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Abstract

In this work, we propose a new stabilized finite element formulation for the approximation of the
resistive magnetohydrodynamics equations. The novelty of this formulation with respect to existing
ones is the fact that it always converges to the physical solution, even for singular ones. We have per-
formed a detailed stability and convergence analysis of the formulation in a simplified setting. From
the convergence analysis, we infer that a particular type of meshes with a macro-element structure is
needed, which can be easily obtained after a straight modification of any original mesh. A detailed
set of numerical experiments have been performed in order to validate our approach.

Keywords: magnetohydrodynamics, finite elements, singular solutions, stabilized finite element
methods

1. Introduction

1.1. State-of-the-art

In this work, we propose a novel numerical formulation for the approximation of the incompressible
visco-resistive magnetohydrodynamics (MHD) system that models incompressible viscous and elec-
trically conducting fluids under electromagnetic fields (see [25]). Examples of such fluids include
liquid metals and plasmas. The numerical approximation of the associated set of partial differential
equations (PDEs) is of paramount importance in fusion energy, since it allows to model liquid metal
cooling and He-Tr extraction systems in fusion reactors (the so-called breeding blankets) as well as
the plasma confinement in the core [37].

Many conforming numerical approximations to this problem have been proposed so far. There are
different equivalent formulations of the continuous magnetic sub-problem, namely saddle-point and
(weighted) exact penalty formulations (see [43] and [31, 2, 32, 22, 24] respectively). The first one
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leads to a double-saddle-point formulation for the MHD system. A Galerkin finite element (FE)
approximation of the resulting problem has been proposed and analyzed by Schötzau in [43]. It is
well-known that saddle-point formulations require to choose particular mixed FE spaces satisfying
discrete versions of the so-called inf-sup conditions (see e.g. [11]). It complicates the implementa-
tion issues, e.g. the database structure, the computation of the coupling terms and the graphs needed
for the compressed storage of the system matrix (see Section 1.2). Instead, a weighted exact penalty
formulation has been used in [31]. This formulation allows to simplify the aforementioned imple-
mentation issues but introduces a new complication, the definition of the weight function (see [24]);
it requires an a priori knowledge of the exact solution –where the singularities are placed– and the fi-
nal expressions are hard to integrate accurately using numerical integration. Since the resistive MHD
system loses coercivity as the Reynolds and magnetic Reynolds numbers increase, i.e. convection-
type terms become dominant, a mixed FE formulation of the problem is unstable unless the mesh size
is sufficientely refined, which is impractical.

Alternative formulations have been proposed for a regularized version of the system, based on an exact
penalty formulation.1 Under some assumptions on the computational domain Ω, the magnetic field
is smoother than for the original problem (see e.g. [28]). An inf-sup stable Galerkin FE formulation
for the flow sub-problem and the regularized exact penalty formulation for the magnetic sub-problem
has been proposed in [30], whereas a stabilized FE version of this formulation can be found in [27].

Non-conforming approximations of discontinuous Galerkin type have been designed in [33]. These
methods have good numerical properties, but the increase in CPU cost –degrees of freedom– of these
formulations (with respect to conforming formulations) is severe for realistic large-scale applications.

1.2. Motivation of the work

The multi-physics nature of the MHD system, and the fact that both sub-problems have a saddle-point
structure (before modifications), makes the numerical approximation of this PDE system a challeng-
ing task. Further, the extremely complex nature of the phenomena that can be modeled [14, 15],
requires the development of low-storage algorithms that allow an easy-to-optimize implementation
suitable for massive parallelization.

A straightforward Galerkin FE approximation of the original problem would require very specific FE
spaces for the different unknowns in order to satisfy the corresponding inf-sup conditions, e.g. the
MINI element could be used for the fluid sub-problem whereas weakly-solenoidal Nédélec bases are
needed for the magnetic sub-problem [40, 41]. Clearly, this approach introduces implementational
complications in comparison to a straightforward equal interpolation of all the vectorial components
and scalar unknowns, e.g. database structures or integration of coupling terms. More important, for
nunk unknowns,2 we require (in general) (nunk)2 graphs to define the sparse structures of the (nunk)2

block matrices. The optimization of a Galerkin-type MHD implementation is a formidable task. For

1All these methods must be used with caution, since they converge to spurious solutions when the exact magnetic field
is not smooth.

2The MHD system at hand involves fluid velocity and pressure as well as magnetic field for the penalty formulation
(nunk = 3) and an additional magnetic pseudo-pressure for the double-saddle-point structure (nunk = 4). Herein we use
the concept of magnetic pseudo-pressure to denote the Lagrange multiplier that is introduced to enforce the solenoidal
constraint on the magnetic field. Do not confuse it with the classical notion of magnetic pressure in MHD (see [25]).
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these reasons, the use of stabilized FE formulations that allow equal interpolation for all the unknowns
becomes a very appealing discretization technique for multi-physics applications (see [6]). This way,
with only one graph –the mesh-graph– we are able to define the sparse structure of the matrix.

However, implementational issues are not the only (or even the main) justification to use stabilized
formulations instead of mixed ones. The additional stabilization terms not only avoid the fulfillment
of the inf-sup conditions but add streamline-diffusion to reduce oscillations in dominant convection
flows [12].3 Furthermore, the introduction of stabilization terms changes the nature of the problem,
and subsequently the system matrix. Whereas the system matrix obtained by using mixed FEs is
indefinite, with null diagonal-blocks, the one from the stabilized FE formulation is positive definite. It
simplifies the numerical linear algebra strategy to solve the final linear system in an efficient (optimal)
way (see [44] for a detailed discussion).

With regard to parallelization, the possibility to work with the mesh-graph only simplifies the re-
quired graph-partitioning needed in domain decomposition approaches [48]. Further, the ease in the
definition of effective preconditioners also helps to attain algorithmic scalability [44].

Some stabilized FE formulations have been proposed so far for resistive MHD [7, 8, 27, 28, 19, 20,
44]. These formulations share the benefits listed above but they are based on the regular functional
setting of the problem, and so, restricted to smooth or convex domains (see [24]). They are accurate
for regular magnetic solutions but tend to spurious (unphysical) solutions otherwise (see Section 3 for
further discussion). The objective of this work is to propose a novel stabilized FE formulation that
always converges to the exact (physical) solution.

More specifically, the objective of this work is to design and analyze a numerical FE formulation of
the MHD problem with the following features:

• always converges to the physical solution, even when it is a singular solution,

• allows equal Lagrangian interpolation of every component of the vectorial fields as well as the
scalar fields,4

• allows arbitrary-order interpolation,

• introduces effective numerical stability in convection-dominated regimes,

• does not require any a priori information of the solution, i.e. it is a fully automatic approach,

always keeping optimal a priori error estimates for smooth solutions.

The outline of this work is the following. First, the MHD problem of interest is stated in Section
2. Some existing FE discretizations (in space) are detailed in Section 3 as well as some notation.
The linearization and time integration of the resulting problem is presented in Section 4. Section 5
is devoted to the formulation we propose. We present a detailed stability and convergence analysis
for the stationary and linearized problem in Section 6. A complete set of numerical experiments that

3Most of the applications of interest are in this regime.
4This feature implies that only one graph is enough for the definition of the sparse structure of the system matrix.
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validate the formulation and are in concordance with the numerical analyses are presented in Section
7. We finish the work by drawing some conclusions in Section 8.

2. Problem statement

2.1. The strong form

The incompressible visco-resistive MHD system of partial differential equations consists of the Navier-
Stokes equations coupled to the (simplified) Maxwell equations via the Lorentz force. It reads as fol-
lows: find a velocity field u(x, t), a (dynamic) pressure p̃(x, t) and an induced magnetic field b(x, t)
such that

ρ∂tu + ρu · ∇u− µf∆u +∇p̃− 1

µm
(∇× b)× b = fu, (1a)

∇ · u = 0, (1b)

∂tb +
1

µm
∇× (

1

σ
∇× b)−∇× (u× b) = fb, (1c)

∇ · b = 0, (1d)

in (x, t) ∈ Ω × (0, T ), where ∂t stands for the partial time derivative (dt will be used for the total
one), Ω ⊂ Rd is the spatial open bounded domain filled by the fluid (assumed polyhedral in the finite
element approximation), d being the space dimension, and (0, T ) is the time interval of interest. fu
and fb are the forcing terms, fb being solenoidal. With regard to the physical parameters that describe
the fluid, ρ is its density, µf the fluid viscosity, µm the magnetic permeability and σ the electric
conductivity. In this work, we consider all physical properties constant. These equations must be
supplemented with appropriate boundary and initial conditions. The initial conditions are:

u(x, 0) = u0(x), b(x, 0) = b0(x),

where b0 must be solenoidal. This restriction can be weakened for u0, but it introduces a singularity
at t = 0 (see [47]).

We can easily check that this system is over-constrained, since no Lagrange multiplier has been used
to enforce the null-divergence restriction over the magnetic field b. However, the problem has at
least one solution; taking the divergence of (1c), we obtain ∂t(∇ · b) = 0. This fact, together with
the solenoidal initial condition, amounts to say that (1d) is satisfied at all times. Unfortunately, this
procedure cannot be used for the discretized system. For numerical purposes, it is more suitable to
explicitly enforce (1d) via a Lagrange multiplier, the magnetic pseudo-pressure r(x, t). Let us intro-
duce the following augmented formulation of (1), re-scaled in a more suitable way for the subsequent
exposition:

∂tu + u · ∇u− ν∆u +∇p− (∇× b)× %b = fu, (2a)

∇ · u = 0, (2b)

%∂tb + λ∇× (∇× b) +∇r −∇× (u× %b) = fb, (2c)

∇ · b = 0, (2d)
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where ν := µfρ
−1, % := (ρµm)−1 and λ := (ρµ2

mσ)−1; p := ρ−1p̃ is the kinematic pressure. fu and
fb have been re-defined accordingly.

In order to introduce the boundary conditions, let us consider two disjoint partitions of the domain
boundary Γ ≡ ∂Ω:

Γ = Γf,e ∪ Γf,n, Γ = Γm,e ∪ Γm,n,

where the first subscript denotes the subproblem (f for fluid and m for magnetic) and the second one
the type of boundary condition (e for essential and n for natural). Then, the fluid sub-problem is
supplemented with the standard boundary conditions:

u = uΓ on Γf,e, −pn + νn · ∇u = σn,Γ on Γf,n,

where uΓ(x, t) and σn,Γ(x, t) are the trace and normal stress prescribed; n(x) denotes the normal
vector on Γ pointing outwards from Ω. With regard to the magnetic sub-problem, we consider the set
of ideal boundary conditions:

n× b = n× bΓ, r = 0 on Γm,e, n · b = n · bΓ, n× (∇× b) = JΓ on Γm,n,

where n · bΓ and n × bΓ are the normal and tangential traces to be prescribed; clearly, JΓ · n must
vanish.

2.2. The weak form

2.2.1. Notation

Let us introduce some notation to set up the weak form of the problem. As usual, Sobolev spaces of
functions whose derivatives of order up to m belong to L2(Ω) are denoted by Hm(Ω); H1

0 (Ω) is the
subspace of H1(Ω) of functions vanishing on ∂Ω. The space of vector functions with components
in L2(Ω) and with divergence also in L2(Ω) is denoted H(div; Ω); if the components are L2(Ω) and
the curl is in L2(Ω)d the space is denoted H(curl; Ω). H(div 0; Ω) is the subspace of L2(Ω)d of
divergence free vector functions.

The inner product of f, g ∈ L2(Ω) is represented as (f, g), whereas 〈f, g〉 is used to denote the
integral

∫
Ω fg whenever it makes sense; this in particular applies for the duality between H1

0 (Ω) and
its topological dual H−1(Ω). The same notation is used for both scalar and vector valued functions.

