k − 1. Indeed, it is easy to see that
in this case, any vector from V

(k)
1 is orthogonal to V2 and any vector from V

(k)
2 is

orthogonal to V1, i.e.

Wk−1 ⊆ (V ⊥
1 ∩ V2) ⊕ (V1 ∩ V ⊥

2 ),

which gives in combination with (20) the desired decomposition (19).
Assume now γk = 0 and let us construct Lk and Wk . Note that 0 < γk < 1.

Indeed, if γk = 1 there would exist a non-zero vector v ∈ V
(k)
1 ∩ V

(k)
2 = V1 ∩

V2 ∩ Wk−1 ⊆ V0 ∩ V ⊥
0 , which is impossible. Let v

(k)
1 ∈ V

(k)
1 and v

(k)
2 ∈ V

(k)
2 ,

||v(k)
1 || = ||v(k)

2 || = 1, be the vectors that give the maximum in (21) and Lk =
span{v(k)

1 , v
(k)
2 }. The vector P1v

(k)
2 belongs to V

(k)
1 since v

(k)
2 ∈ Wk−1 and Wk−1 is
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the invariant subspace of P1 by induction hypothesis. Suppose that P1v
(k)
2 is not

parallel to v
(k)
1 . We have then the inequality

(v
(k)
1 , v

(k)
2 ) = (v

(k)
1 , P1v

(k)
2 ) < ||P1v

(k)
2 || =

(
P1v

(k)
2

||P1v
(k)
2 ||

, v
(k)
2

)
,

which contradicts the definition of v
(k)
1 and v

(k)
2 . This means that P1v

(k)
2 is parallel

to v
(k)
1 , hence P1Lk ⊂ Lk . One can prove in the same manner that P2v

(k)
1 is parallel

to v
(k)
2 , hence P2Lk ⊂ Lk . Let Wk = (V0 ⊕Wk−1 ⊕L1 ⊕· · ·⊕Lk)

⊥. The subspace
V0 ⊕ Wk−1 ⊕ L1 ⊕ · · · ⊕ Lk is invariant with respect to P1 and P2 and so is the
subspace Wk since operators P1 and P2 are symmetric.

Note at last that Wk−1 = Wk ⊕ Lk hence for k > 1, V
(k)
1 ⊂ V

(k−1)
1 and

V
(k)
2 ⊂ V

(k−1)
2 , i.e. γk ≤ γk−1 according to (21). Thus we have result (18). 	


3.2 Norm and spectral radius of an operator involving the orthogonal projectors
P1 and P2

If L(V ) is the space of linear and continuous operators from V into V , we denote
by ||B|| = supv∈V,||v||=1 ||Bv|| the norm of B ∈ L(V ). If I denotes the identity
operator in V and ω is a real parameter, we define the operator B ∈ L(V ) by

B = (I − ωP2)(I − ωP1). (22)

In this paragraph we formulate first a result for the norm of the operator B
in order to get an estimate as presented in [22]. The idea of Proposition 5 and its
proof come originally from Bramble et al. [16]. In their work, an abstract analysis of
product iterative methods is presented and similar convergence estimates are given.
Comparable results proved using the technique from [16] can be found, for exam-
ple, in early papers from Xu [39,40] and Yserentant [46] appended by the work of
Griebel and Oswald [23], in the article of Cai and Widlund [18] or Wang [36], and
in an abstract theory presented by Widlund in [37]. More recent reports include the
framework of the successive subspace correction algorithm by Xu and Zikatanov
[42] and Xu [41]. Some estimates in the framework of an abstract convergence
analysis of Schwarz methods are presented in textbooks, e.g., by Quarteroni and
Valli [32] (§4.6), Smith et al. [34] (§5.2) and Wohlmuth [38] (§2.1).

Proposition 5 If Hypothesis (H) is satisfied and if 0 < ω < 2, then the norm of
the operator B given by (22) verifies

||B|| ≤
(

1 − (2 − ω)ω

C2
0 (1 + ωγ )2

) 1
2

< 1. (23)

Proof The proof is adapted from [16] to the present setting and we establish it for
the convenience of the reader. Introduce R1 = I − ωP1 and R2 = (I − ωP2)(I −
ωP1) = B. We begin by proving

(2 − ω)ω
(||P1v||2 + ||P2R1v||2) = ||v||2 − ||Bv||2, ∀v ∈ V. (24)
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As v = R1v + ωP1v, ||v||2 = ||R1v||2 + ω2||P1v||2 + 2ω(R1v, P1v), and by
definition (R1v, P1v) = ((I − ωP1)v, P1v) = (1 − ω)||P1v||2. Hence

||v||2 − ||R1v||2 = [
ω2 + 2ω(1 − ω)

] ||P1v||2 = (2 − ω)ω||P1v||2. (25)

