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ABSTRACT Wepresent AuthNet: a novel framework for generic biometric authenticationwhich, by learning
a regularized mapping instead of a classification boundary, leads to higher performance and improved
robustness. The biometric traits are mapped onto a latent space in which authorized and unauthorized users
follow simple and well-behaved distributions. In turn, this enables simple and tunable decision boundaries
to be employed in order to make a decision. We show that, differently from the deep learning and traditional
template-based authentication systems, regularizing the latent space to simple target distributions leads
to improved performance as measured in terms of Equal Error Rate (EER), accuracy, False Acceptance
Rate (FAR) and Genuine Acceptance Rate (GAR). Extensive experiments on publicly available datasets of
faces and fingerprints confirm the superiority of AuthNet over existing methods.

INDEX TERMS AuthNet, adversarial learning, biometric authentication, face authentication, fingerprint
authentication, latent space regularization.

I. INTRODUCTION
Biometric authentication systems are drawing increasing
attention thanks to their convenience: the users are authen-
ticated based on information they inherently own avoiding
the need to remember passwords or provide keys. The typical
approach followed by such systems is based on template
matching: each biometric trait is associated with a template
which should be able to embed its most discriminative fea-
tures. Hence, all templates of a biometric trait belonging
to the same user should be close in some suitable distance
metric. Once the user’s face, fingerprint or other biometric
trait have been acquired through a dedicated sensor, they
are processed in order to obtain the corresponding templates
which are then stored in a secure fashion. This phase, which
is referred to as the enrollment, prepares the system to grant
access only to the enrolled users. At this point the system
can be used in verification phase: a fresh biometric trait of
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a user requesting authentication is acquired, the associated
template is computed and then matched with the stored ones.
Depending on the outcome of the matching process, the user
can be either granted or denied access to the system.

Focusing on authentication accuracy the most critical part
of a biometric authentication system is the feature extraction.
Indeed, the extracted features not only have to be the most
discriminative ones but should also be embedded in a proper
metric space, in order to enable the template matching. Tra-
ditionally, features were extracted by means of hand-crafted
design. However, the advent of deep learning methods high-
lighted the great advantage of learning the best features from
data instead of using a model-based design, in terms of
learning complex mappings [1], [2] and addressing difficult
classification tasks [3].

When considering deep learning approaches, the biometric
authentication problems are usually addressed by learning a
feature embedding in which a template is able to represent
the most discriminative features of a specific biometric trait
class in a suitable space. Similarly to standard biometric
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authentication systems, the learned features are shared among
different users and the template matching is based on a
distance measure between two or more embeddings. In this
work we follow a different path: with AuthNet we rely on
a classification-based approach in which the neural network
not only learns the most discriminative features of a specific
user’s biometric traits, but also learns the boundaries which
can separate that specific user with respect to every other user.

As classification-based approaches require a per-user train-
ing, they trade off the added complexity with improved,
user-specific features. Note that, the training process of
embedding-based networks requires a large amount of
labelled data as the network has to learn the very gen-
eral features of the data class. The classification-based
approach avoids this since, in a user-specific training the
network has been trained on that specific user for which the
most discriminative features have been learned. Conversely,
embedding-based approaches learn specific features of the
considered class, e.g. faces, and may fail on a specific user.

In this regard, it is important to underline that deep learning
based classification learns highly non-linear boundaries with
complex shapes in order to partition the feature space [4].
As shown in [4], the geometry of the decision boundaries
heavily affects the robustness of the classifier. More specifi-
cally, as discussed in [5] most of the mass of the data points
gathers close to the decision boundaries. As such, two similar
biometric traits of a user may be assigned to different classes,
leading to an error. Moreover, this undesirable behavior is
an intrinsic property of the classifier structure and does not
depend on the visual properties of the input data [5].

For the above reasons, we propose a novel user-specific
classification strategy which does not explicitly enforce the
network to learn complex classification boundaries. Instead,
we envision a network design which learns a mapping of the
input biometric traits onto a regularized and well-behaved
latent space. By following this approach, the feature distri-
butions are regularized so as to lead to simple and tunable
boundaries between the classes, thereby reducing the prob-
ability of misclassification. In particular, we aim to obtain
‘‘non-arbitrary’’ boundaries which can lead to improved
accuracy and increased robustness.