Given a normed functional space X , its norm is written as ‖ · ‖X , with the abbreviations ‖ · ‖L2(Ω) ≡
‖ · ‖, ‖ · ‖Hm(Ω) ≡ ‖ · ‖m, ‖ · ‖H−1(Ω) ≡ ‖ · ‖−1, ‖ · ‖H(curl;Ω) ≡ ‖ · ‖curl. Functions defined on the
time interval (0, T ) whose X-norm is in L2(0, T ) are denoted by L2(0, T ;X), whereas distributions
in (0, T ) whose X-norm is bounded are represented by D′(0, T ;X).

Finally, the symbol . is used to denote ≤ up to positive constants.

2.2.2. A double saddle-point formulation

Let us consider the functional setting in which the system of equations (2) is well-posed. For the sake
of clarity, we will consider homogeneous essential boundary conditions; in any case, the extension to
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the most general case is standard. We introduce the vectorial functional spaces:

V = {v ∈ H1(Ω)d such thatv = 0 on Γ},
C = {c ∈ H(curl; Ω) such thatn× c = 0 on Γ}, (3)

for the velocity and magnetic field functions, respectively. Further, the space for fluid pressures
is Q ≡ L2

0(Ω) and the one for magnetic pseudo-pressures S ≡ H1
0 (Ω). Now, we can state the

transient MHD problem at hand in its weak form as follows: find u ∈ L2(0, T ;V ), b ∈ L2(0, T ;C),
p ∈ D′(0, T ;Q) and r ∈ D′(0, T ;S) such that

dt(u,v) + 〈u · ∇u,v〉+ (ν∇u,∇v)− (p,∇ · v)− 〈(∇× b)× %b,v〉 = 〈fu,v〉, (4a)

(q,∇ · u) = 0, (4b)

dt (%b, c) + (λ∇× b,∇× c)− 〈∇× (u× %b), c〉+ (∇r, c) = 〈fb, c〉, (4c)

− (∇s,b) = 0, (4d)

for any (v, c, q, s) ∈ (V ,C, Q, S) almost everywhere (a.e.) in (0, T ). Let us show that r ≡ 0 in
(4). Taking c = ∇r (which clearly belongs to C) in (4c), and using the fact that ∇ × ∇r = 0 and
∇ · fb = 0 a.e. in Ω, we obtain ‖∇r‖ = 0. Since r vanishes on ∂Ω, it implies r ≡ 0 a.e. in Ω by
virtue of Poincaré’s inequality. We refer to [32, Propositions 3.4 and 3.5] for the completion of the
proof.

Let us re-write system (4) in compact manner as:

M((u,b), (v, c))+A((u,b, p, r), (v, c, q, s)) = 〈fu,v〉+〈fb, c〉, ∀(v, c, q, s) ∈ V ×C×Q×S,

where the formM(·) includes all the time derivative terms and A(·) the rest of left-hand side terms.

The problem is well-posed under the assumption of small data, due to the inf-sup conditions

inf
q∈Q

sup
v∈V

(q,∇ · v)

‖q‖‖v‖1
≥ βf > 0, inf

s∈S
sup
c∈C

(∇s, c)

‖s‖1‖c‖H(curl;Ω)
≥ βm > 0, (5)

that are known to be true at the continuous level, as well as the Poincaré-Friedrichs inequalities

‖v‖1 ≤ CP,1‖∇v‖ forv ∈ H1
0 (Ω)d,

‖c‖H(curl;Ω) ≤ CP,2‖∇ × c‖ for c ∈ C ∩H(div 0; Ω) (6)

(see [39, Corollary 3.51]). We refer to [43] for a mathematical discussion about the well-posedness
of this problem.

2.2.3. A (weighted) exact penalty formulation for the magnetic sub-problem

As we will discuss later on, the numerical approximation of saddle-point PDEs is complicated. So,
we can consider an alternative formulation for the magnetic sub-problem, in which Eqs. (4c)-(4d) are
replaced by

dt (%b, c) + (λ∇× b,∇× c)− 〈∇× (u× %b), c〉+ λ (∇ · b,∇ · c) = 〈fb, c〉. (7)

We can easily check that systems (4) and (4a)-(4b)-(7) are equivalent (see [32, 23]). This way, the
only inf-sup condition that is needed in order for the problem to be well-posed is the one related to
the fluid sub-problem. This formulation can be understood as an exact penalty strategy.
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Fluid sub-problem Magnetic sub-problem (regularized) Magnetic sub-problem (original)

Inf-sup
stable

Exact
penalty

Stabilized
method

Inf-sup
stable

Weighted
penalty

Stabilized
method

Inf-sup
stable

Gunzburger
et al., [30]

Schötzau,
[43]

Hasler et
al., [31]

Stabilized
method

Gerbeau,
[27]

Codina et
al., [19]

This work

Table 1: References for different combinations of fluid and magnetic techniques for the MHD problem. For the magnetic
sub-problem, we have distinguished among the methods that use the original functional setting and the ones that use the
regularized setting (not suitable for singular solutions).

3. Some finite element approximations

In this section, we show some of the different alternatives proposed so far for the numerical ap-
proximation of the resistive MHD system (1) using finite element techniques. In some cases, the
references that are provided considered the stationary version of the problem, but it does not affect
the forthcoming discussion. First, we list FE approximations that are based on the different con-
tinuous formulations of the MHD problem. We can distinguish among the approximations that are
suitable for singular solutions of the magnetic field, i.e. they are posed in the original functional set-
ting H(curl; Ω) × H1(Ω), and those that use the regularized formulation, only suitable for convex
or smooth enough domains. In this case b ∈ H1(Ω)d. Table 1 shows different combinations of fluid
and magnetic sub-problem numerical approximations. We distinguish among methods able to capture
singular magnetic solutions and regularized ones. Further, we indicate the references in which every
combination has been proposed. All those methods are explained below.

Let us start with formulation suitable for singular magnetic solutions. Since the problem at hand
couples two saddle-point sub-problems, a Galerkin FE approximation should satisfy a discrete version
of the two inf-sup conditions (5) above. In order to do this, we rely on the well-established mixed
FE theory (see e.g. [11]). Since the two inf-sup conditions are different, stable approximations for
the (u, p) pair differ from those stable for the magnetic pair (b, r). E.g. the fluid sub-problem could
be solved by using the MINI element, whereas the magnetic problem should be approximated by
a Nédélec FE space (see [40, 41]). The use of inf-sup stable elements for every sub-problem is the
strategy used in [43]. From a theoretical point of view, this is a satisfactory approach, because the final
MHD solver is able to approximate singular solutions, with b 6∈ H1(Ω)d. However, this approach is
not appealing from a practical point of view, as commented in Section 1.2.

A way to simplify the numerical approximation consists in the use of an exact penalty formulation
for the magnetic field. Under the following assumption over the domain:

The domain Ω is convex or its boundary is C1,1 (A1)

we can prove that the magnetic field does belong to H1(Ω)d (see [28]). This approach was proposed
in [30] in the Galerkin case. In [27], a stabilized FE formulation for the fluid sub-problem as well
as a Galerkin FE discretization of the exact penalty formulation for the magnetic sub-problem are
proposed. The method allows one-graph implementation, arbitrary-order Lagrangian interpolations
for all the unknowns (velocity, pressure and magnetic field), and stabilizes convection. However, the
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straightforward exact penalty formulation only provides magnetic fields in H1(Ω)d [23, 5]. Further,
H1(Ω)d is a strict closed subspace of H(curl; Ω) ∩H(div; Ω) and so, H1-conforming approxima-
tions do not have an approximability property (see e.g. [26]). As a results, the formulations based
on the exact penalty lead to spurious numerical solutions in general. The formulation proposed in
[20] uses a regularized double saddle-point formulation of the problem at hand, in order to explicitly
enforce the free-divergence constraint over the magnetic field. Stabilized FE discretizations of both
the fluid and magnetic sub-problem are considered. It shares the same benefits and limitations of the
previous approach. From the conceptual point of view, the formulation is motivated from the vari-
ational multiscale framework (see [34, 35]) and the stabilization parameters are carefully designed
from the convergence analysis. Both aspects are shared by the formulation we propose in Section 5.

In order to solve this situation, less control over b is required, e.g. with a weighting in the penalty
term. Costabel and Dauge proposed in [24] to replace the penalty term in (7) by a weighted one (in the
frame of the electrostatic Maxwell problem) of the form (ωλ∇ · b,∇ · c) where ω(x) is the weight
function, that can only be effectively defined knowing a priori the location of the singularities (see
[23]). It has been proved in [23] that a proper choice of this weighting allows one to capture singular
solutions. The weighted exact penalty together with an inf-sup stable Galerkin approximation of the
fluid problem has been proposed in [31] for the MHD problem (1).

4. Time discretization and linearization

All the developments in this work are for the spatial discretization of the MHD system (4). The
stabilized FE formulation we propose can be applied to any time integration scheme. In particular, we
can consider θ-methods for the time discretization. After spatial discretization, our time-continuous
formulation can be written as a differential-algebraic equation:

ẋ(t) = A(x(t),y(t), t), 0 = C(x(t),y(t), t),

where x(t) ∈ Rn, y(t) ∈ Rm, A : Rn+m → Rn and C : Rn+m → Rm. Using the definitions

ẋn+1 =
xn+1 − xn

δt
, xn+θ = θxn+1 + (1− θ)xn,

(analogously for yn+θ), the time discretization of this problem with the θ-method simply reads as:

ẋn+1 = A(xn+θ,yn+θ, tn+θ), 0 = C(xn+θ,yn+θ, tn+θ), for θ ∈ (0, 1].

We consider the following time-discretization of (2):

u̇n+1 + ûn · ∇un+θ − ν∆un+θ +∇pn+θ − (∇× bn+θ)× %b̂n = fu, (8a)

∇ · un+θ = 0, (8b)

%ḃn+1 + λ∇× (∇× bn+θ) +∇rn+θ −∇× (un+θ × %b̂n) = fb, (8c)

∇ · bn+θ = 0, (8d)

where ûn and b̂n can be either time extrapolations to approximate un+θ and bn+θ, respectively, or
previous iterates within a nonlinear iteration strategy to compute the unknowns at time level n + 1.
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In the first case, we may choose ûn = un, b̂n = bn if θ 6= 1/2 (first order schemes) or ûn =
2un−un−1, b̂n = 2bn−bn−1 if θ = 1/2 (second order scheme). In the second case, the linearization
can be considered of Picard’s type. In fact, it can be easily checked that this is the only fixed-point
linearization of the problem that leads to an absolutely stable algorithm in time (see [20]). Segregated
time-marching schemes that decouple the sub-problems are conditionally stable and not suitable when
the coupling is important. For the sake of conciseness, we will consider ûn = un, b̂n = bn in the
following.

5. A stabilized FE formulation suitable for singular magnetic solutions

Let us present now the spatial discretization we propose. Let Th = {K} be a FE partition of the
domain Ω. For simplicity we assume Ω polyhedral and Th quasi-uniform, of diameter h. Summation
over all the element domains K is denoted as

∑
K . Finite element spaces and FE functions are

identified with the subscript h. Only conforming approximations are considered, i.e., the FE spaces
where the unknowns are sought are V h ⊂ V , Ch ⊂ C, Qh ⊂ Q and Sh ⊂ S. In particular, in
the applications we will be interested in the use of C0 Lagrangian finite element interpolations of an
arbitrary order for all the unknowns. Given two functions f and g piecewise polynomial on each
K ∈ Th, we define (f, g)h :=

∑
K

∫
K f g and ‖f‖h := (f, f)

1/2
h .