Furthermore, R1v = R2v+ωP2R1v implies ||R1v||2 = ||R2v||2+ω2||P2 R1v||2+
2ω(R2v, P2R1v) and by definition (R2v, P2R1v) = ((I − ωP2)R1v, P2R1v) =
(1 − ω)||P2R1v||2. Hence

||R1v||2 − ||R2v||2 = (2 − ω)ω||P2R1v||2. (26)

Summing (25) and (26), we get (24).
We next prove

||P1v||2 + ||P2v||2 ≤ (1 + γω)2 (||P1v||2 + ||P2R1v||2) , ∀v ∈ V. (27)

Starting from I − R1 = ωP1, we get

(P2v, v) − (P2v, R1v) = ω(P2v, P1v),

which implies that ||P2v||2 = (P2v, R1v) + ω(P2v, P1v). Hence

||P1v||2 + ||P2v||2 = (P1v, P1v) + (P2v, P2R1v) + ω(P2v, P1v)

≤ (||P1v||2 + ||P2v||2)
1
2
(||P1v||2 + ||P2R1v||2)

1
2

+ω(P1v, P2v).

From the Definition (11) of γ we get

|(P1v, P2v)| ≤ γ ||P1v||||P2v|| ≤ γ (||P2v||||P1v|| + ||P1v||||P2R1v||)
≤ γ

(||P1v||2 + ||P2v||2)
1
2
(||P1v||2 + ||P2R1v||2)

1
2 .

Thus we have

||P1v||2 + ||P2v||2

≤ (1 + ωγ )
(||P1v||2 + ||P2v||2)

1
2
(||P1v||2 + ||P2R1v||2)

1
2 ,

which leads to (27).
Finally, we show that Hypothesis (H) implies

||v||2 ≤ C2
0

(||P1v||2 + ||P2v||2) , ∀v ∈ V. (28)

When v ∈ V , there exist v1 ∈ V1, v2 ∈ V2 such that v = v1 + v2 and ||v1||2 +
||v2||2 ≤ C2

0 ||v||2 (see Hypothesis (H)). Hence ||v||2 = (v1, v) + (v2, v) =
(v1, P1v) + (v2, P2v). Result (28) thus follows from:

||v||2 ≤ ||v1||||P1v|| + ||v2||||P2v||
≤ (||v1||2 + ||v2||2

) 1
2
(||P1v||2 + ||P2v||2)

1
2

≤ C0||v|| (||P1v||2 + ||P2v||2)
1
2 .
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The proof of Proposition 5 is now straightforward. Combining (24) and (27),
we get for all v ∈ V ,

(2 − ω)ω

(1 + γω)2

(||P1v||2 + ||P2v||2) ≤ ||v||2 − ||Bv||2,

and finally, (28) yields

(2 − ω)ω

C2
0 (1 + γω)2

||v||2 ≤ ||v||2 − ||Bv||2.

Thus ||Bv||2 ≤
(

1 − (2−ω)ω

C2
0 (1+γω)2

)
||v||2, i.e. ||B|| ≤

(
1 − (2−ω)ω

C2
0 (1+ωγ )2

) 1
2

which is

strictly bounded by one if 0 < ω < 2. 	

It is readily seen that the estimate of Proposition 5 is not optimal even in the

case where V = V1 ⊕ V2. In particular, if the space V is two-dimensional and V1
and V2 are one-dimensional subspaces of V , then ||B|| = γ for ω = 1. Indeed,
∀v ∈ V we have in this case ||Bv||2 = |(Bv, (I − P1)v)| = γ ||Bv||||(I − P1)v||
since (I − P1)v ∈ V ⊥

1 , Bv ∈ V ⊥
2 and the angle between V ⊥

1 and V ⊥
2 is equal to

the angle between V1 and V2. However, estimate (23) with the best choice of C0
(14) gives only ||B|| ≤ √

γ (γ + 3)/(1 + γ ), which is optimal only if γ = 0. The
non-optimality of (23) is also discussed, for example, by Griebel and Oswald in
the concluding remarks of [23].

In the case where V1 and V2 are of finite dimension, an analysis of the spec-
tral properties of B leads to exact formulas for its spectral radius and its norm.
Hereafter we present these new results.