The first step consists in learning a compact and mean-
ingful mapping of the input biometric traits onto the latent
space. The latent space should be shaped in a simple and
well-defined way: authorized and unauthorized users should
cluster in two different and compact regions of the space
leading to very regular boundaries. Then, a decision is made
by employing a linear decision boundary to discriminate
between the authorized user and everyone else. This system,
which we will refer to as AuthNet, makes use of adversarial
training in order to enforce a proper shaping of the latent
space. With this paper we extend and improve our previous
work [6] by introducing a new loss function via selection
of better statistical parameters, provide an in-depth discus-
sion on how AuthNet correctly maps users that are mis-
classified by other approaches and motivation behind higher

misclassification rate by competing methods, introduce new
architectural designs which come in two different flavors,
based on ResNet [7] and DenseNet [8] with detailed perfor-
mance comparison on the average values of the considered
metrics computed independently on each user and aggregated
scores.We further provide a detailed analysis of robustness on
new datasets not seen during the training and on targeted per-
turbations, and verify how the regularization of latent space
to simple target distributions leads to robust authentication
compared to learning of the boundaries. Further, we add a
discussion on the choice of the optimal system parameters.

II. RELATED WORK
Over the years, different methods have been proposed to
address the biometric authentication task when dealing with
different biometric traits such as faces, fingerprints, reti-
nas and gait. With this work, we specifically focus on the
most widely spread biometric modalities, namely face and
fingerprint.

A. FACES
The face as a practical biometric modality has appeared
only recently because of the inherent difficulty in han-
dling far from ideal acquisition conditions. Indeed, standard
model-based approaches tend to exhibit a high variance with
respect to pose and/or illumination changes. A pioneer in this
sense is the well-known eigenfaces approach [9]: the features
used to describe the faces are obtained by projecting the test
image onto the space spanned by the eigenvectors computed
on the training data. Some of its weaknesses have been sur-
passed with the introduction of the Fisherfaces method [10]
in which the projection operator is learned in a supervised
fashion in order to maximize (minimize) inter (intra) class
variance. This approach allowed a higher degree of invari-
ance with respect to illumination changes. Other standard
approaches are based on low-dimensional representations of
the faces; examples include sparse representations [11], [12],
linear subspace [13], [14] and manifold [15] representations.
Following a different approach, [16], [17] attempt to over-
come the limitations in handling facial changes by employing
local features.

The largest performance improvement has been achieved
by means of deep learning methods. These allowed to obtain
excellent performance in far from ideal acquisition under
different pose, expression and illumination conditions, see
e.g. Deep face [18]. One of the most well-know methods
is Facenet [19] which uses a triplet loss in order to learn
embeddings of the input images. More specifically, the net-
work is trained in such a way that the embeddings preserve
the notion of image similarity in terms of `2 distance in the
embedding space. However, because of the instability arising
during a triplet-loss training, it is common to train the network
with a softmax cross-entropy loss. Nevertheless, in this case
the intra-class compactness and inter-class dispersion is not
guaranteed. A more recent approach named ArcFace [20]
introduced the additive angular margin loss to improve the
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discriminative power of the learned embeddingwhilst leading
to a stable training process. A few other works also adopt the
same strategy, e.g. [21]–[25].

All the aboveworks rely on the recent trend in face recogni-
tion based on embedding computation and matching. Indeed,
most research efforts are spent on the design of novel loss
functions which can lead to more effective and/or stable
embeddings.

In this regard, let us better highlight the scope of Auth-
Net with respect to recent trends in unconstrained face
recognition. With this work we are specifically focusing on
the biometric authentication problem for which, apart from
achieving a high recognition accuracy, it is even more crucial
to reduce the number of wrongly authorized users. For the
same reason, it is common to assume that the user puts
him/herself in a controlled condition and as such, the face
datasets we consider, are those commonly used for biomet-
ric authentication tasks, see [26], [27]. Conversely, recent
‘‘in-the-wild’’ face datasets, because of the large number
of users and poses, are better suited for the evaluation of
recognition and clustering tasks. Lastly, such datasets do not
cope well with a user-specific training procedure as done in
AuthNet since the number of samples per user is very limited.

B. FINGERPRINTS
This was one of the first biometric traits to be commonly used
in practical systems. As such, most of the approaches rely on
standard template matching based on hand-crafted features
computed from minutiae, ridge and valleys patterns or global
intensity image. In general, they can be categorized based on
the use of either global or local features. Among the methods
relying on global fingerprint features wemention theworks in
[28], [29]. Conversely, the approaches proposed in [30]–[34]
rely on descriptors making use of local information of the
minutiae and their neighbourhood. Additionally, in works
such as [35] it has been shown that performance improve-
ments can be achieved when additional information such as
shape context and orientation is included. In the last few
years, new approaches have been proposed in order to take
advantage of the deep learning representational capabilities,
for example, in order to improve the robustness of minutiae
extraction and classification. Examples include [36], [37] in
which Convolutional Neural Networks (CNN) are used to
extract minutiae from raw fingerprint images and [38] where
a stacked autoencoder is used to classify fingerprints into
arch, left/right loop, and whorl. In [39] minutiae are filtered
using a neural network to improve detection, whereas in
[40] the authors use a neural network to extract the minutiae
on thinned fingerprint images. Latent fingerprint minutiae
extraction based on CNN has been also proposed in [41].

