13 research outputs found

    A Comparative Study of Card Not Present E-commerce Architectures with Card Schemes: What About Privacy?

    Get PDF
    International audienceInternet is increasingly used for card not present e-commerce ar-chitectures. Several protocols, such as 3D-Secure, have been proposed in the literature by Card schemes or academics. Even if some of them are deployed in real life, these solutions are not perfect considering data security and user's privacy. In this paper, we present a comparative study of existing solutions for card not present e-commerce solutions. We consider the main security and privacy trends of e-payment in order to make an objective comparison of existing solutions. This comparative study illustrates the need to consider privacy in deployed e-commerce architectures. This has never been more urgent with the recent release of the new specifications of 3D-secure

    Fatal attraction: identifying mobile devices through electromagnetic emissions

    Get PDF
    Smartphones are increasingly augmented with sensors for a variety of purposes. In this paper, we show how magnetic field emissions can be used to fingerprint smartphones. Previous work on identification rely on specific characteristics that vary with the settings and components available on a device. This limits the number of devices on which one approach is effective. By contrast, all electronic devices emit a magnetic field which is accessible either through the API or measured through an external device. We conducted an in-the-wild study over four months and collected mobile sensor data from 175 devices. In our experiments we observed that the electromagnetic field measured by the magnetometer identifies devices with an accuracy of 98.9%. Furthermore, we show that even if the sensor was removed from the device or access to it was discontinued, identification would still be possible from a secondary device in close proximity to the target. Our findings suggest that the magnetic field emitted by smartphones is unique and fingerprinting devices based on this feature can be performed without the knowledge or cooperation of users

    Beyond the Front Page: Measuring Third Party Dynamics in the Field

    Full text link
    In the modern Web, service providers often rely heavily on third parties to run their services. For example, they make use of ad networks to finance their services, externally hosted libraries to develop features quickly, and analytics providers to gain insights into visitor behavior. For security and privacy, website owners need to be aware of the content they provide their users. However, in reality, they often do not know which third parties are embedded, for example, when these third parties request additional content as it is common in real-time ad auctions. In this paper, we present a large-scale measurement study to analyze the magnitude of these new challenges. To better reflect the connectedness of third parties, we measured their relations in a model we call third party trees, which reflects an approximation of the loading dependencies of all third parties embedded into a given website. Using this concept, we show that including a single third party can lead to subsequent requests from up to eight additional services. Furthermore, our findings indicate that the third parties embedded on a page load are not always deterministic, as 50% of the branches in the third party trees change between repeated visits. In addition, we found that 93% of the analyzed websites embedded third parties that are located in regions that might not be in line with the current legal framework. Our study also replicates previous work that mostly focused on landing pages of websites. We show that this method is only able to measure a lower bound as subsites show a significant increase of privacy-invasive techniques. For example, our results show an increase of used cookies by about 36% when crawling websites more deeply

    Are Social Networks Watermarking Us or Are We (Unawarely) Watermarking Ourself?

    Get PDF
    In the last decade, Social Networks (SNs) have deeply changed many aspects of society, and one of the most widespread behaviours is the sharing of pictures. However, malicious users often exploit shared pictures to create fake profiles, leading to the growth of cybercrime. Thus, keeping in mind this scenario, authorship attribution and verification through image watermarking techniques are becoming more and more important. In this paper, we firstly investigate how thirteen of the most popular SNs treat uploaded pictures in order to identify a possible implementation of image watermarking techniques by respective SNs. Second, we test the robustness of several image watermarking algorithms on these thirteen SNs. Finally, we verify whether a method based on the Photo-Response Non-Uniformity (PRNU) technique, which is usually used in digital forensic or image forgery detection activities, can be successfully used as a watermarking approach for authorship attribution and verification of pictures on SNs. The proposed method is sufficiently robust, in spite of the fact that pictures are often downgraded during the process of uploading to the SNs. Moreover, in comparison to conventional watermarking methods the proposed method can successfully pass through different SNs, solving related problems such as profile linking and fake profile detection. The results of our analysis on a real dataset of 8400 pictures show that the proposed method is more effective than other watermarking techniques and can help to address serious questions about privacy and security on SNs. Moreover, the proposed method paves the way for the definition of multi-factor online authentication mechanisms based on robust digital features