For γ̃ and ω ∈ (0; 2) we define the functions

ρ(γ̃ , ω) =
{

ω2γ̃ 2

2 − ω + 1 + ωγ̃
2

√
ω2γ̃ 2 − 4ω + 4, if ω ≤ ω0(γ̃ ),

ω − 1, otherwise,
(29)

where

ω0(γ̃ ) =
{

2−2
√

1−γ̃ 2

γ̃ 2 , for γ̃ ∈ (0; 1],
1, for γ̃ = 0,

and

N(γ̃ , ω) = 1

2
ω (2 − ω) γ̃ +

√
1

4
ω2 (2 − ω)2 γ̃ 2 + (ω − 1)2. (30)

Proposition 6 Let V be of finite dimension, V = V1 +V2 and γ̃ be defined by (12).
The spectral radius of operator B given by (22) is a function of γ̃ and ω ∈ (0; 2)
given by ρ(B) = ρ(γ̃ , ω). The norm of B is a function of γ̃ and ω ∈ (0; 2) given
by ‖B‖ = N(γ̃ , ω).
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Proof The idea of the proof is to establish first all the results in the two-dimensional
case and to use then decomposition (19) to extend the results to the general case.
Therefore, we assume first that the space V is two-dimensional and V1 and V2 are
one-dimensional subspaces of V spanned by the vectors v1 and v2, respectively.
Without loss of generality, we can assume that ‖v1‖ = ‖v2‖ = 1 and (v1, v2) = γ̃ .
We can verify that the linear operator B is represented in the basis {v1, v2} by the
matrix

B =
(

1 − ω −ωγ̃

ω (ω − 1) γ̃ ω2γ̃ 2 + 1 − ω

)
.

The characteristic polynomial of this matrix is

p(λ) = λ2 − (
ω2γ̃ 2 − 2 ω + 2

)
λ + (ω − 1)2.

If γ̃ > 0 and ω ∈ (ω0(γ̃ ); 2), p(λ) has two complex conjugate roots λ± such that
|λ±| = ω − 1. If γ̃ > 0 and ω ∈ (0; ω0(γ̃ )), p(λ) has two real roots λ± given by

λ± = ω2γ̃ 2

2
− ω + 1 ± ωγ̃

2

√
ω2γ̃ 2 − 4ω + 4.

If γ̃ = 0, p(λ) has the only double root λ = 1 − ω. Identity ρ(B) = ρ(γ̃ , ω) is
thus proved in the two-dimensional case.

Let us consider now the norm of operator B that can be written as

‖B‖2 = max
x∈R2,x =0

xT BT �Bx

xT �x
, (31)

where � is the Gramm matrix of the basis {v1, v2},

� =
(

1 γ̃
γ̃ 1

)
.

By making the substitution y = �1/2x, we can rewrite (31) as

‖B‖2 = max
y∈R2,y =0

yT �−1/2BT �B�−1/2y

yT y
. (32)

Since the matrix C = �−1/2BT �B�−1/2 is symmetric positive definite, (32) im-
plies that ‖B‖2 is equal to the spectral radius of C. Let µ2 be an eigenvalue of C,
then

det(C − µ2I) = 0. (33)

But

det(C − µ2I)
= det(BT �B�−1 − µ2I)
= µ4 − µ2tr(BT �B�−1) + det(BT �B�−1)

= µ4 − µ2[(2 − ω)2ω2γ̃ 2 + 2(ω − 1)2] + (ω − 1)4

= (
µ2 − ω (2 − ω) γ̃µ − (ω − 1)2) (µ2 + ω (2 − ω) γ̃µ − (ω − 1)2) .
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The roots of (33) are thus given by

µ = ±1

2
ω (2 − ω) γ̃ ±

√
1

4
ω2 (2 − ω)2 γ̃ 2 + (ω − 1)2,

and the largest among them gives ‖B‖, i.e. identity ‖B‖ = N(γ̃ , ω) is proved in
the two-dimensional case.

Let us turn now to the general case.According to Proposition 4, V can be decom-
posed into the direct sum (19) where all the summands are invariant subspaces of
projectors P1 and P2, and hence of B. Hence the spectrum of B is given by the set
of all eigenvalues of the operators B0 = B|V0 , B12 = B|V ⊥

1 ∩V2
, B21 = B|V1∩V ⊥

2
and Bm = B|Lm

, m = 1, 2, . . . , p, where here B|W is the restriction of B to
W . We verify easily that ρ(B0) = (1 − ω)2, ρ(B12) = ρ(B21) = |1 − ω|, and
concerning the two-dimensional spaces Lm, m = 1, 2, . . . , p, we have proved just
above that ρ(Bm) = ρ(γm, ω) where ρ(γ, ω) is defined by (29). Hence

ρ(B) = max
(
(1 − ω)2, |1 − ω|, ρ(γ1, ω), . . . , ρ(γp, ω)

)
.

It is easy to verify that ω0(γ ) is an increasing function and for fixed ω, ρ(γ, ω)
is a non-decreasing function. It follows that we have ρ(γ1, ω) ≥ · · · ≥ ρ(γp, ω) >
ρ(0, ω) = |1 − ω|. Since γ̃ = γ1 if p > 0 and γ̃ = 0 if p = 0, we conclude
that ρ(B) = ρ(γ̃ , ω). Analogously, since all the subspaces in (19) are mutually
orthogonal, Pythagore’s Theorem implies

‖B‖ = max
(
(1 − ω)2, |1 − ω|, N(γ1, ω), . . . , N(γp, ω)

)
,

where N(γ, ω) is defined by (30). Noting that N(0, ω) = |1 − ω|, we conclude
that ‖B‖ = N(γ̃ , ω). 	