Since we assume Th quasi-uniform, the following inverse inequality holds:

‖∇vh‖L2(K) ≤
Cinv

h
‖vh‖L2(K), K ∈ Th, (9)

for a positive constant Cinv and for all piecewise polynomial functions vh.

We consider a residual-based stabilized FE formulation for the MHD problem. This type of formula-
tion does not change the statement of the continuous problem but modifies the way the discretization
is performed. Instead of considering only those terms that come from a Galerkin discretization, this
type of formulation includes additional terms, that are always proportional to some residual, and so,
consistent. In order for this approach to be effective, the new terms must provide stability over the
Lagrange multiplier-type unknowns, in order to avoid the fulfillment of discrete inf-sup conditions,
as well as convection stability (see e.g. [18]). These methods can be motivated as multiscale meth-
ods in which the sub-grid component of the solution is properly modeled. Different closures for the
sub-grid component have been proposed so far; we can distinguish among standard variational mul-
tiscale formulations (also called algebraic sub-grid scales) and orthogonal sub-grid scales, enforced
to be orthogonal to the FE functions in L2 sense. Analogously, we can distinguish among standard
quasi-static formulations, in which the time derivative of the sub-grid component is neglected, and
dynamic closures; in this last case, the model for the sub-grid scale is an ordinary differential equation
(see [16]). It is not the aim of this work to motivate the stabilized FE formulation we propose. The
heuristic motivation of these methods can be found in any of the references above. Since we are pre-
senting a novel formulation, we have considered the most standard type of formulation, an algebraic
quasi-static closure. 5

5Roughly speaking, the type of formulation we propose reads as follows. Given a PDE (in strong form) that reads as
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In order to obtain a numerical algorithm suitable for singular solutions and avoiding the need to
define weighting functions that require information about the placement of singularities, we stick to
the double saddle-point formulation (4).

This way, using the approach indicated above, the stabilized FE formulation we propose is stated in
Algorithm 1.

Let us stress the key features of our formulation, that allow us to design an unconditionally convergent
stabilized method with the interesting properties listed above. The stabilization terms in the Navier-
Stokes equations are standard, as well as the definition of the corresponding stabilization parameters
τ1 and τ2, apart from the coupling with the magnetic field; see [20] for a detailed justification. With
regard to the magnetic equation, we have split its residual into two parts Rb,1 and Rb,2; these two
terms are still residuals, since r = 0. Further, we have included the solenoidal constraint residual Rr.
Now, we are in position to pre-multiply these three residuals with different stabilization parameters:
τ3, τ4 and τ5 respectively. On one hand, τ4 ∼ O(1) in order to haveH1-stability over rh. On the other
hand, τ3 ∼ O(h2), in order for (∇×∇× ch, τ3∇×∇× bh)h to have sense for bh ∈ H(curl; Ω)
only (see Section 6.1). Even though it is not so obvious, we have to pick τ5 ∼ O(h2) in order to
have full stability of bh in H(curl; Ω). We refer to [5] for a detailed justification of this fact via the
numerical analysis for the Maxwell operator.6 Note that the stabilization parameters in Algorithm 1,
τi (i = 1, ..., 5), depend on algorithmic constants cj (j = 1, ..., 7) as well as on a length scale
L0, and the asymptotic behavior just described assumes that these are fixed. This is common to all
stabilized finite element methods, and thus it is not our purpose to discuss how to choose the constants.
Results may be sensitive to their value for a fixed mesh, but the asymtotic behavior of the numerical
formulation is independent of it, provided they areO(1). We indicate in the numerical examples how
the constants have been taken.

At this point, let us comment the main difference among the proposed formulation (Algorithm 1)
and the one in [20]. In this reference, the residual was not split, i.e. the gradient of the magnetic
pseudo-pressure was included in the residual for b and τ3 = τ4. Even though this might seem the
most natural option, the convergence analysis leads to the need to take the stabilization parameters
as τ3 = τ4 ∼ O(h2) and τ5 ∼ O(1). So, the stabilized formulation in [20] mimics the regularized
functional setting and cannot capture singular solutions.

As commented above, in this work we have considered stabilization terms of the standard variational
multiscale (VMS) type. Straightforwardly, we could consider Galerkin least-square (GLS) terms (that
only differ in some signs with respect to VMS), orthogonal sub-scale methods introducing the proper

L(x) = f , where L is the differential operator, and with weak form a(x, y) = (f, y), after the corresponding integration-
by-parts and the definition of suitable functional spaces, the Galerkin formulation consists of replacing infinite-dimensional
spaces by finite-dimensional ones, keeping the form of the problem, i.e. a(xh, yh) = (f, yh). The stabilized formulation
we consider would replace this discrete problem by

a(xh, yh)−
∑
K∈Th

∫
K

L(xh)τL∗(yh) = (f, yh)−
∑
K∈Th

∫
K

fτL∗(yh),

where τ(x) is the stabilization parameter, whose expression can be motivated using Fourier analysis [17] or inferred from
the numerical analysis [19, 42].

6τ5 ∼ O(1) would provide bh ∈ H1(Ω)d (see [5]) and so, it would not converge to singular solutions.
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Algorithm 1: Final algorithm
Given unh and bnh at the previous time step value, find un+1

h ∈ V h, bn+1
h ∈ Ch, pn+1

h ∈ Qh and
rn+1
h ∈ Sh such that

(u̇n+1
h ,vh) +

〈
(unh · ∇)un+θh ,vh

〉
+ ν(∇un+θh ,∇vh)− (pn+θh ,∇ · vh)

−
〈
(∇× bn+θh )× %bnh,vh

〉
+
〈
unh · ∇vh + ν∆vh, τ

n
1 Ru(unh,b

n
h;un+θh ,bn+θh , pn+θh )

〉
h

+
〈
∇ · vh, τn2 Rp(un+θh )

〉
h

−
〈
∇× (vh × %bnh), τn3 Rb,1(bnh;un+θh ,bn+θh )

〉
h

=
〈
fn+1
u ,vh

〉
,

(qh,∇ · un+θh ) +
〈
∇qh, τn1 Ru(unh,b

n
h;un+θh ,bn+θh , pn+θh )

〉
h

= 0,

(%ḃn,k+1
h , ch) + (λ∇× bn+θh ,∇× ch)− (∇× (un+θh × %bnh), ch)

+(∇rn+θ, ch)−
〈
(∇× ch)× %bn, τn1 Ru(unh,b

n
h;un+θh ,bn+θh , pn+θh )

〉
h

−
〈
λ∇× (∇× ch), τn3 R

n+θ
b,1 (bnh;un+θh ,bn+θh )

〉
h

+
〈
∇ · ch, τn5 Rr(bn+θ)

〉
h

=
〈
fn+θb , ch

〉
,

−(∇sh,bn+θh ) +
〈
∇sh, τn4 Rb,2(rn+θh )

〉
h

= 0,

where the residuals are:

Ru(a,d;uh,bh, ph) := u̇h + a · ∇uh − ν∆uh +∇ph − (∇× bh)× %d− fu,
Rp(uh) := ∇ · uh,
Rb,1(d;uh,bh) := %ḃh + λ∇× (∇× bh)−∇× (uh × %d)− fb,
Rb,2(rh) := ∇rh,
Rr(bh) := ∇ · bh.

The stabilization parameters have the following expressions within each element K:

τm1 := (αm)−1
(

1 + φm

√
αmγ

)−1
, τ2 := c5

h2

τm
1
, τ3 := γ−1

(
1 + φm

√
αmγ

)−1
,

τ4 := c6
L2

0

λ , τ5 := c7
h2λ
L2

0
,

with

αm := c1
‖umh ‖L∞(K)

h
+ c2

ν

h2
, φm := c3

%‖bmh ‖L∞(K)

h
, γ := c4

λ

h2
.

c1, . . . , c5 are algorithmic constants that must satisfy c1 > 2
C2

inv
and c3 > 2

C2
inv

and L0 is a lengthscale
of the problem.

projections [17] or more involved dynamic sub-grid closures [21]. In a subsequent work, we aim at
exploiting these last approaches in the frame of MHD turbulence.

6. Numerical analysis

In this section we perform the numerical analysis of a linearized and steady-state version of the
formulation in Algorithm 1, in order to prove unconditional stability and convergence to singular and
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regular solutions. Here, we just state the results. The interested reader can find the complete proofs
in Appendix A and Appendix B.

6.1. Stability analysis of the linearized problem

The steady-state version of (2) using the linearization of Section 4 reads as follows:

a · ∇u− ν∆u +∇p− (∇× b)× d = fu, (10a)

∇ · u = gu, (10b)

λ∇× (∇× b) +∇r −∇× (u× d) = fb, (10c)

∇ · b = gb, (10d)

where (a,d) is the point around which the system has been linearized. In order to recover the nonlin-
ear case (a,d) must be replaced by (u, %b). Regularity conditions for (a,d) are discussed later. Let
us remark the fact that we have introduced gb and gu. We are only interested in the case when both
functions are zero, but this generalization will allow us to re-use the following stability results in the
convergence analysis.

Let us introduce the following definitions that will allow us to pose the problem and analyze it in a
compact form:

A((u,b, p, r), (v, c, q, s)) = 〈a · ∇u,v〉+ ν(∇u,∇v)− (p,∇ · v)− 〈(∇× b)× d,v〉
+ (∇ · u, q) + λ(∇× b,∇× c)− 〈∇× (u× d), c〉+ (∇r, c)− (b,∇s),

S((uh,bh, ph, rh), (vh, ch, qh, sh)) = (τ1(Xu(uh, ph,bh)− ν∆uh), Xu(vh, qh, ch) + ν∆vh)h

+ (τ2∇ · uh,∇ · vh)

+ (τ3(∇× (uh × d)− λ∇× (∇× bh)),∇× (vh × d) + λ∇× (∇× ch))h

+ (τ4∇rh,∇sh) + (τ5∇ · bh,∇ · ch),

where Xu(vh, qh, ch) := a · ∇vh +∇qh − (∇× ch)× d,

Astab((uh,bh, ph, rh), (vh, ch, qh, sh)) = A((uh,bh, ph, rh), (vh, ch, qh, sh))

+ S((uh,bh, ph, rh), (vh, ch, qh, sh)),

F(v, c, q, s) = 〈fu,v〉+ (gu, q) + 〈fb, c〉+ 〈gb, s〉,

Fstab(vh, ch, qh, sh) = F(vh, ch, qh, sh) + (τ1fu, Xu(vh, qh, ch) + ν∆vh)h + (τ2gu,∇ · vh)

− (τ3fb,∇× (vh × d) + λ∇× (∇× ch))h + (τ5gb,∇ · ch).

The weak form of the previous problem can be stated in a compact manner as follows: find (u,b, p, r) ∈
V ×C ×Q× S such that

A((u,b, p, r), (v, c, q, s)) = F(v, c, q, s), ∀(v, c, q, s) ∈ V ×C ×Q× S.

Consider the FE approximation of the problem using the stabilized method we propose. To simplify
the analysis, we will restrict ourselves to the problem with constant stabilization parameters. These

12



are computed as indicated in Algorihtm 1 taking h as the diameter of the FE partition (assumed to be
quasi-uniform) and replacing ‖uh‖L∞(K) by ‖a‖L∞(Ω) and %‖bh‖L∞(K) by ‖d‖L∞(Ω).

So, the FE problem reads as: find (uh,bh, ph, rh) ∈ V h ×Ch ×Qh × Sh such that

Astab((uh,bh, ph, rh), (vh, ch, qh, sh)) = Fstab(vh, ch, qh, sh), (11)

for any (vh, ch, qh, sh) ∈ V h ×Ch ×Qh × Sh.