    Mustererkennungsbasierte Verteidgung gegen gezielte Angriffe

    Get PDF
    The speed at which everything and everyone is being connected considerably outstrips the rate at which effective security mechanisms are introduced to protect them. This has created an opportunity for resourceful threat actors which have specialized in conducting low-volume persistent attacks through sophisticated techniques that are tailored to specific valuable targets. Consequently, traditional approaches are rendered ineffective against targeted attacks, creating an acute need for innovative defense mechanisms. This thesis aims at supporting the security practitioner in bridging this gap by introducing a holistic strategy against targeted attacks that addresses key challenges encountered during the phases of detection, analysis and response. The structure of this thesis is therefore aligned to these three phases, with each one of its central chapters taking on a particular problem and proposing a solution built on a strong foundation on pattern recognition and machine learning. In particular, we propose a detection approach that, in the absence of additional authentication mechanisms, allows to identify spear-phishing emails without relying on their content. Next, we introduce an analysis approach for malware triage based on the structural characterization of malicious code. Finally, we introduce MANTIS, an open-source platform for authoring, sharing and collecting threat intelligence, whose data model is based on an innovative unified representation for threat intelligence standards based on attributed graphs. As a whole, these ideas open new avenues for research on defense mechanisms and represent an attempt to counteract the imbalance between resourceful actors and society at large.In unserer heutigen Welt sind alle und alles miteinander vernetzt. Dies bietet mächtigen Angreifern die Möglichkeit, komplexe Verfahren zu entwickeln, die auf spezifische Ziele angepasst sind. Traditionelle Ansätze zur Bekämpfung solcher Angriffe werden damit ineffektiv, was die Entwicklung innovativer Methoden unabdingbar macht. Die vorliegende Dissertation verfolgt das Ziel, den Sicherheitsanalysten durch eine umfassende Strategie gegen gezielte Angriffe zu unterstützen. Diese Strategie beschäftigt sich mit den hauptsächlichen Herausforderungen in den drei Phasen der Erkennung und Analyse von sowie der Reaktion auf gezielte Angriffe. Der Aufbau dieser Arbeit orientiert sich daher an den genannten drei Phasen. In jedem Kapitel wird ein Problem aufgegriffen und eine entsprechende Lösung vorgeschlagen, die stark auf maschinellem Lernen und Mustererkennung basiert. Insbesondere schlagen wir einen Ansatz vor, der eine Identifizierung von Spear-Phishing-Emails ermöglicht, ohne ihren Inhalt zu betrachten. Anschliessend stellen wir einen Analyseansatz für Malware Triage vor, der auf der strukturierten Darstellung von Code basiert. Zum Schluss stellen wir MANTIS vor, eine Open-Source-Plattform für Authoring, Verteilung und Sammlung von Threat Intelligence, deren Datenmodell auf einer innovativen konsolidierten Graphen-Darstellung für Threat Intelligence Stardards basiert. Wir evaluieren unsere Ansätze in verschiedenen Experimenten, die ihren potentiellen Nutzen in echten Szenarien beweisen. Insgesamt bereiten diese Ideen neue Wege für die Forschung zu Abwehrmechanismen und erstreben, das Ungleichgewicht zwischen mächtigen Angreifern und der Gesellschaft zu minimieren

    Machine learning techniques for identification using mobile and social media data

    Get PDF
    Networked access and mobile devices provide near constant data generation and collection. Users, environments, applications, each generate different types of data; from the voluntarily provided data posted in social networks to data collected by sensors on mobile devices, it is becoming trivial to access big data caches. Processing sufficiently large amounts of data results in inferences that can be characterized as privacy invasive. In order to address privacy risks we must understand the limits of the data exploring relationships between variables and how the user is reflected in them. In this dissertation we look at data collected from social networks and sensors to identify some aspect of the user or their surroundings. In particular, we find that from social media metadata we identify individual user accounts and from the magnetic field readings we identify both the (unique) cellphone device owned by the user and their course-grained location. In each project we collect real-world datasets and apply supervised learning techniques, particularly multi-class classification algorithms to test our hypotheses. We use both leave-one-out cross validation as well as k-fold cross validation to reduce any bias in the results. Throughout the dissertation we find that unprotected data reveals sensitive information about users. Each chapter also contains a discussion about possible obfuscation techniques or countermeasures and their effectiveness with regards to the conclusions we present. Overall our results show that deriving information about users is attainable and, with each of these results, users would have limited if any indication that any type of analysis was taking place
    corecore