Finally, let us observe that:

1. The spectral radius ρ(B) is less than one for ω ∈ (0; 2) and, for γ̃ given by
(12), attains the minimum value ρ(B) = ω0(γ̃ ) − 1 at ω = ω0(γ̃ ) ∈ [1; 2).
We have ρ(B) = γ̃ 2 at ω = 1.

2. The norm ||B|| is less than one for ω ∈ (0; 2) and, for γ̃ given by (12), attains
the minimum value ||B|| = γ̃ at ω = 1. This last result is given by Blaheta in
[12].

3. The functions ρ(γ̃ , ω) and N(γ̃ , ω) are non-decreasing with respect to γ̃ for
any fixed value of ω ∈ (0; 2).

4. Both formulas (29) and (30) can be rewritten in the case V1 = V2 as the
functions only of C

opt
0 and ω due to the relation (14).

3.3 Proof of Proposition 2

The above abstract analysis enables us to prove Proposition 2. This is readily done
by applying Proposition 6 to V = VHh, V1 = Vh and V2 = VH using the form
a(·, ·) as scalar product. 	
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4 Estimates for γ

Estimates and upper bounds for the constant from the C.B.S. inequality are abun-
dant in the literature as it is the main tool in the convergence analysis of many
methods. The C.B.S. inequality has been used in two-level methods by Axelsson
[4], Axelsson and Gustavson [7], Braess [13,14], Maître and Musy [27]. A survey
of the role of this constant is reported by Axelsson and Vassilevski [8,9] and by
Eijkhout and Vassilevski [21]. The constant is also used in local refinement pre-
conditioning methods, e.g., by McCormick [29] and Bramble et al. [15]. The latest
papers present estimates of γ depending generally on the bilinear form a, i.e. on
the problem coefficients, and the type and shape of the finite element used. In some
cases it is possible to have universal bounds [6]. Margenov [28] gives estimates of
the 2D elasticity problem on a triangular mesh. More recently Achchab and Maître
[1] and Axelsson [5] proved that the constant γ 2 is bounded from above by 3/4 for
the 2D elasticity problem on a triangular mesh. Numerical experiments by Jung
and Maître [25] generalize the latter to more choices of finite elements.

Let aij ∈ W 1,∞(�), 1 ≤ i, j ≤ 2, verifying aij = aji and the hypothesis of
strong ellipticity,

2∑
i,j=1

aij (x)ξiξj ≥ α

2∑
i=1

ξ2
i , ∀(ξ1, ξ2) ∈ R

2, a.e. in �, (34)

where α is a positive constant. If L is the elliptic operator given by

L(u) = −
2∑

i,j=1

∂

∂xi

(
aij

∂u

∂xj

)
,

the associated bilinear form is given by

a(u, v) =
2∑

i,j=1

∫

�

aij

∂u

∂xj

∂v

∂xi

dx.

We consider the case with � ⊂ K , for K ∈ TH . Let �̃ ⊇ � be a rectangle
with dimensions L1 and L2 and define

λ̃ = min
v∈H 1

0 (�̃),v =0
||∇v||2

L2(�̃)
/||v||2

L2(�̃)
.

We have λ̃ = π2(1/L2
1 + 1/L2

2) and we introduce d =
√

1/λ̃. We set

β =



2∑
j=1

(
2∑

i=1

∣∣∣∣
∣∣∣∣
∂aij

∂xi

∣∣∣∣
∣∣∣∣
L∞(�)

)2


1
2

.

Proposition 7 If (34) is satisfied and if there exists K ∈ TH such that � ⊂ K and
if r = 1, then γ ≤ βd

α
. If furthermore the aij ’s are constant over �, 1 ≤ i, j ≤ 2,

the Algorithm 1 converges in only one iteration when ω = 1.
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Proof We shall first prove that γ ≤ βd
α

. For any uH ∈ VH , vh ∈ Vh, we have

|a(uH , vh)| =
∣∣∣∣∣∣

2∑
i,j=1

∫

�

aij

∂uH

∂xj

∂vh

∂xi

dx

∣∣∣∣∣∣
,

as vh = 0 in � \ �. Since � ⊂ K ∈ TH , ∂uH

∂xj
is constant over � so that

|a(uH , vh)| =
∣∣∣∣

2∑
i,j=1

∂uH

∂xj

∣∣∣∣
K

∫

�

∂aij

∂xi

vh dx

∣∣∣∣,

where we have applied the divergence theorem taking into account that vh = 0 on
∂�. By the Cauchy-Schwarz inequality we have

|a(uH , vh)| ≤
2∑

i,j=1

∣∣∣∣
∣∣∣∣
∂aij

∂xi

∣∣∣∣
∣∣∣∣
L∞(�)

∣∣∣∣
∂uH

∂xj

∣∣∣∣
K

∫

�

|vh| dx

∣∣∣∣

≤ β




2∑
j=1

∣∣∣∣
∣∣∣∣
∂uH

∂xj

∣∣∣∣
∣∣∣∣
2

L2(�)

||vh||2L2(�)




1
2

= β||∇uH ||L2(�)||vh||L2(�).