We consider the following norms that will be used hereafter:

‖(v, c, q, s)‖Gal = ν
1
2 ‖v‖1 + λ

1
2 ‖c‖curl +

1

ν
1
2

‖q‖+
L0

λ
1
2

‖s‖1, (12a)

|(v, c, q, s)|stab = ‖τ
1
2

1 Xu(v, q, c)‖h + ‖τ
1
2

2 ∇ · v‖+ ‖τ
1
2

3 ∇× (v × d)‖

+ ‖τ
1
2

4 ∇s‖+ ‖τ
1
2

5 ∇ · c‖, (12b)

‖(v, c, q, s)‖stab,w = ν
1
2 ‖v‖1 + λ

1
2 ‖∇ × c‖+ |(v, c, q, s)|stab, (12c)

‖(v, c, q, s)‖stab,s =
λ

1
2

L0
‖c‖+

1

ν
1
2

‖q‖+ ‖(v, c, q, s)‖stab,w, , (12d)

where L0 is a lengthscale of the problem (see [3] for a discussion about its meaning and possible
ways to choose it).

Norm (12a) is the continuous norm in which the problem is well-posed, and the Galerkin norm when
using stable mixed FEs. The extra stability due to the form S is given by the semi-norm (12b). Norm
(12c) is the one that adds the stability that comes from the coercive terms in A to the one that comes
from S. Finally, norm (12d) is the sum of the weak stability norm ‖·‖stab,w terms and the additional
terms that are present in ‖·‖Gal. Obviously, ‖(v, c, q, s)‖Gal ≤ ‖(v, c, q, s)‖stab,s.

In the next theorem we prove coercivity of the stabilized formAstab in the weak stabilized norm. The
proof can be found in Appendix A.1.

Theorem 1. The stabilized trilinear form Astab satisfies the following stability bound:

1

2
‖(uh,bh, ph, rh)‖2stab,w ≤ Astab((uh,bh, ph, rh), (uh,bh, ph, rh)),

for any (uh,bh, ph, rh) ∈ V h ×Ch ×Qh × Sh.

In the following theorem, we prove stability in the stronger stability norm that includes ‖b‖ and ‖p‖.
We attain this relying on the continuous inf-sup condition. We absorb the lenght scale coefficients in
the constants, since it clarifies the exposition. The proof of this result is included in Appendix A.2.

Theorem 2. The solution (uh,bh, ph, rh) of the FE problem (11) for a ∈ L∞(Ω)d and d ∈W 1,d+ε(Ω)d∩
L∞(Ω)d for an arbitrarily small ε > 0, satisfies

‖(uh,bh, ph, rh)‖stab,s . β(‖(uh,bh, ph, rh)‖stab,w + Φ(fu, fb, gb)), (13)
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with the constant

β =1 +
τ

1
2

1

ν
1
2

‖a‖L∞(Ω) +
τ

1
2

3

ν
1
2

(‖∇d‖Ld+ε(Ω) + ‖d‖L∞(Ω)) +
‖d‖Ld+ε(Ω)√

νλ

+

(
1 +
‖a‖L∞(Ω)h

ν

) 1
2

1 +
‖d‖L∞(Ω)h

√
λν

√
1 +

‖a‖L∞(Ω)h

ν

 1
2

,

and the positive quantity

Φ(fu, fb, gb) = sup
(vh,sh)∈V h×Sh

|Fstab(vh,0, 0, sh)|
|||(vh,0, 0, sh)|||stab,s

.

Remark 1. In practice, both a and d will be FE functions.7 In this situation, we can clearly reduce
the assumptions over these two functions in Theorem 2.

The following corollary consists of the restriction of the previous analysis to FE functions. Its proof
is included in Appendix A.3.

Corollary 1. Let us assume that ah ∈ V h and dh ∈ Ch∩Ld+ε(Ω)d for some ε > 0. The FE solution
of (11) satisfies inequality (13) for

β =1 +
h

1
4 ‖a‖

1
2
1

ν
1
2

+
‖d‖Ld+ε(Ω)√

νλ
+

(
1 +
‖a‖1h

1
2

ν

) 1
2 (

1 +
‖d‖Ld+ε(Ω)√

νλ

) 1
2

. (14)

and

Φ(fu, fb, gb) =
1

ν
1
2

‖fu‖−1,K +
1

λ
1
2

‖fb‖−1,K . (15)

Remark 2. In the previous theorems, we observe that stability bounds for some terms of the Galerkin
norm, as well as the extra stability that comes from the stabilization terms do not deteriorate in
asymptotic regimes. Further, we have used some technical arguments in order to recover stability for
the terms of Galerkin’s norm that are missing in Theorem 1, namely ‖p‖ and ‖b‖. However, control
over these two terms can deteriorate for fixed grids in some singular limits of the continuous problem
that imply a coercivity loss. Anyway, the same behavior has been observed for the Navier-Stokes
problem alone when solved by using stabilized FE techniques.

6.2. Convergence analysis of the linearized problem

Once we have proved stability of the problem, we look at the convergence properties of the numerical
algorithm. We are interested in both convergence towards the exact solution (even when it is rough)
and optimal order of convergence, i.e. a priori error estimates when the solution is smoother.

7In any case, we can always project the continuous fields into the FE spaces using proper projections.
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Using the fact that the stabilized FE problem (11) is consistent, i.e. the exact solution satisfies the FE
equality, we have that:

Astab((χ(uh,u), χ(bh,b), χ(ph, p), χ(rh, r)), (vh, ch, qh, sh))

= Astab((εh(u), εh(b), εh(p), εh(r)), (vh, ch, qh, sh)), (16)

where χ(v, w) := v − πh(w); as stated above, εh(v) := v − πh(v) and πh(v) is a continuous FE
interpolant in H1(Ω) with optimal interpolation properties that preserves null traces, e.g. the Scott-
Zhang interpolant. Let us also define the following norms:

‖(v, c, q, s)‖
s̃tab,w

= ν
1
2 ‖v‖1 + λ

1
2 ‖∇ × c‖+ ‖τ

1
2

1 Xu(v, q, c)‖h + ‖τ
1
2

2 ∇ · v‖

+ ‖τ
1
2

3 ∇× (v × d)‖+ ‖τ
1
2

4 ∇s‖,

‖(v, c, q, s)‖
s̃tab,s

=
λ

1
2

L0
‖c‖+

1

ν
1
2

‖q‖+ ‖(v, c, q, s)‖
s̃tab,w

. (17)

So, the norms with the tilde have all the terms of those without the tilde except the stabilization term
related to τ5. Let us also define the error functions:

EA(h) := τ
− 1

2
1 ‖εh(u)‖+ ν

1
2 ‖∇εh(u)‖+ λ

1
2 ‖εh(b)‖curl

+ min

{
ν−

1
2L

1
2
0 ‖d‖Ld+ε(Ω)‖∇ × εh(b)‖, τ−

1
2

3 ‖εh(b)‖
}

+ τ
− 1

2
2 ‖εh(p)‖,

ES(h) := τ
1
2

1 ‖Xu(εh(u), εh(p), εh(b))− ν∆εh(u)‖+ τ
1
2

2 ‖∇ · εh(u)‖

+ τ
1
2

3 ‖∇ × (εh(u)× d) + λ∇× (∇× εh(b)))‖+ λ
1
2L−1

0 ‖εh(b)‖

+ λ
1
2L−1

0

∑
K∈Th

h‖εh(b)‖2L2(∂K)

 1
2

,

for some ε > 0. In order for the error function ES(h) to be well-defined, we require −ν∆u +
Xu(u,b, p) ∈ L2(Ω)d and λ∇× (∇×b)−∇× (u×d) ∈ L2(Ω)d, which are true for fu ∈ L2(Ω)d

and fb ∈ L2(Ω)d, respectively; this is easily inferred from the continuous problem. Furthermore, the
boundary terms are well defined since bh ∈ L2(∂K) for every K ∈ Th (see [5, Corollary 3.8]).

Theorem 3. Under the conditions of Theorem 2, the following a priori error estimate holds

|||(u− uh,b− bh, p− ph, r − rh)|||
s̃tab,w

. EA(h) + ES(h),

for the error functions defined above.

On the other hand, we can recover convergence on the strong stabilized norm as follows:

Theorem 4. Under the conditions of Theorem 2, the following a priori error estimate holds

|||(u− uh,b− bh, p− ph, r − rh)|||
s̃tab,s

. β(EA(h) + ES(h)),

for the error functions defined above.

15



Remark 3. In the asymptotic limit when h↘ 0, we can easily see that

EA(h) + ES(h) ∼h−1‖εh(u)‖+ ‖εh(u)‖1 + h‖Xu(εh(u), εh(b), εh(p))− ν∆εh(u)‖

+ ‖εh(p)‖+ ‖εh(b)‖curl +

∑
K∈Th

h‖εh(b)‖2L2(∂K)

 1
2

+ h‖∇ × (εh(u)× d) + λ∇× (∇× εh(b)))‖. (18)

So, the convergence results are optimal, in the sense that optimal rates are obtained for smooth
enough functions. On the other hand, since no regularity of b in H1(Ω)d is needed, convergence
can be attained even for singular components of the magnetic field. However, in order to get this
convergence, the following approximability condition must hold:

lim
h→0

‖εh(b)‖curl +

∑
K∈Th

h‖εh(b)‖2L2(∂K)

 1
2

 = 0.

This condition is true for Lagrangian FEs for meshes with a particular macro-element structure
(see [5, Assumption 1 and Corollary 5]). One type of element that satisfies this condition is the
Powell-Sabin macro-element (see [46] and [13, Remark 4.1]). Further, in two dimensions, numerical
experiments show that both the Powell-Sabin and crossbox elements provide excellent results. In the
numerical experiments section, we have extended this work to three-dimensions; we have considered
both the 3D Powell-Sabin element and a 3D extension of the crossbox; both choices exhibit excellent
convergence properties. Finally, let us stress the fact that this macro-element structure is only needed
for singular solutions, that appear in non-convex domains. For smooth solutions, with b ∈ H1(Ω)d,
the convergence analysis and approximability properties are easy to check and hold for any type of
mesh. We refer to [5] for a detailed discussion on this topic, in the framework of the Maxwell operator.

Remark 4. Let us note that a method that introduces similar stabilization terms has recently been
proposed in [9] for electromagnetic eigenvalue problems. The method in [9] depends on a coefficient
α and corresponds to the method proposed in [5] for α = 1 with the only difference that no restriction
over the FE spaces or meshes is assumed. Unfortunately, the convergence of the proposed algorithm
is deteriorating in the limit α → 1 and the corresponding numerical analysis in [9] does not apply
for the limit case considered in this work. See [4] for further details.

6.3. Some comments on the nonlinear analysis

The numerical analysis of FE methods for the incompressible nonlinear MHD equations is a hard
issue. Using inf-sup stable elements, this analysis has been carried out in [43, 29]. It heavily uses the
nice properties of Nédélec type FEs and cannot be applied to nodal FEs. For weighted regularization
techniques, the full nonlinear analysis has been published in [31]. As stated by the authors, the
results in three dimensions are quite restrictive. Finally, a closer formulation to the one presented
herein, based on discontinuous Galerkin nodal FEs, is presented in [33]. However, both the numerical
analysis and experiments (dealing with singular solutions) are for the linearized problem only. The
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authors say that the nonlinear extension is an open problem, and up to our knowledge it keeps open
so far.

Therefore, the extension of the linearized analysis above to the nonlinear problem is not straightfor-
ward. For the nonlinear problem, ah and dh are in fact the solution of the previous iterate, when using
a Picard-type linearization. Therefore, we cannot assume regularity over dh, namely dh ∈ Ld+ε(Ω)d

for some ε > 0.