III. PROPOSED METHOD
In this section we introduce and describe the components
of the proposed architecture for biometric authentication as
shown in Fig. 1. As previously discussed, AuthNet strives
to find a well-behaved representation of the input biometric

FIGURE 1. The goal of AuthNet is to map the input biometric traits onto
target distributions in the latent space. Authorized users (blue) are
mapped to a target distribution whose mean value is far from that of the
unauthorized users (red).

traits in some latent space, which in turn enables simple
decision boundaries to be used for the classification task.
More specifically, as described in the following, we want to
learn a mapping from a sample in the biometric space onto a
sample of target probability distributions for authorized and
unauthorized users. Ideally, the distance (in some suitable
metric) between the probability distribution of the samples
resulting from the mapping and the target one should be
minimal. One of the most widely used approaches to tackle
this kind of problem is by means of an adversarial game.

A. ADVERSARIAL LEARNING
Adversarial models are now a very widespread approach
to generative models. The first generative model trained by
means of an adversarial loss, the Generative Adversarial Net-
work (GAN) [1], gained immediate popularity and opened the
path to the field of adversarial training.

A GAN tries to implicitly learn the probability distribution
of the input data in such a way that the network is then able
to generate samples similar to the input data. In other words,
the network learns to minimize a distance metric between the
distribution of the generated samples and that of the real data.
The distance metric employed by GAN is Jensen-Shannon
(JS) divergence which, interestingly, is the optimal solution
of a two-player adversarial game. The main idea behind
adversarial models is to reach the minimum of a functional
defined as a minimax game where two entities have adversar-
ial (opposite) goals. The global optimum corresponds to the
equilibrium solution between the locally optimal solutions of
the single entities. Within the deep learning framework, the
two entities called generator and discriminator are modeled
as neural networks and the minimax game is introduced in
the loss function in order to make the two networks compete
against each other during the training process. In more detail,
the discriminator should be able to correctly discriminate
between generated and real samples, while the generator
should be able to generate samples which are realistic enough
to fool the discriminator.

In AuthNet, as described in detail in the following, samples
of the data distribution are mapped onto a latent representa-
tion which follows a target distribution. This can be consid-
ered as the inverse mapping of a conventional GAN, in which
samples of a fixed distribution are mapped onto the captured
distribution of the data.
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FIGURE 2. AuthNet-R architecture at enrollment phase. Training biometric traits are given as input to the encoder which consists of an 18-layered
residual network followed by a fully connected layer. The output of the encoder, together with a one-hot vector and samples of the target distributions,
is given as input to the discriminator which is made of 6 fully connected layers.

FIGURE 3. AuthNet-R architecture at authentication phase. In this phase the biometric trait of a user requesting access is
given to the pre-trained encoder which will output a sample z coming from either P0 or P1. Then, the thresholding decision
is made and a binary output (accept or reject) is returned.

B. LATENT MAPPING
We are now ready to provide the details of AuthNet whose
main concept is depicted in Fig. 1.

Let B = {Ba=0,Ba=1} denote the set of all possible
biometric traits and a ∈ {0, 1} an indicator variable such that
a = 1 represents the authorized user and a = 0 represents
all other unauthorized users. Moreover, let us define as x ∈
Rn a generic biometric trait in B and as z ∈ Rd its latent
representation with d < n. The goal is to learn an encoding
function z = H (x) of the input biometric trait such that
z ∼ P1 if x ∈ Ba=1 and z ∼ P0 if x ∈ Ba=0, with P1 and
P0 the target distributions in the latent space. If the distribu-
tions P1 and P0 are well-behaved, a simple distance-based
thresholding approach can be employed to determine
whether the user with its associated biometric trait x is
authorized or not.

Let us set P1 = N (µ1, σ1I) and P0 = N (µ0, σ0I) to be
Gaussian, this amounts to enclosing the energy of the latent
representation of authorized and unauthorized users within
hyperspheres whose radius depends on both d and the distri-
bution parameters. For the sake of simplicity and without loss
of generality, we setE[z1] < E[z0] with z1 ∼ P1 and z0 ∼ P0
having σ1 = σ0. If the distributions are taken as Gaussian
with the same variance, a hyperplane is the optimal decision
boundary, which further boils down to a simple threshold
when z is a scalar. This leads to a very simple classifier, which
learns a complex mapping to a high-dimensional latent space,
in a way that mimics kernel-based methods.