At this point we need to bound ||vh||L2(�) from above with ||∇vh||L2(�). We intro-
duce λ = minv∈H 1

0 (�),v =0 ||∇v||2
L2(�)

/||v||2
L2(�)

, the smallest value of the Ray-

leigh quotient. In order to estimate λ, we consider the rectangle �̃ and λ̃ as intro-
duced above. As � ⊆ �̃ we have λ ≥ λ̃ = 1/d2, i.e. we get ||vh||L2(�) ≤
d||∇vh||L2(�). Hence combining the previous results,

|a(uH , vh)| ≤ βd||∇uH ||L2(�)||∇vh||L2(�).

The hypothesis of strong ellipticity (34) implies that, ∀u ∈ H 1
0 (�),

a(u, u) =
∫

�

2∑
i,j=1

aij

∂u

∂xj

∂u

∂xi

dx

≥ α||∇u||2
L2(�)

,

i.e. α||∇u||2
L2(�)

≤ α||∇u||2
L2(�)

≤ a(u, u) = ||u||2. Applying this inequality to

uH and vh, we obtain |a(uH , vh)| ≤ βd
α

||uH ||||vh||, i.e. γ ≤ βd
α

.
If the aij ’s are constant over �, 1 ≤ i, j ≤ 2, we clearly have β = 0, thus

γ = 0 and C0 = 1. In this case VH and Vh are orthogonal and, since B = 0 for
ω = 1, the algorithm converges in only one iteration. 	




678 Roland Glowinski et al.

Fig. 2 Illustration of the triangulations of � considered in Table 1. White dots refer to the degrees
of freedom of rH v, black dots refer to those of v − rH v

Table 1 Upper bounds for γ

Triangles H/h Upper bound for γ

equilateral 2
√

3/3 ≈ 0.577
right isosceles 2

√
2/2 ≈ 0.707

right isosceles 3 2/3 ≈ 0.667
right isosceles 4

√
2/2 ≈ 0.707

In the case where � ⊂ K1 ∪ K2, with K1, K2 ∈ TH , the analysis gets more
complicated. In the sequel we present some upper bounds for γ in the case where
aij = δij , i.e. a(u, v) = ∫

�
∇u · ∇v dx, and with � the union of two triangles K1

and K2 of TH , Th conforming with TH and r = s = 1. We consider the situations
as illustrated in Figure 2 by the triangulations of the patch �. Estimates can be
obtained by splitting v ∈ VHh into v = vh+vH , where vH = rH v is the interpolant
of v in VH and vh = v − rH v ∈ Vh. The degrees of freedom of vh and vH in �
are depicted in Figure 2. Using the fact that vh = 0 in � \ � and the divergence
theorem, we have that

a(vH , vh) ≤
∣∣∣∣
[
∂vH

∂n

]

�

∣∣∣∣
∫

�

|vh| ds, (35)

where � = ∂K1 ∩ ∂K2, [·]� denotes the jump on � in the direction of a normal
unit vector n on �. The first factor of the right-hand side of (35) can be bounded
by

∣∣∣∣
[
∂vH

∂n

]

�

∣∣∣∣ ≤
2∑

i=1

||∇vH ||L2(Ki)√
area(Ki)

≤
√

2

mini=1,2
√

area(Ki)
||∇vH ||L2(�),

and ||∇vH ||L2(�) ≤ ||∇vH ||L2(�). As the dimension of Vh is small in our cases,
we evaluate

∫
�

|vh| ds explicitely, and express it in relation to ||∇vh||L2(�) =
||∇vh||L2(�). Applying the above procedure to our situations, we get a(vH , vh) ≤
C||vH ||||vh|| and hence we have γ ≤ C. The upper bounds found for γ are reported
in Table 1. Note that the bound for γ on right isosceles triangles with H/h = 2 is
reported by Axelsson and Gustafsson in [7].