We may proceed by induction. In the nonlinear version of system (10) we replace a ← u
(i−1)
h ,

d ← %b
(i−1)
h , and denote the continuous solution of this problem as (u(i−1),b(i−1), p(i−1), r(i−1)).

Next, we obtain the new iterate (u
(i)
h ,b

(i)
h , p

(i)
h , r

(i)
h ) by solving the discretized problem (11). We

assume in what follows that the physical properties are such that this iterative scheme converges. Let
us also assume that:

b
(i−1)
h is such that ‖b(i−1) − b

(i−1)
h ‖ . h

d−2
2

+δ(i−1)
for some δ(i−1) > 0 (A2)

Let us introduce the inverse inequality ‖vh‖Lq(Ω) . h
d
q
− d
p ‖vh‖Lp(Ω), where 1 ≤ p ≤ ∞ and 1 ≤

q ≤ ∞ (see [10, Theorem 4.5.11]). We infer that ‖vh‖Ld+ε(Ω) . h−θε(d)‖vh‖, with θε(2) = ε
2+ε and

θε(3) = 3(1+ε)
2(3+ε) for any ε > 0. Using the stability of the Scott-Zhang projector πh(·), we finally get:

‖b(i−1)
h ‖Ld+ε(Ω) . ‖πh(b(i−1))− b

(i−1)
h ‖Ld+ε(Ω) + ‖πh(b(i−1))‖Ld+ε(Ω)

. h
d−2

2
+δ(i−1)−θε(d)‖b(i−1)‖+ h−θε(d)‖b(i−1) − πh(b(i−1))‖+ ‖b(i−1)‖Ld+ε(Ω).

Next, we use the continuous imbedding of C ∩ H(div; Ω) into H
1
2

+δ1(Ω)d for some δ1 > 0 and
the interpolation properties of the Scott-Zhang projector (see [10, Theorem 4.8.12]) to infer that
‖b(i−1) − πh(b(i−1))‖ . h

1
2

+δ1‖b(i−1)‖ On the other hand, since C ∩ H(div; Ω) is compactly
imbedded into L3+δ2(Ω), for some δ2 > 0 (see [43, Proposition 2.3] and [1, Proposition 3.7]), we
can pick an ε = ε(δ(i−1), δ1, δ2) > 0 small enough such that ‖b(i−1)

h ‖Ld+ε(Ω) . ‖b(i−1)‖curl.

From Theorem 4, we have that ‖b(i) − b
(i)
h ‖ . β(EA(h) + ES(h)), where β is now bounded.

Assuming that:
EA(h) + ES(h) . h

d−2
2

+δ(i)
for some δ(i) > 0, (A3)

we finally obtain that ‖b(i) − b
(i)
h ‖ . h

1
2

+δ(i)
.

Assumption A2 is easily satisfied. In fact, we only need to start the process with a b
(0)
h ∈ C ∩

H(div; Ω), e.g. b
(0)
h = 0 and b(0) = 0, so that the effective initial guess is a solution of a linear

problem for which we now that A2 holds [5].

Assumption A3 is true for (u, p) ∈ H
d
2

+ε(Ω)d×H
d−2

2
+ε(Ω); the terms related to b can be treated as

in [5, Corollary 3.12]. In dimension three, it requires (u, p) ∈ H
3
2

+ε(Ω)d×H
1
2

+ε(Ω) for an arbitrary
small ε > 0. The application of the ideas above to the numerical analysis of the nonlinear transient
problem is objective of current research.
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7. Numerical experimentation

The numerical examples shown in the next subsections have been computed with some common
computational settings. First, linear C0 Lagrangian FEs have been used, both in the 2D and 3D
cases.8 The solution of the resulting linear systems of equations has been obtained via a direct solver.
The problem non-linearity has been solved through Picard iterations until converging to a tolerance of
10−4. Finally, the constants that appear in the definition of the stabilization parameters in Algorithm 1
have been chosen as:

c1 = c3 = 2, c2 = c4 = c7 = 4, and c5 = c6 = 1.

7.1. Convergence to singular solutions. Case 2D

The stabilization method presented in the previous chapter has been used to solve the MHD problem
in a nonconvex L-shaped domain. Due to the re-entrant corner present in the domain, both the Stokes
and the Maxwell operators have strong singularities at this corner, where the origin of coordinates is
taken. The non-smooth solution for the Stokes operator is described in polar coordinates (r, θ) by

ux(x, y) =rλ
(

(1 + λ) sin(θ)ψ(θ) + cos(θ)ψ
′
(θ)
)
,

uy(x, y) =rλ
(
−(1 + λ) cos(θ)ψ(θ) + sin(θ)ψ

′
(θ)
)
,

p(x, y) =− rλ−1

1− λ

(
(1 + λ)2ψ

′
(θ) + ψ

′′′
(θ)
)
,

where

ψ(θ) = sin((1 + λ)θ)
cos(λω)

1 + λ
− cos((1 + λ)θ)− sin((1− λ)θ)

cos(λω)

1− λ
+ cos((1− λ)θ).

The value of the parameter λ is the smallest positive solution of

sin(λω) + λ sin(ω) = 0, where ω =
3π

2
,

which is λ ∼ 0.54448373678246. Note that u = (ux, uy) is solenoidal and (u, p) ∈ H1+λ(Ω)2 ×
Hλ(Ω).
The singular solution for the Maxwell operator is defined also in polar coordinates as

b(x, y) = ∇
(
r

2n
3 sin

(
2n

3
θ

))
, n ∈ N+.

Note that ∇ · b = 0 and ∇ × b = 0. The magnetic induction field b ∈ H
2n
3 (Ω)2 and therefore,

b /∈ H1(Ω)2 for n = 1 only.

The computation has been done fully-coupled, solving the implicit scheme stated in Algorithm 1 and
using two different mesh structures suitable to approximate the Maxwell operator singularity, namely
the Powell-Sabin and the crossbox element. Figure 1 shows an example of the two different mesh
structures.

8In this situation, all the system matrix blocks have the sparsity pattern defined by the mesh graph.
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(a) Crossbox element (b) Powell-Sabin element

Figure 1: Mesh structures for the 2D case.

Remark 5. Let us stress the fact that, since both crossbox and Powell-Sabin macro-element meshes
allow to converge to singular solutions, we can start with any triangle or quadrilateral mesh, and
after a simple processing of the mesh, solve the problem on the modified mesh. Therefore, the previous
macro-element topology can be attained for any original mesh.

In both cases, the problem has been solved on several meshes with different mesh sizes, from the
coarsest one with h = 2−2 to the finest one with h = 2−7. Tables 2 and 3 contain the numerical
error norms for the case of crossbox element meshes. In Table 2, we show the numerical errors for
the velocity in the L2-norm and the H1-norm and the error for the pressure in the L2-norm. In Table
3, we have listed the numerical errors for the magnetic unknowns, that is, the error for the magnetic
induction in the L2-norm and the H(curl)-norm and the errors for the magnetic pseudo-pressure in
both the L2-norm and the H1-norm.

Furthermore, Figure 2 shows the convergence plots of the numerical errors presented in Tables 2 and
3. It is clearly seen that the proposed method is able to converge to the singular solutions when using
meshes of crossbox elements.

Tables 4 and 5 display the numerical errors obtained when using meshes with a Powell-Sabin macro-
element structure to approximate the singular solutions. We show in these tables the same error
quantities as before, for the fluid and the magnetic sub-problems respectively.

Figure 3 shows the convergence plots of the numerical errors presented in Tables 4 and 5. Similarly to
the previous case, the proposed method with a Powell-Sabin mesh is clearly suitable to approximate
non-smooth solutions for both the Stokes and the Maxwell operator.

7.2. Convergence to singular solutions. Extension to the 3D case

The easiest problem with singular solutions in dimension three consists of the two-dimensional solu-
tion for the x-y components and a constant in the third component. In this case, the third component
(z-axis) and its corresponding derivatives are null. Therefore, the computational domain considered
is the volume generated by the extrusion of the 2D L-shaped domain (x-y plane) in the z-axis, for a
given thickness. Periodic boundary conditions have been set in the planes x-y.
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h ||eu|| ||∇eu|| ||ep||

2−2 8.49 ·10−2 ( - ) 1.30 ·100 ( - ) 1.69 ·100 ( - )

2−3 3.45 ·10−2 ( 1.30 ) 8.95 ·10−1 ( 0.54 ) 1.13 ·100 ( 0.58 )

2−4 1.45 ·10−2 ( 1.25 ) 6.16 ·10−1 ( 0.54 ) 7.66 ·10−1 ( 0.56 )

2−5 6.28 ·10−3 ( 1.21 ) 4.24 ·10−1 ( 0.54 ) 5.22 ·10−1 ( 0.55 )

2−6 2.79 ·10−3 ( 1.17 ) 2.91 ·10−1 ( 0.54 ) 3.57 ·10−1 ( 0.55 )

2−7 1.27 ·10−3 ( 1.14 ) 2.00 ·10−1 ( 0.54 ) 2.44 ·10−1 ( 0.55 )

Table 2: Numerical errors for hydrodynamic unknowns and rate of convergence in brackets. Crossbox element in 2D.

h ||eb|| ||∇ × eb|| ||er|| ||∇er||

2−2 4.01 ·10−1 ( - ) 4.19 ·10−1 ( - ) 9.34 ·10−2 ( - ) 3.77 ·10−1 ( - )

2−3 2.67 ·10−1 ( 0.59 ) 2.12 ·10−1 ( 0.98 ) 5.21 ·10−2 ( 0.84 ) 2.83 ·10−1 ( 0.41 )

2−4 1.73 ·10−1 ( 0.63 ) 1.04 ·10−1 ( 1.03 ) 2.45 ·10−2 ( 1.09 ) 1.93 ·10−1 ( 0.55 )

2−5 1.10 ·10−1 ( 0.65 ) 4.94 ·10−2 ( 1.07 ) 1.06 ·10−2 ( 1.21 ) 1.26 ·10−1 ( 0.62 )

2−6 6.94 ·10−2 ( 0.66 ) 2.29 ·10−2 ( 1.11 ) 4.42 ·10−3 ( 1.26 ) 8.02 ·10−2 ( 0.65 )

2−7 4.38 ·10−2 ( 0.66 ) 1.05 ·10−2 ( 1.12 ) 1.80 ·10−3 ( 1.30 ) 5.07 ·10−2 ( 0.66 )

Table 3: Numerical errors for magnetic unknowns and rate of convergence in brackets. Crossbox element in 2D.
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Figure 2: Convergence plots for the singular solutions in the 2D case. Crossbox element.
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h ||eu|| ||∇eu|| ||ep||

2−2 1.15 ·10−1 ( - ) 1.35 ·100 ( - ) 2.00 ·100 ( - )

2−3 4.61 ·10−2 ( 1.32 ) 9.35 ·10−1 ( 0.53 ) 1.31 ·100 ( 0.61 )

2−4 1.89 ·10−2 ( 1.29 ) 6.45 ·10−1 ( 0.54 ) 8.79 ·10−1 ( 0.58 )

2−5 7.99 ·10−3 ( 1.24 ) 4.44 ·10−1 ( 0.54 ) 5.97 ·10−1 ( 0.56 )

2−6 3.49 ·10−3 ( 1.19 ) 3.05 ·10−1 ( 0.54 ) 4.07 ·10−1 ( 0.55 )

2−7 1.56 ·10−3 ( 1.16 ) 2.10 ·10−1 ( 0.54 ) 2.79 ·10−1 ( 0.54 )

Table 4: Numerical errors for hydrodynamic unknowns and rate of convergence in brackets. Powell-Sabin element in 2D.

h ||eb|| ||∇ × eb|| ||er|| ||∇er||

2−2 4.51 ·10−1 ( - ) 5.11 ·10−1 ( - ) 1.04 ·10−1 ( - ) 3.95 ·10−1 ( - )

2−3 3.04 ·10−1 ( 0.57 ) 2.61 ·10−1 ( 0.97 ) 6.24 ·10−2 ( 0.74 ) 3.09 ·10−1 ( 0.35 )

2−4 1.97 ·10−1 ( 0.63 ) 1.29 ·10−1 ( 1.02 ) 3.02 ·10−2 ( 1.05 ) 2.15 ·10−1 ( 0.52 )

2−5 1.26 ·10−1 ( 0.64 ) 6.19 ·10−2 ( 1.06 ) 1.33 ·10−2 ( 1.18 ) 1.41 ·10−1 ( 0.61 )

2−6 7.98 ·10−2 ( 0.66 ) 2.89 ·10−2 ( 1.10 ) 5.54 ·10−3 ( 1.26 ) 9.04 ·10−2 ( 0.64 )

2−7 5.03 ·10−2 ( 0.67 ) 1.33 ·10−2 ( 1.12 ) 2.26 ·10−3 ( 1.29 ) 5.70 ·10−2 ( 0.67 )

Table 5: Numerical errors for magnetic unknowns and rate of convergence in brackets. Powell-Sabin element in 2D.
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Figure 3: Convergence plots for the singular solutions in the 2D case. Powell-Sabin element.

