4,507 research outputs found

    Analysis of an unconditionally convergent stabilized finite element formulation for incompressible magnetohydrodynamics

    Get PDF
    In this work, we analyze a recently proposed stabilized finite element formulation for the approximation of the resistive magnetohydrodynamics equations. The novelty of this formulation with respect to existing ones is the fact that it always converges to the physical solution, even when it is singular. We have performed a detailed stability and convergence analysis of the formulation in a simplified setting. From the convergence analysis, we infer that a particular type of meshes with a macro-element structure is needed, which can be easily obtained after a straight modification of any original mesh.Preprin

    Entropy Stable Finite Volume Approximations for Ideal Magnetohydrodynamics

    Full text link
    This article serves as a summary outlining the mathematical entropy analysis of the ideal magnetohydrodynamic (MHD) equations. We select the ideal MHD equations as they are particularly useful for mathematically modeling a wide variety of magnetized fluids. In order to be self-contained we first motivate the physical properties of a magnetic fluid and how it should behave under the laws of thermodynamics. Next, we introduce a mathematical model built from hyperbolic partial differential equations (PDEs) that translate physical laws into mathematical equations. After an overview of the continuous analysis, we thoroughly describe the derivation of a numerical approximation of the ideal MHD system that remains consistent to the continuous thermodynamic principles. The derivation of the method and the theorems contained within serve as the bulk of the review article. We demonstrate that the derived numerical approximation retains the correct entropic properties of the continuous model and show its applicability to a variety of standard numerical test cases for MHD schemes. We close with our conclusions and a brief discussion on future work in the area of entropy consistent numerical methods and the modeling of plasmas

    On an unconditionally convergent stabilized finite element approximation of resistive magnetohydrodynamics

    Get PDF
    In this work, we propose a new stabilized finite element formulation for the approximation of the resistive magnetohydrodynamics equations. The novelty of this formulation with respect to existing ones is the fact that it always converges to the physical solution, even for singular ones. We have performed a detailed stability and convergence analysis of the formulation in a simplified setting. From the convergence analysis, we infer that a particular type of meshes with a macro-element structure is needed, which can be easily obtained after a straight modification of any original mesh. A detailed set of numerical experiments have been performed in order to validate our approach.Peer ReviewedPreprin

    Affordable, Entropy Conserving and Entropy Stable Flux Functions for the Ideal MHD Equations

    Full text link
    In this work, we design an entropy stable, finite volume approximation for the ideal magnetohydrodynamics (MHD) equations. The method is novel as we design an affordable analytical expression of the numerical interface flux function that discretely preserves the entropy of the system. To guarantee the discrete conservation of entropy requires the addition of a particular source term to the ideal MHD system. Exact entropy conserving schemes cannot dissipate energy at shocks, thus to compute accurate solutions to problems that may develop shocks, we determine a dissipation term to guarantee entropy stability for the numerical scheme. Numerical tests are performed to demonstrate the theoretical findings of entropy conservation and robustness.Comment: arXiv admin note: substantial text overlap with arXiv:1509.06902; text overlap with arXiv:1007.2606 by other author
    corecore