The result of Proposition 6 with (29) gives an algebraic relationship of the
spectral radius ρ of the operator B as function of γ̃ and ω. This leads to a very con-
venient application to determine numerically a good approximation for γ̃ . Running
Algorithm 1 for given ω we can evaluate numerically an estimate of ρ and hence
find an estimate of the parameter γ̃ . A study of γ̃ for various spaces V1 = Vh and
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Table 2 Numerical estimates for γ

Triangles H/h Numerical estimate for γ
right isosceles 2 0.426
right isosceles 3 0.464
right isosceles 4 0.476

Table 3 Estimates for γ̃ for some patches and grids

H/h 2 4 8 16
γ̃ 0.273 0.306 0.313 0.315

(a) Estimates for γ̃ for varying H/h in
the structured nested case (k = 0) with
N = 8.

N 8 16 32
γ̃ 0.306 0.461 0.50

(b) Estimates for γ̃ for
varying N in the struc-
tured nested case (k = 0)
with H/h = 4.

k 0 0.5 1 1.5 2 2.5 3 3.5 4
γ̃ 0.306 0.915 0.908 0.812 0.785 0.812 0.908 0.915 0.474

(c) Estimates for γ̃ for different non-nested cases of structured grids with N = 8
and H/h = 4.

H/h 2 4 8 16
γ̃ 0.920 0.944 0.947 0.970

(d) Estimates for γ̃ for varying H/h in
the unstructured case with N = 8

V2 = VH is presented in §6.1. Estimates for the parameter γ corresponding to the
situations of Figure 2 with right isosceles triangles are given in Table 2.

5 Generalization to multiple spaces

The objective of this section is to generalize the two-scale algorithm presented in
Section 2 to more than one level of refinement.

We consider again problem (1). We approximate u by a finite element method.
Introduce a triangulation TH of �, define VH by (2) and calculate uH ∈ VH

satisfying equation (3).
Consider now �j ⊂ �, j = 1, . . . , N − 1, other polygonal domains wherein

we would like to obtain a better precision on the solution u than the one given by
uH . Take note that �j is not necessarily the union of several triangles K of TH . Let
Thj

, j = 1, . . . , N−1, be a triangulation of �j and consider for j = 1, . . . , N−1,

Vhj
= {g : � → R continuous such that g|K ∈ Psj (K), ∀K ∈ Thj

and g = 0 on � \ �j }.
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Call ThN
= TH and VhN

= VH . Setting VHh = ∑N
j=1 Vhj

we search as approxi-
mation for u the function uHh ∈ VHh satisfying the equation (4).

The intersection Vi ∩ Vj , for any 1 ≤ i, j ≤ N , does not necessarily reduce
to the element zero, making it impossible to explicit a finite element basis of the
space VHh. The generalization of Algorithm 1 to compute uHh is the following:

Algorithm 2

1. Set u0 = uH ∈ VH and choose ω ∈ (0; 2).
2. For n = 1, 2, 3, . . . find

for j = 1, 2, . . . , N ,
whj

∈ Vhj
such that

a(whj
, v) = 〈f |v〉 − a(un−1+ j−1

N , v), ∀v ∈ Vhj
;

un−1+ j
N = un−1+ j−1

N + ωwhj
.

If Phj
: VHh → Vhj

, j = 1, 2, . . . , N , are orthogonal projectors from VHh to
Vhj

with respect to the scalar product a(·, ·), it is easy to verify that uHh − un =
(I −ωPhN

)(I −ωPhN−1) · · · (I −ωPh1)(uHh−un−1), where I denotes the identity
operator in VHh. Setting B = (I −ωPhN

)(I −ωPhN−1) · · · (I −ωPh1), we obtain
that uHh − un = Bn(uHh − uH ).

Proposition 8 If ω ∈ (0; 2), then the algorithm converges, i.e.

lim
n→∞ ||un − uHh|| = 0.

In order to prove Proposition 8 let us establish first a more general result.
Let V be a Hilbert space with scalar product (·, ·) and denote by ||·|| the induced

norm. Consider V1, V2, . . . , VN closed subspaces of V not reduced to zero. We call
Pj : V → Vj ⊂ V the orthogonal projectors from V onto Vj , j = 1, 2, . . . , N .
If I denotes the identity operator in V and ω is a real parameter, we define the
operator B ∈ L(V ) by

B = (I − ωPN)(I − ωPN−1) · · · (I − ωP1). (36)

Introduce the numbers γij = sup vi∈Vi ,vi =0
vj ∈Vj ,vj =0

(vi ,vj )

||vi ||||vj || = γji ≤ 1, which are the

constants from the corresponding C.B.S. inequalities. Note that γjj = 1 for j =
1, 2, . . . , N . Consider the following hypothesis:
Hypothesis (H̄) There exists a constant C0 such that for all v ∈ V there exist

vj ∈ Vj , j = 1, 2, . . . , N , satisfying v = ∑N
j=1 vj and

∑N
j=1 ||vj ||2 ≤ C

2
0||v||2.

Applying recursively Proposition 3 it is easy to see that (H̄) is satisfied if and
only if V = V1 + V2 + . . . + VN .

