12 research outputs found

    GUI system for Elders/Patients in Intensive Care

    Full text link
    In the old age, few people need special care if they are suffering from specific diseases as they can get stroke while they are in normal life routine. Also patients of any age, who are not able to walk, need to be taken care of personally but for this, either they have to be in hospital or someone like nurse should be with them for better care. This is costly in terms of money and man power. A person is needed for 24x7 care of these people. To help in this aspect we purposes a vision based system which will take input from the patient and will provide information to the specified person, who is currently may not in the patient room. This will reduce the need of man power, also a continuous monitoring would not be needed. The system is using MS Kinect for gesture detection for better accuracy and this system can be installed at home or hospital easily. The system provides GUI for simple usage and gives visual and audio feedback to user. This system work on natural hand interaction and need no training before using and also no need to wear any glove or color strip.Comment: In proceedings of the 4th IEEE International Conference on International Technology Management Conference, Chicago, IL USA, 12-15 June, 201

    Markerless detection of fingertips of object-manipulating hand

    Get PDF
    Most reported works on fingertip detection focus on extended fingers where the hand is not occluded by another object. This paper proposes a machine-vision-based technique exploiting the contour of the hand and fingers for detecting the fingertips when the hand is manipulating a ball, which means that the fingers are closed and the hand is partially occluded. The preliminary result of our on-going research is promising where it can be used to generate a more objective performance indicator for monitoring the progress during hand therapy by using a digital webcam. Being markerless and contactless, the proposed technique will require minimal preparation prior to the therapy

    Markerless detection of fingertips of object-manipulating hand

    Get PDF
    Most reported works on fingertip detection focus on extended fingers where the hand is not occluded by another object. This paper proposes a machine-vision-based technique exploiting the contour of the hand and fingers for detecting the fingertips when the hand is manipulating a ball, which means that the fingers are closed and the hand is partially occluded. The preliminary result of our on-going research is promising where it can be used to generate a more objective performance indicator for monitoring the progress during hand therapy by using a digital webcam. Being markerless and contactless, the proposed technique will require minimal preparation prior to the therapy

    Fingertips detection for human interaction system

    Full text link
    Fingertips of human hand play an important role in hand-based interaction with computers. Identification of fingertips\u27 positions in hand images is vital for developing a human computer interaction system. This paper proposes a novel method for detecting fingertips of a hand image analyzing the concept of the geometrical structural information of fingers. The research is divided into three parts: First, hand image is segmented for detecting hand, Second, invariant features (curvature zero-crossing points) are extracted from the boundary of the hand, Third, fingertips are detected. Experimental results show that the proposed approach is promising

    Real time hand gesture recognition for computer interaction

    Get PDF
    Hand gesture recognition is a natural and intuitive way to interact with the computer, since interactions with the computer can be increased through multidimensional use of hand gestures as compare to other input methods. The purpose of this paper is to explore three different techniques for HGR (hand gesture recognition) using finger tips detection. A new approach called 'Curvature of Perimeter' is presented with its application as a virtual mouse. The system presented, uses only a webcam and algorithms which are developed using computer vision, image and the video processing toolboxes of Matlab. © 2014 IEEE

    PARLOMA – A Novel Human-Robot Interaction System for Deaf-blind Remote Communication

    Get PDF
    Deaf-blindness forces people to live in isolation. Up to now there is no existing technological solution enabling two (or many) Deaf-blind persons to communicate remotely among them in tactile Sign Language (t-SL). When resorting to t-SL, Deaf-blind persons can communicate only with persons physically present in the same place, because they are required to reciprocally explore their hands to exchange messages. We present a preliminary version of PARLOMA, a novel system to enable remote communication between Deaf-blind persons. It is composed of a low-cost depth sensor as the only input device, paired with a robotic hand as output device. Essentially, any user can perform handshapes in front of the depth sensor. The system is able to recognize a set of handshapes that are sent over the web and reproduced by an anthropomorphic robotic hand. PARLOMA can work as a “telephone” for Deaf-blind people. Hence, it will dramatically improve life quality of Deaf-blind persons. PARLOMA has been designed in strict collaboration with the main Italian Deaf-blind associations, in order to include end-users in the design phase
    corecore