21



(a) Tetrahedron remeshing (b) Hexahedron remeshing

Figure 4: Remeshing structure suitable for interpolation of Maxwell singular solutions.

Analogously to the bi-dimensional case, the approximation of non-smooth solutions of the Maxwell
operator requires solving the problem on a proper modification of the original mesh with a macro-
element structure. In the three-dimensional case, the 3D extensions of the bi-dimensional crossbox
and the Powell-Sabin macro-elements displayed in Figure 4 are suitable to converge to the singular
solutions. On one hand, the Powell-Sabin macro-element in 3D consists of the division of every
tetrahedron of the original mesh into 24 new tetrahedra [46]. Each tetrahedron face is decomposed
into 6 parts as the Powell-Sabin element in 2D. Each one of these parts forms a tetrahedron together
with the original tetrahedron centroid (see Figure 4(a)). In this way, 6 new tetrahedra are obtained for
each one of the original tetrahedron faces. On the other hand, the extension to three dimensions of the
crossbox element requires an original (possibly) non-structured mesh of hexahedra. Each hexahedron
face is divided into 4 triangles as the crossbox element in 2D and then, 4 tetrahedra are obtained
together with the hexahedron centroid (see Figure 4(b)). Therefore, each original hexahedron is
divided into 24 new tetrahedra.

Remark 6. An equivalent remark to the bi-dimensional case can be made. In three dimensions, we
can use any tetrahedral or hexahedral mesh and easily process this mesh in order to get one with the
3D crossbox or 3D Powell-Sabin macro-element structure.

The results obtained for different mesh-sizes using crossbox elements in 3D are displayed in Tables
6 and 7. The error norms calculated are the same as in the 2D cases. It is clearly seen that, similarly
to the 2D case, the numerical solution is able to converge to singular (non-smooth) solutions. Figure
5 shows graphically the convergence plots displaying the obtained slopes for every computed error
norm.

The results obtained when using the Powell-Sabin elements in 3D instead of the crossbox elements
are shown in Tables 8 and 9. The error norms computed in this case are the same as in the previous
case with crossbox elements, and the behavior of the numerical solution is the same. The results
show clearly that the proposed method is able to converge to singular solutions. Figure 6 displays the
convergence plots showing graphically the obtained results.

22



h ||eu|| ||∇eu|| ||ep||

2−2 2.30 ·10−2 ( - ) 3.08 ·10−1 ( - ) 4.49 ·10−1 ( - )

2−3 9.04 ·10−3 ( 1.35 ) 2.06 ·10−1 ( 0.58 ) 3.19 ·10−1 ( 0.49 )

2−4 3.34 ·10−3 ( 1.44 ) 1.37 ·10−1 ( 0.59 ) 2.21 ·10−1 ( 0.53 )

2−5 1.19 ·10−3 ( 1.49 ) 8.99 ·10−2 ( 0.61 ) 1.52 ·10−1 ( 0.54 )

2−6 4.19 ·10−4 ( 1.51 ) 5.94 ·10−2 ( 0.60 ) 1.04 ·10−1 ( 0.55 )

Table 6: Numerical errors for hydrodynamic unknowns and rate of convergence in brackets. Crossbox element in 3D.

h ||eb|| ||∇ × eb|| ||er|| ||∇er||

2−2 1.04 ·10−1 ( - ) 1.05 ·10−1 ( - ) 2.31 ·10−1 ( - ) 8.31 ·10−1 ( - )

2−3 7.05 ·10−2 ( 0.56 ) 5.06 ·10−2 ( 1.05 ) 1.68 ·10−1 ( 0.46 ) 7.38 ·10−1 ( 0.17 )

2−4 4.61 ·10−2 ( 0.61 ) 2.21 ·10−2 ( 1.20 ) 8.87 ·10−2 ( 0.92 ) 5.37 ·10−1 ( 0.46 )

2−5 2.95 ·10−2 ( 0.64 ) 9.24 ·10−3 ( 1.26 ) 4.07 ·10−2 ( 1.12 ) 3.61 ·10−1 ( 0.57 )

2−6 1.87 ·10−2 ( 0.66 ) 3.79 ·10−3 ( 1.29 ) 1.75 ·10−2 ( 1.22 ) 2.35 ·10−1 ( 0.62 )

Table 7: Numerical errors for magnetic unknowns and rate of convergence in brackets. Crossbox element in 3D.
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Figure 5: Convergence plots for the singular solutions in the 3D case. Crossbox element.
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h ||eu|| ||∇eu|| ||ep||

2−2 4.18 ·10−2 ( - ) 4.41 ·10−1 ( - ) 5.71 ·10−1 ( - )

2−3 1.40 ·10−2 ( 1.58 ) 2.64 ·10−1 ( 0.74 ) 3.41 ·10−1 ( 0.74 )

2−4 4.51 ·10−3 ( 1.63 ) 1.59 ·10−1 ( 0.73 ) 2.24 ·10−1 ( 0.61 )

2−5 1.53 ·10−3 ( 1.56 ) 1.00 ·10−1 ( 0.67 ) 1.52 ·10−1 ( 0.56 )

2−6 5.53 ·10−4 ( 1.47 ) 6.63 ·10−2 ( 0.59 ) 1.03 ·10−1 ( 0.56 )

Table 8: Numerical errors for hydrodynamic unknowns and rate of convergence in brackets. Powell-Sabin element in 3D.

h ||eb|| ||∇ × eb|| ||er|| ||∇er||

2−2 1.22 ·10−1 ( - ) 1.20 ·10−1 ( - ) 2.58 ·10−1 ( - ) 9.08 ·10−1 ( - )

2−3 8.60 ·10−2 ( 0.50 ) 6.17 ·10−2 ( 0.96 ) 2.02 ·10−1 ( 0.35 ) 8.65 ·10−1 ( 0.07 )

2−4 5.76 ·10−2 ( 0.58 ) 2.90 ·10−2 ( 1.09 ) 1.12 ·10−1 ( 0.85 ) 6.64 ·10−1 ( 0.38 )

2−5 3.75 ·10−2 ( 0.62 ) 1.28 ·10−2 ( 1.18 ) 5.28 ·10−2 ( 1.08 ) 4.60 ·10−1 ( 0.53 )

2−6 2.40 ·10−2 ( 0.64 ) 5.26 ·10−3 ( 1.28 ) 2.29 ·10−2 ( 1.21 ) 3.02 ·10−1 ( 0.61 )

Table 9: Numerical errors for magnetic unknowns and rate of convergence in brackets. Powell-Sabin element in 3D.
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Figure 6: Convergence plots for the singular solutions in the 3D case. Powell-Sabin element.
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7.3. Classical MHD problems with analytical solution. Shercliff’s case

The stabilized finite element method proposed in this paper has also been tested to simulate some clas-
sical problems of MHD, namely Shercliff’s [45] and Hunt’s [36] cases. Shercliff’s problem consists
of a fully developed flow in a squared-section channel where both the Hartmann walls, perpendicular
to the externally applied magnetic field, and the side walls, parallel to the external magnetic field,
are considered electrically insulating. Considering that the external magnetic field, bext is applied
in the y-direction and the longitudinal axis of the channel is the z-direction, the fluid flows driven
by an imposed pressure gradient, with a velocity field where only the z-component is not null. This
problem has an analytical solution in the form of Fourier series, whose expression can be found in
[45, 42].

The computational domain has been set as a channel slice of width 1/100 times the section sides. The
boundary conditions on the inflow and outflow sections have been set as periodic conditions in order
to enforce the condition of fully developed flow. The pressure gradient that drives the flow has been
set as an external hydrodynamic body force, with value

dp

dz
=

KL3

ρν2Re

K =
Ha

1− 0.825Ha−1/2 −Ha−1
, Re =

UL

ν
,

where Ha and Re are the Hartmann 9 and Reynolds 10 numbers, respectively.

Finally, the boundary conditions on the walls, both the Hartmann and side walls, have been set as
non-slip conditions for the velocity, u = 0, and as the essential boundary conditions for the magnetic
unknowns because the walls are electrically insulating,

b× n = bext × n and r = 0. (19)

The physical properties of the problem, density, viscosity, electrical conductivity and magnetic per-
meability have been set to one when solving this problem. Therefore, the Hartmann number Ha
corresponds to the norm of the externally applied magnetic field. This problem has been solved on
several meshes with different mesh sizes h in order to study the convergence properties of the method.
Two different cases have been simulated depending on the Hartmann number, namely Ha = 10 and
Ha = 100, in order to show that the method has optimal convergence properties independently of the
coupling between the hydrodynamic and the magnetic problems.

9The Hartmann number is the ratio between electromagnetic and viscous forces. Its expression is:

Ha = BL

√
σ

ρν
,

where L is a characteristic length of the problem.
10The Reynolds number is the ratio between inertial and viscous forces in a fluid. It can be computed from:

Re =
UL

ν
,

where L is a characteristic length and U is a characteristic velocity of the problem.
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h ||eu|| ||∇eu|| ||eb|| ||∇ × eb||

2−2 3.32 ·10−3 ( - ) 5.62 ·10−2 ( - ) 1.90 ·10−3 ( - ) 4.20 ·10−2 ( - )

2−3 1.25 ·10−3 ( 1.41 ) 3.19 ·10−2 ( 0.82 ) 5.01 ·10−4 ( 1.92 ) 2.13 ·10−2 ( 0.98 )

2−4 3.73 ·10−4 ( 1.74 ) 1.56 ·10−2 ( 1.03 ) 1.59 ·10−4 ( 1.66 ) 1.08 ·10−2 ( 0.98 )

2−5 9.72 ·10−5 ( 1.94 ) 6.88 ·10−3 ( 1.18 ) 6.13 ·10−5 ( 1.38 ) 5.43 ·10−3 ( 0.99 )

Table 10: Numerical errors and rate of convergence in brackets. Shercliff’s case with Ha=10.

h∗ ||eu|| ||∇eu|| ||eb|| ||∇ × eb||

2−2 6.65 ·10−3 ( - ) 1.43 ·10−1 ( - ) 5.70 ·10−3 ( - ) 1.29 ·10−1 ( - )

2−3 2.40 ·10−3 ( 1.47 ) 1.37 ·10−1 ( 0.06 ) 2.06 ·10−3 ( 1.47 ) 1.26 ·10−1 ( 0.03 )

2−4 3.99 ·10−4 ( 2.59 ) 3.74 ·10−2 ( 1.87 ) 3.88 ·10−4 ( 2.41 ) 3.59 ·10−2 ( 1.81 )

2−5 1.66 ·10−5 ( 4.59 ) 2.00 ·10−3 ( 4.22 ) 7.13 ·10−5 ( 2.44 ) 2.07 ·10−3 ( 4.12 )

Table 11: Numerical errors and rate of convergence in brackets. Shercliff’s case with Ha=100.