Proposition 9 If Hypothesis (H̄) is satisfied and if 0 < ω < 2, then the norm of
the operator B given by (36) verifies

||B|| ≤
(

1 − (2 − ω)ω

C
2
0(1 + ωγ )2

) 1
2

< 1,

where γ = max1≤j≤N

∑
1≤i≤N,i =j γij , with 0 ≤ γ ≤ N .
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Proof The proof can be adapted from [16] in a same way as the one in Proposi-
tion 5. 	


The proof of Proposition 8 now follows easily:

Proof (Proposition 8) This Proposition is proved by applying Proposition 9 to
V = VHh and Vj = Vhj

, j = 1, 2, . . . , N . 	

Remark that a generalization of Proposition 6 to the case N > 2 is not straight-

forward.

6 Numerical results

We illustrate the above presented algorithm with the following example: Consider
the Poisson-Dirichlet problem

−�u = f,

in the domain � = (−1; 1)2, u = 0 on its boundary ∂�. Take

f = −4ηχ(R)
R2 + R4 − ε4

|ε2 − R2|4 exp

(
1

ε2

)
exp

( −1

|ε2 − R2|
)

,

where R =
√

x2
1 + x2

2 and χ(R) = 1 if R ≤ ε, χ(R) = 0 if R > ε; η and ε are

parameters. The exact solution to the problem is given by u = ηχ(R) exp
(

1
ε2

)

exp
( −1

|ε2−R2|
)

. We choose η = 10 and ε = 0.5.

Away from the origin (0, 0) the solution is smooth. In a region close to (0, 0)
where the solution has a peak, we need to apply a patch with a finer mesh. For the
triangulation of �, we use a coarse uniform grid with mesh size H and r = 1. We
consider a patch � with a fine uniform triangulation of size h and s = 1.

We consider two cases of patches and grids. In a first constellation we take
both grids structured. We choose � = (− ε

2 + kh; ε
2 + kh)2 and the mesh sizes

H and h such that the fine triangulation is nested in the coarse one for k = 0.
We characterize the grids by N where 4N corresponds to the number of nodes
chosen on ∂�. Varying the parameter k induces a translation of the patch � hence
leading to situations with non-nested grids. In Figure 3(a) we illustrate the case
with H = 1/4, i.e. N = 8, H/h = 4 and k = 2. A second constellation of interest
is where both grids are unstructured and � = (− ε

2 ; ε
2 )2. Figure 3(b) illustrates this

case with N = 8 and H/h = 4.
For numerical quadratures and calculating the errors, we introduce a global fine

uniform structured triangulation wherein the fine grid, if structured and k = 0, is
nested. In the nested case, it is an extension of the fine triangulation to the domain
�, taken two times finer in order to minimize the projection errors introduced when
comparing the results. We use the software Freefem++ [24] to generate the grids
and implement the algorithm.
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(a) Non-nested structured grids with pa-
rameter k = 2.

(b) Unstructured grids.

Fig. 3 Illustrations with N = 8 and H/h = 4 of some patches and grids considered

6.1 Numerical evaluation of γ̃

As mentioned at the end of Section 4 we can evaluate the parameter γ̃ of two
spaces VH and Vh by running Algorithm 1, estimating the spectral radius ρ of the
iteration operator B and using the result of Proposition 6 linking ρ to γ̃ for a given
ω. Recall that, if ω = 1 we have γ̃ = √

ρ(B), and that ρ(B) is the absolute value
of the largest eigenvalue. A convenient numerical evaluation of the spectral radius
is done by setting f = 0, starting in practice with any initial condition u0 non-zero,
and evaluating ρ(B) as n

√||un|| for large n. Indeed, we can prove that

lim
n→∞

n
√||un|| = lim

n→∞
n
√

||Bnu0|| = ρ, (37)

if u0 has a non-zero component in the direction of the eigenvector(s) correspond-
ing to the eigenvalue(s) giving the spectral radius. Note that we do not use the
standard power method as it does not apply when ρ(B) corresponds to a complex
eigenvalue.

For the case of right isosceles triangles as presented in Figure 2 we find the
estimates of Table 2 for γ = γ̃ . These results are to be compared with the estimated
upper bounds presented earlier in Table 1: we remark that they are not sharp. Note
that due to the relation (14) we also have an estimate for the optimal constant C0
of (13).

Before presenting the estimates for γ̃ in the cases of the above introduced grids,
it is worth illustrating the fitting of formula (29) for ρ with the numerical estimates.
In the case of nested grids with N = 8, H/h = 4 we obtain γ̃ = 0.306 for ω = 1.
In Figure 4 we plot ρ(γ̃ = 0.306, ω) and the corresponding numerical results for
ρ using (37) for ω ∈ (0; 2).

