70 research outputs found

    Indexing techniques for fingerprint and iris databases

    Get PDF
    This thesis addresses the problem of biometric indexing in the context of fingerprint and iris databases. In large scale authentication system, the goal is to determine the identity of a subject from a large set of identities. Indexing is a technique to reduce the number of candidate identities to be considered by the identification algorithm. The fingerprint indexing technique (for closed set identification) proposed in this thesis is based on a combination of minutiae and ridge features. Experiments conducted on the FVC2002 and FVC2004 databases indicate that the inclusion of ridge features aids in enhancing indexing performance. The thesis also proposes three techniques for iris indexing (for closed set identification). The first technique is based on iriscodes. The second technique utilizes local binary patterns in the iris texture. The third technique analyzes the iris texture based on a pixel-level difference histogram. The ability to perform indexing at the texture level avoids the computational complexity involved in encoding and is, therefore, more attractive for iris indexing. Experiments on the CASIA 3.0 database suggest the potential of these schemes to index large-scale iris databases

    Comparison of the Minutiae Quadruplets and Minutiae Triplets Techniques

    Get PDF
    Identifying distorted ngerprint images is a major problem in ngerprint recog-nition systems. Several techniques, such as the minutiae triplets technique, have been proposed for minutiae matching and indexing. The minutiae triplets technique however is largely aected by minutiae distortions and occlusions and hence can rarely produce a stable feature set. In this paper, the characteristics of theĀ minutiae quadruplets and the minutiae triplets structures are compared. The minutiae quadruplet technique is proposed as a better technique because the features are robust to minutiae distortions and occlusions and it eliminates the known drawbacks of the minutiae triplet technique

    Contextual biometric watermarking of fingerprint images

    Get PDF
    This research presents contextual digital watermarking techniques using face and demographic text data as multiple watermarks for protecting the evidentiary integrity of fingerprint image. The proposed techniques embed the watermarks into selected regions of fingerprint image in MDCT and DWT domains. A general image watermarking algorithm is developed to investigate the application of MDCT in the elimination of blocking artifacts. The application of MDCT has improved the performance of the watermarking technique compared to DCT. Experimental results show that modifications to fingerprint image are visually imperceptible and maintain the minutiae detail. The integrity of the fingerprint image is verified through high matching score obtained from the AFIS system. There is also a high degree of correlation between the embedded and extracted watermarks. The degree of similarity is computed using pixel-based metrics and human visual system metrics. It is useful for personal identification and establishing digital chain of custody. The results also show that the proposed watermarking technique is resilient to common image modifications that occur during electronic fingerprint transmission

    Deep Learning based Fingerprint Presentation Attack Detection: A Comprehensive Survey

    Full text link
    The vulnerabilities of fingerprint authentication systems have raised security concerns when adapting them to highly secure access-control applications. Therefore, Fingerprint Presentation Attack Detection (FPAD) methods are essential for ensuring reliable fingerprint authentication. Owing to the lack of generation capacity of traditional handcrafted based approaches, deep learning-based FPAD has become mainstream and has achieved remarkable performance in the past decade. Existing reviews have focused more on hand-cratfed rather than deep learning-based methods, which are outdated. To stimulate future research, we will concentrate only on recent deep-learning-based FPAD methods. In this paper, we first briefly introduce the most common Presentation Attack Instruments (PAIs) and publicly available fingerprint Presentation Attack (PA) datasets. We then describe the existing deep-learning FPAD by categorizing them into contact, contactless, and smartphone-based approaches. Finally, we conclude the paper by discussing the open challenges at the current stage and emphasizing the potential future perspective.Comment: 29 pages, submitted to ACM computing survey journa

    Adversarial Learning of Mappings Onto Regularized Spaces for Biometric Authentication

    Get PDF
    We present AuthNet: a novel framework for generic biometric authentication which, by learning a regularized mapping instead of a classification boundary, leads to higher performance and improved robustness. The biometric traits are mapped onto a latent space in which authorized and unauthorized users follow simple and well-behaved distributions. In turn, this enables simple and tunable decision boundaries to be employed in order to make a decision. We show that, differently from the deep learning and traditional template-based authentication systems, regularizing the latent space to simple target distributions leads to improved performance as measured in terms of Equal Error Rate (EER), accuracy, False Acceptance Rate (FAR) and Genuine Acceptance Rate (GAR). Extensive experiments on publicly available datasets of faces and fingerprints confirm the superiority of AuthNet over existing methods
    • ā€¦
    corecore