On one hand, Shercliff’s case has been solved for Ha = 10 and Reynolds number Re = 10 on a
series of uniformly structured meshes composed of linear tetrahedral elements. The obtained results
are shown in Table 10. The error norms computed correspond to the L2-norm of the velocity error
||eu||, the velocity gradient error ||∇eu||, the magnetic induction error ||eb|| and the curl of the
magnetic induction error ||∇ × eb||. The number in brackets is the rate of convergence. The same
results have been plotted in Figure 7(a), where it can be clearly seen that the expected optimal order
of convergence is achieved.

The same problem has been solved for Ha = 100 and Re = 10. In this case, the meshes used
for the computations are also structured meshes of linear tetrahedra but concentrating the elements
near the walls to be able to capture the sharper boundary layers that appear in this case. Therefore,
the mesh size h∗ used in the convergence study of this problem corresponds to the mesh size of a
uniformly structured mesh with the same number of degrees of freedom. Similarly to the previous
case, the computed error norms are displayed in Table 11. Figure 7(b) shows graphically the behavior
of the error norms with h∗. It is also very clear that the proposed method has very good convergence
properties in this case.

7.4. Classical MHD problems with analytical solution. Hunt’s case

Hunt’s problem simulates a fully developed flow in a channel with square section under an external
magnetic field bext. In this case, the Hartmann walls are considered to be perfectly conducting
whereas the side walls are electrically insulating. Similarly to the previous Shercliff’s case, this
problem has an analytical solution in terms of Fourier series, whose expression can be found in
[36, 42].

The computational domain where this problem has been solved is the same that in Shercliff’s case, see
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Figure 7: Convergence plots of velocity and induction error norms for Shercliff’s case.

Section 7.3. Similarly, the boundary conditions on the inflow and outflow have been set to periodic
conditions. In both the Hartmann walls and side walls, the hydrodynamic boundary conditions have
been set as the non-slip condition, u = 0. The magnetic boundary conditions for the side walls are the
essential boundary conditions written in (19) because the walls are electrically insulating. However,
the Hartmann walls in this case are suposed to be perfectly conducting, which changes the boundary
conditions to be imposed. Therefore, the boundary conditions imposed in a perfectly conducting wall
are the natural conditions,

b · n = bext · n and n× (∇× b) = 0.

The computation of the pressure gradient that drives the flow differs slightly from Shercliff’s case,

dp

dz
=

KL3

ρν2Re
, where K =

Ha

1− 0.95598Ha−1/2 −Ha−1
.

The Hartmann number Ha corresponds to the norm of the external magnetic field because all the
physical properties of the problem have been set to one. The proposed stabilized finite element
method has been used to solve Hunt’s problem for two different Hartmann number, Ha = 10 and
Ha = 100. In both cases, the Reynolds number has been set to Re = 10. Again, each case has been
solved with several meshes in order to be able to compare the numerical behavior of the method with
regard to its theoretical convergence properties.

On one hand, the case with Ha = 10 and Re = 10 has been computed on a series of uniformly
structured meshes of linear tetrahedral elements. Table 12 shows the same error norms as in the
previous test, obtained for every mesh size h. The rate of convergence between two consecutive
meshes is shown in brackets. These results have been displayed in Figure 8(a). It shows that the
results obtained are in good agreement with the theory.

On the other hand, Hunt’s problem with Ha = 100 and Re = 10 has been solved on a collection of
structured meshes of linear tetrahedral elements. However, the meshes in this case are not uniformly
structured, but with element concentration near the walls, because the boundary layers are much
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h ||eu|| ||∇eu|| ||eb|| ||∇ × eb||

2−2 8.98 ·10−4 ( - ) 1.63 ·10−2 ( - ) 5.25 ·10−4 ( - ) 9.97 ·10−3 ( - )

2−3 2.55 ·10−4 ( 1.82 ) 8.53 ·10−3 ( 0.93 ) 1.38 ·10−4 ( 1.93 ) 4.84 ·10−3 ( 1.04 )

2−4 6.92 ·10−5 ( 1.88 ) 4.08 ·10−3 ( 1.06 ) 4.21 ·10−5 ( 1.71 ) 2.42 ·10−3 ( 1.00 )

2−5 1.87 ·10−5 ( 1.89 ) 1.81 ·10−3 ( 1.17 ) 1.40 ·10−5 ( 1.59 ) 1.21 ·10−3 ( 1.00 )

Table 12: Numerical errors and rate of convergence in brackets. Hunt’s case with Ha=10.

h∗ ||eu|| ||∇eu|| ||eb|| ||∇ × eb||

2−2 1.34 ·10−3 ( - ) 2.82 ·10−2 ( - ) 1.19 ·10−3 ( - ) 2.33 ·10−2 ( - )

2−3 1.54 ·10−4 ( 3.12 ) 8.62 ·10−3 ( 1.71 ) 1.16 ·10−4 ( 3.36 ) 6.09 ·10−3 ( 1.94 )

2−4 1.17 ·10−5 ( 3.72 ) 1.18 ·10−3 ( 2.87 ) 1.32 ·10−5 ( 3.14 ) 1.41 ·10−3 ( 2.11 )

2−5 2.13 ·10−6 ( 2.46 ) 8.61 ·10−5 ( 3.78 ) 1.86 ·10−6 ( 2.83 ) 1.52 ·10−4 ( 3.21 )

Table 13: Numerical errors and rate of convergence in brackets. Hunt’s case with Ha=100.

thinner than in the previous case of Ha=10. Table 13 shows the computed error norms for the same
quantities that in the case of Ha=10. Again, the mesh-size h∗ corresponds to the equivalent mesh-size
h of a uniformly structured mesh with the same number of degrees of freedom. In Figure 8(b), the
numerical results have been plotted. The same conclusion as in the previous results applies here, that
is, the numerical behavior of the proposed method is very good in terms of convergence.

7.5. Clogging of nozzles in steel casting processes.

This numerical example serves two objectives. First, we aim at solving a convection-dominated prob-
lem to check that the designed formulation has the expected behavior in this regime and second, we
want to solve a real problem with technological applications. The chosen problem is the clogging of
nozzles in continuous casting of steel; see [38, 20] for a more detailed description. In continuous steel
casting processes, the metal flow from the tundish to the mould is basically controlled by the tundish
nozzle. Under particular flow conditions, there appears a serious problem which is the clogging of the
nozzles due to the build-up of oxides. These build-ups can even block the flow through the nozzle.
One of the solutions to this problem is the use of electromagnetic forces that reduce substantially the
stagnation zone.

The L-shaped computational domain has been set as [0, 0.00795]×[0, 0.075]∪[0, 0.200]×[0.075, 0.525]
due to the axial simmetry of the problem. This domain has been meshed with 21305 linear triangular
elements and 10981 nodes, concentrating them in the nozzle zone. The hydrodynamic boundary con-
ditions are a fixed velocity u = (0,−0.05) at the inlet {y = 0.525}, a free surface condition at the
outlet {y = 0}, symmetric conditions ux = 0 at the symmetry axes {x = 0} and no-slip conditions
u = (0, 0) elsewhere. The boundary conditions for the magnetic unknowns have been set as symmet-
ric conditions bx = 0 at {x = 0}, and a fixed radial magnetic induction field bx = bext,x elsewhere.
Finally, the gravity g = (0,−9.81) is set as an external body force.
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Figure 8: Convergence plots of velocity and induction error norms for Hunt’s case.

The physical properties of the problem have been taken as ρ = 7 × 103, ν = 2 × 10−6, σ = 106

and µm = 8 × 10−7. The flow parameters and the nozzle length lead to a Reynolds number of
Re ≈ 20000. The problem has been solved with two Hartmann numbers (Ha = 1, 100) to study the
flow behavior under weak and strong external magnetic fields.

The obtained results are shown in Figure 9, where the velocity field streamlines in the nozzle zone are
plotted. Figure 9(a) shows the case with Ha = 1 where it is clearly seen that the flow separates from
the internal wall of the nozzle generating a stagnation zone which produces the clogging. However,
increasing the external magnetic field reduces drastically this effect. Figure 9(b) shows the velocity
streamlines for Ha = 100. In this case, the flow becomes attached in the nozzle zone, reducing the
recirculation zones and therefore eliminating the clogging of the nozzles.

(a) Ha=1 (b) Ha=100

Figure 9: Velocity streamlines in the nozzle zone.
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8. Conclusions

A finite element approximation of the resistive MHD problem has been proposed in this work. The
formulation falls within the category of stabilized finite element methods and, as such, is intended to
avoid the need for using finite element approximations satisfying the compatibility conditions of the
continuous problem and dealing with ranges of the physical parameters in which first order derivatives
dominate second order ones.

Particular features of the formulation proposed are that it is of residual type, can be based on the VMS
framework and the stabilization parameters are designed from the numerical analysis, accounting for
the coupling between the fluid and magnetic sub-problems. However, the most salient feature is that
it allows to converge to singular solutions even when using a continuous Lagrangian approximation
for the magnetic induction field. To our knowledge, this is the first time this is achieved. From the
technical point of view, this possibility relies on the splitting of the residual of the finite element
equation for the magnetic induction into two parts, one consisting of the gradient of the magnetic
pseudo-pressure and the other the remaining terms. This is possible because the magnetic pseudo-
pressure is zero for the continuous problem. The two resulting residuals are multiplied by stabilization
parameters with different asymptotic behavior, a key point to mimic the correct functional setting of
the continuous problem at the discrete level.

Support to assess the feasibility of our formulation arises from two facts. On the one hand, we have
performed a complete numerical analysis of the linearized and stationary problem. Since the main
emphasis of this work is not analytical, we have restricted ourselves to some simplifying assumptions
(quasi-uniform meshes, constant stabilization parameters, conforming finite element spaces) which
have allowed us to avoid excessive technicalities but to highlight the main analytical reasons for the
success of our formulation.11 On the other hand, its applicability to the full transient and nonlinear
problem has been demonstrated in a set of numerical experiments which have shown its excellent
performance.
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Appendix A. Proof of the stability results

Appendix A.1. Proof of Theorem 1

Using the equality (a+ b)(a− b) = a2 − b2, it is straightforward to check that

Astab((uh,bh, ph, rh), (uh,bh, ph, rh)) = ν‖∇uh‖2 + λ‖∇ × bh‖2 + |(uh,bh, ph, rh)|2stab

− ‖τ
1
2

1 ν∆uh‖2h − ‖τ
1
2

3 λ∇× (∇× bh)‖2h.

We have used the relation
∫

Ω((∇ × b) × d) · u = −
∫

Ω∇ × (u × d) · b that holds for any b, d ∈
H(curl; Ω) and u ∈ H1(Ω)3. The last two terms can be bounded for FE functions, by using the
inverse inequality (9) elementwise:

‖τ
1
2

1 ν∆uh‖2h + ‖τ
1
2

3 λ∇× (∇× bh)‖2h ≤
1

2
(ν‖∇uh‖2 + λ‖∇ × bh‖2),

since τ1ν
h2 ≤ 1

2 and τ3λ
h2 ≤ 1

2 from the definition of the stabilization parameters. Full control over uh
in H1(Ω)3 is a consequence of Poincaré’s inequality.