In order to get an idea of the convergence behavior of the algorithm for the
different grid structures presented at the beginning of this Section, it is interesting
to evaluate γ̃ . The convergence factor of the algorithm being bounded by ||B||
(see Prop. 2), with ||B|| = γ̃ for ω = 1, γ̃ is a bound for the convergence factor.
In Table 3 we present estimates for γ̃ in the case of structured and unstructured
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Fig. 4 Comparison of numerical estimates and theoretical results for ρ for different parameter
ω in the case of nested grids, N = 8 and H/h = 4

grids. The parameter γ̃ is given in the case of structured nested grids (k = 0), first
for fixed N = 8 and different ratios H/h (Table 4(a)), then for fixed H/h = 4
and variable N (Table 4(b)). Table 4(c) gives estimates for γ̃ for some non-nested
constellations with structured grids in the case N = 8 and H/h = 4. Finally we
give some estimates in the case with unstructured grids for variable ratios H/h
(Table 4(d)).

6.2 Convergence of the algorithm

The objective of this paragraph is to illustrate the convergence of the algorithm
on the chosen example. In the sequel we consider ω = 1. We introduce the stop-
ping criterion ||un − un−1||/||un|| < ε1 where n, n = 1, 2, . . . , is the iteration
number. If this criterion yields true at iteration nc, we define uHh = unc . To ver-
ify that the algorithm has well converged, we check that uHh satisfies a second
criterion, namely ||uHh − uHh||/||uHh|| < ε2, where uHh = unc+p, p = 20.
We choose ε1 = 10−4 and ε2 = 10ε1. We define the relative error at iteration
n, n = 0, 1, . . . , nc, by en = ||uHh − un||/||uHh||. The evolution of this error
through the iterative process gives information about the speed of convergence of
the algorithm.

The type of grids we use is an important element for the convergence rate of the
algorithm. This can be readily seen through the γ̃ -estimates presented in Table 3.
The curves of Figure 5 illustrate the influence of the chosen grids. We compare the
behavior for the cases of nested (k = 0 and k = 4), non-nested (k = 2) and unstruc-
tured grids with N = 8 and H/h = 4. In the nested case, the algorithm converges
very fast, in only a couple of steps. The results correspond to the behavior of the
estimated bound γ̃ for the convergence factor. The rate of convergence can be well
foreseen by the estimate of γ̃ . From Table 3 we have that γ̃ = 0.306 resp. 0.474
in the nested cases with k = 0 and 4, γ̃ = 0.785 in the considered non-nested case
and γ̃ = 0.944 in the case of unstructured and completely uncorrelated grids. Note
that even in the latter most general case the algorithm converges steadily. For the
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Fig. 5 Convergence of the algorithm for different cases of patches and grids

readibility of the graphic, we show only the evolution of the error through the first
20 iterations.

Similarly, the convergence behavior of the algorithm follows the convergence
rate bound γ̃ (Table 3) in the cases with fixed N and variable H/h, respectively
with fixed H/h and variable N . The convergence is slightly slower with increasing
H/h for fixed N . The same holds for increasing N and fixed H/h.

6.3 Convergence in the grid size

Up to now, we have only considered illustrations for the convergence of the algo-
rithm, i.e. obtaining the approximation uHh to the exact solution u. To assess the
convergence of uHh in H and h given by the a priori estimate of Proposition 1,
we introduce the relative error eHh = ||u − uHh||/||u||. This error is evaluated
by interpolating u and uHh on the fine uniform structured grid. The result uHh is
obtained here by requiring a-norm convergence of the algorithm. On the graphics
of Figure 6 we show the relative L2-, H 1- and L∞-norm errors eHh for increasing
N , N = 8, 16, 32, 64, with H/h = 2 fixed, in the case of nested (k = 0) and
unstructured grids. In both cases, we observe optimal convergence in the mesh
size H = 2/N : we observe h2-accuracy for the L2-norm and rate of convergence
one for the H 1-norm.

7 Concluding remarks

We have presented and analyzed a method for solving numerically problems with
multi-scale data. The method uses patches whose triangulations are not neces-
sarily nested. In Section 6 we have only presented results in the two-level case.
Remark that the implementation of the generalization to multiple levels, as given in
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Fig. 6 Convergence in the mesh size with H/h = 2

Section 5, leads to efficient programs, in particular if a telescopic set of well-adapted
patches is chosen. At each level of refinement the correction in all non-overlap-
ping patches can be parallelized. Using patches to connect problems in adjacent
domains with nonconforming grids leads to efficient coupling techniques. Large
domains can be split into non-overlapping subdomains for parallel treatment and
patches are to be used at a second level to connect the subdomains. Applica-
tions of the method include all problems where local refinement is necessary,
as, for example, in boundary layer problems. We are looking forward to present-
ing results illustrating different types of implementations and applications of the
algorithm.
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