Appendix A.2. Proof of Theorem 2

Let us use the continuous inf-sup condition for the full MHD system, which reads as: for any
(uh,bh, ph, rh) ∈ V h × Ch × Qh × Sh there exists (v, c, q, s) ∈ V × C × Q × S with unit
Galerkin norm such that

‖(uh,bh, ph, rh)‖Gal ≤ A((uh,bh, ph, rh), (v, c, q, s)).

Now, we have that

A((uh,bh, ph, rh), (v, c, q, s)) =A((uh,bh, ph, rh), (εh(v), c, q, εh(s)))

+A((uh,bh, ph, rh), (πh(v),0, 0, πh(s))), (A.1)

where εh(v) := v − πh(v) and πh(v) is a continuous FE interpolant in H1(Ω) of a function v (scalar
or vector valued) with optimal interpolation properties that preserves null traces, e.g. the Scott-Zhang
interpolant [10].

Let us define the following functions:

q(δ, d) =

{
2

1−2δ , for d = 2
12−2δ
4−δ , for d = 3

, q(δ, d)′ =

{
1
δ , for d = 2
6− δ, for d = 3 .

where δ ∈ (0, 1
2). We note that 1

q(δ,d) + 1
q(δ,d)′ = 1

2 . Now, we can prove the continuity result

(∇× (u× d), c) . ‖u‖Lq(δ,d)′ (Ω)‖d‖Lq(δ,d)(Ω)‖∇ × c‖ . ‖u‖1‖d‖Lq(δ,d)(Ω)‖∇ × c‖,

which holds for any δ ∈ (0, 1
2).We have used the compact imbedding H1(Ω) ↪→ Lq(Ω) that holds

for q ∈ [1,∞) in dimension two and for q ∈ [1, 6) in dimension three. Noting that q(δ, d)′ belongs to
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these intervals in both dimensions, we prove the result. Now, we bound the first term in the RHS of
(A.1) as follows:

A((uh,bh, ph, rh), (εh(v), c, q, εh(s)))

. ‖Xu(uh, ph,bh)‖‖εh(v)‖+ ‖∇ · bh‖‖εh(s)‖+ ν‖∇uh‖‖∇εh(v)‖
+ ‖∇ · uh‖‖q‖+ λ‖∇ × bh‖‖∇ × c‖+ ‖∇rh‖‖c‖+ ‖uh‖1‖d‖Lq(δ,d)(Ω)‖∇ × c‖

.
h

ν
1
2

‖Xu(uh, ph,bh)‖+ hλ
1
2 ‖∇ · bh‖+ (1 +

‖d‖Lq(δ,d)(Ω)√
νλ

)ν
1
2 ‖uh‖1

+ λ
1
2 ‖∇ × bh‖+

1

λ
1
2

‖∇rh‖

.

1 +
h

ν
1
2 τ

1
2

1

+
‖d‖Lq(δ,d)(Ω)√

νλ

 |||(uh, ph,bh, rh)|||stab,w, (A.2)

where we have used the interpolation error estimate ‖εh(v)‖ . h‖v‖1, integration-by-parts, Schwarz’s
inequality and the previous continuity result. On the other hand, invoking the FE problem (11), we
can bound the second term in the RHS of (A.1) as follows:

A((uh,bh, ph, rh), (πh(v),0, 0, πh(s))) =

− (τ1(Xu(uh, ph,bh)− ν∆uh),a · ∇πh(v) + ν∆πh(v))h

− (τ2∇ · uh,∇ · πh(v))− (τ3(∇× (uh × d)− λ∇× (∇× bh)),∇× (πh(v)× d))h

− (τ4∇rh,∇πh(s)) + Fstab(πh(v),0, 0, πh(s))

≤ (|||(uh,bh, ph, rh)|||stab,w + Φ(fu, fb, gb))× (τ
1
2

1 ‖a · ∇πh(v)‖+ τ
1
2

1 ‖ν∆hπh(v)‖

+ τ
1
2

2 ‖∇ · πh(v)‖+ τ
1
2

3 ‖∇ × (πh(v)× d)‖+ τ
1
2

4 ‖∇πh(s)‖+ ν
1
2 ‖πh(v)‖1 +

1

λ
1
2

‖gb‖). (A.3)

Let us work on the right-hand side of the previous inequality. Using the stability properties of the
projector πh(·), we obtain:

τ
1
2

1 ‖a · ∇πh(v)‖ ≤ τ
1
2

1 ‖a‖L∞(Ω)‖∇v‖. (A.4)

The same arguments allow us to get the following bound:

τ
1
2

3 ‖∇ × (πh(v)× d)‖ . τ
1
2

3 (‖v‖Lq(δ,d)′ (Ω)‖∇d‖Lq(δ,d)(Ω) + ‖∇v‖‖d‖L∞(Ω))

. τ
1
2

3 ‖v‖1(‖∇d‖Lq(δ,d)(Ω) + ‖d‖L∞(Ω)), (A.5)

where we have used the vector analysis formula

∇× (a× b) = b · ∇a− b(∇ · a)− a · ∇b + a(∇ · b),

that holds for any smooth vector fields a and b, and similar arguments as those above. Invoking these
bounds in (A.3), we easily get:

A((uh,bh, ph, rh), (πh(v),0, 0, πh(s)))

.

τ 1
2

1

ν
1
2

‖a‖L∞(Ω) +
τ

1
2

3

ν
1
2

(‖∇d‖Lq(δ,d)(Ω) + ‖d‖L∞(Ω))

 |||(uh,bh, ph, rh)|||stab,w. (A.6)
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Now, let us rewrite some coefficients by using the definition of the stabilization parameters:

h

ν
1
2 τ

1
2

1

=

(
1 +
‖a‖L∞(Ω)h

ν

) 1
2

1 +
‖d‖L∞(Ω)h

√
νλ

√
1 +

‖a‖L∞(Ω)h

ν

 1
2

.

Noting that for small enough ε > 0 there exists δ > 0 such that d+ε > q(δ, d), we prove the theorem.
Let us stress the fact that ε > 0 can be taken arbitrarily small.

Appendix A.3. Proof of Corollary 1

Let us introduce the inequality

‖vh‖W l
p(Ω) . h

m−l+ d
p
− d
q ‖vh‖Wm

q (Ω) (A.7)

that holds for FE functions vh, where d is the space dimension (see [10, Th. 4.5.11]). In dimension
three, we have that:

τ
1
2

1 ‖a‖L∞(Ω) . min(h
1
2 ‖a‖−

1
2

L∞(Ω), hν
− 1

2 )‖a‖L∞(Ω) . min

(
h

1
4 ‖a‖

1
2
1 , h

1
2 ν−

1
2 ‖a‖1

)
.

Analogously, we obtain:

τ
1
2

3 (‖∇d‖Ld+ε(Ω) + ‖d‖L∞(Ω)) . τ
1
2

3 h
−1‖d‖Ld+ε(Ω) . λ−

1
2 ‖d‖Ld+ε(Ω),

where we have used the inequality (A.7). With regard to the last term in the definition of β, we have:

h

ν
1
2 τ

1
2

1

.

(
1 +
‖a‖1h

1
2

ν

) 1
2 (

1 +
‖d‖Ld+ε(Ω)√

νλ

) 1
2

.

Therefore, using the fact that 1 + min(a, a2) . 1 + a for any a > 0, the previous theorem applies for
the definition of β in (14). Similarly, we can treat the force term, in order to get:

sup
(vh,sh)∈V h×Sh

|Fstab(vh,0, 0, sh)|
|||(vh,0, 0, sh)|||stab,s

.
τ

1
2

1

h
‖fu‖−1,K + τ

1
2

2 ‖gu‖+
τ

1
2

3

h
‖fb‖−1,K

+
1

ν
1
2

‖fu‖−1 + λ
1
2 ‖gb‖−1,

where we have used the following dual broken norm:

‖f‖−1,K :=
∑
K∈Th

sup
v∈H1(K)

∫
K f v

‖v‖H1(K)
.

Using the definition for the stabilization parameters and the fact that gu = 0, gb = 0, the previous
theorem applies for the definition of Φ(·) in (15). Combining these results, we prove the corollary.
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Appendix B. Proof of the convergence results

Appendix B.1. Proof of Theorem 3

Let us bound the right hand side of the error system (16), first Galerkin terms and second stabilization
ones.

Proceeding as in the proof of Theorem 2, we obtain

〈εh(b),∇× (v × d)〉 . L
1
2
0 ‖∇ × εh(bh)‖‖v‖1‖d‖Ld+ε(Ω). (B.1)

This result, together with a straight use of integration-by-parts, Schwarz’s inequality, the fact that
εh(r) = 0 and the definition of τ4, lead to:

A((εh(u), εh(b), εh(p), εh(r)), (vh, ch, qh, sh))

= −〈εh(u), Xu(vh, qh, ch)〉+ ν(∇εh(u),∇vh)− (εh(p),∇ · vh) + 〈εh(b),∇× (vh × d)〉
+ λ(∇× εh(b),∇× ch)− (εh(b),∇sh) . EA(h)|||(vh, ch, qh, sh)|||stab,w, (B.2)

In order to bound the stabilization terms, we proceed as follows:

τ5(∇ · εh(b),∇ · ch) = τ5

∑
K∈Th

∫
K
εh(b)∇∇ · ch − τ5

∑
K∈Th

∫
∂K

n · εh(b)∇ · ch

. (h−1τ
1
2

5 ‖εh(b)‖+ h−
1
2 τ

1
2

5 ‖εh(b)‖L2(∂K))τ
1
2

5 ‖∇ · ch‖. (B.3)

where we have used the inequality ‖v‖L2(∂K) ≤ h−
1
2 ‖v‖L2(K) that holds for FE functions (see [10]).

Using the fact that h−1τ
1
2

5 = c5L
−1
0 λ

1
2 , and Schwarz’s inequality we easily obtain:

S(εh(u), εh(b), εh(p), εh(r)), (v, c, q, s)) ≤ ES(h)|||(v, c, q, s)|||stab,w. (B.4)

So, using the coercivity in Theorem 1 and the previous results, we straightforwardly get:

‖(χ(uh,u), χ(bh,b), χ(ph, p), χ(rh, r))‖stab,w . EA(h) + ES(h).

Finally, using the triangle inequality and the fact that |||(εh(u), εh(c), εh(p), εh(s))|||
s̃tab,w

. EA(h)+

ES(h) we prove the theorem.

Appendix B.2. Proof of Theorem 4

First, invoking Theorem 2, we have

‖(χ(uh,u), χ(bh,b), χ(ph, p), χ(rh, r))‖stab,s

. β‖(χ(uh,u), χ(bh,b), χ(ph, p), χ(rh, r))‖stab,w

+ β sup
(vh,ch,qh,sh)∈V h×Ch×Qh×Sh

Astab((εh(u), εh(b), εh(p), εh(r)), (vh, ch, qh, sh))

|||(vh, ch, qh, sh)|||stab,s
. (B.5)
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Now, using the continuity of Astab that comes from (B.2)-(B.4), i.e.

Astab((εh(u), εh(b), εh(p), εh(r)), (vh, ch, qh, sh))

. β(EA(h) + ES(h))|||(vh, ch, qh, sh)|||stab,w, (B.6)

we have

‖(χ(uh,u), χ(bh,b), χ(ph, p), χ(rh, r))‖stab,s . β(EA(h) + ES(h)). (B.7)

Using the relation τ
− 1

2
2 . ν−

1
2 we easily get

|||(εh(u), εh(c), εh(p), εh(s))|||
s̃tab,s

. EA(h) + ES(h).

Combining the last two inequalities and the triangle inequality, we prove the theorem.
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