Modes of Operation: AuthNet operates in two phases,
an enrollment phase and an authentication phase. During the
enrollment phase (see Fig. 2), based on the training data
users are registered in the system. Latent representation of
authorized users are forced to follow P1, whereas latent
representations of unauthorized users are forced to follow
P0 based on the one-hot label vector. Once the enrollment
phase is completed, in the following authentication phase
(see Fig. 3), the latent representations of the input biometric
traits are tested against the target distributions, to find out
whether the test biometry belongs to the authorized user class,
or to the class of unauthorized users class. For d = 1, if the
metric value is less than the threshold i.e. z ∼ P1, the user is
categorized as an authorized user, else the user is categorized
as an unauthorized user.

C. ENROLLMENT
During the enrollment phase the goal is to learn an encoding
function H (x) which maps the user biometric traits onto the
target distributions. The optimal H (x) is the one for which
a distance metric between H (x) : x ∈ Ba=1 and P1, and
between H (x) : x ∈ Ba=0 and P0 is minimized. To address
this problem we propose to employ an adversarial model
whose optimum is reached when the JS divergence between
the latent mapping and target distribution is minimized.
The AuthNet architecture at enrollment phase is depicted

in Fig. 2. It is made of two competing neural networks:
an encoding function H (x, θh) having parameters θh and a
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discriminator D(p, θd ) with parameters θd . For the sake of
readability, unless needed, we will drop the parameters in the
notation of the encoding and discriminator networks.

The encoding function H (·) takes as input the biometric
traits x and output their encoded latent representation z. The
discriminator D(p) takes as input the vector p ∈ {s, z},
namely it is given in an alternate fashion either a sample
from one of the target distributions s or the encoded latent
representation z. The vector s ∈ Rd is made of randomly
drawn samples from the target distributions P1 if x ∈ Ba=1
or P0 if x ∈ Ba=0, respectively. In order to improve the
stability and performance of the training process, the input
biometric trait label a is given to the discriminator as an addi-
tional information which, a acts as a switch to select a ‘‘sub-
discriminator’’ function for either authorized or unauthorized
users.

The discriminator D(p) outputs a scalar value which can
be interpreted as the probability of given input coming either
from the encoding function or the target distribution.

The loss function we consider to address the above-defined
adversarial setting is given by

V (H ,D) = Es∼P
[
log(D(s, a))

]
+Ex∼B

[
log(1− D(H (x), a))

]
, (1)

which is optimized as a minimax two-player game according
to

min
θh

max
θd

V (H ,D), (2)

where the optimization is carried over the parameters
θh and θd in an alternate fashion.
Being an adversarial model, the specific goal of the encod-

ing function H (x) is to generate samples which, when given
to the discriminator, minimise the probability of D making
a correct choice, i.e. generate samples z which will fool
the discriminator. The task of the discriminator D(p) is to
maximize the probability of assigning the correct label to
both latent representations z and samples from the target
distribution s.
At the beginning of the learning phase, the discriminator

quickly learns how to distinguish the latent representation z
and the samples from the target distribution s. After some
iterations, the encoder learns to generate samples which are
closer to the target distributions. Eventually, the encoder will
start to generate samples zwhich are close enough to s so that
the discriminator is not able to distinguish between them.

In the case of AuthNet, as commonly done for adversarial
models, these two objectives are optimized in an alternate
fashion: one step for the discriminator followed by one for
the encoder.

D. AUTHENTICATION
For AuthNet, during the authentication phase only the trained
encoder network is utilized. This network computes the latent
representation z of the input biometric trait. Then, a decision
is made according to this value. As said, for our choice of

target distributions a hyperplane can be used for the optimal
decision, i.e., we can use the test

(µ0 − µ1)
T z ≶ (µ0 − µ1)

T (µ0 + µ1)/2. (3)

For d = 1, this boils down to comparing the scalar z with a
threshold τ = (µ1 + µ0)/2, (see Fig. 3).

IV. TRAINING AND IMPLEMENTATION DETAILS
A. NETWORK INSIGHT
1) ENCODER SUB-NETWORK
A biometric trait in the form of either a RGB or a gray-scale
image with size depending on the employed dataset is given
as an input to the encoder sub-network. The choice of the
encoder is a crucial task. In general, one may employ any
state-of-the-art neural network architecture able to learn good
features. To prove the idea, we conducted experiments on
several neural network architectures such as plain CNN,
ResNet [7] and DenseNet [8] with different number of lay-
ers. For the considered datasets, it was empirically found
that either ResNet-18 or DenseNet-50, followed by a fully
connected layer having an output of size d , are sufficient
to effectively learn the latent mapping. It is important to
notice that in this last layer of the encoder network we
do not use any non-linear activation as the output should
be mapped to a sample of the target distributions. Further,
it was found that if a network with too many parameters,
like ResNet-101/152 or DenseNet-121/169 is employed for
a small/medium sized datasets, it leads to slower training
without performance improvement. This motivates us to use
ResNet-18 / DenseNet-50 as the encoder sub-network.

In the following sections we will refer to AuthNet with
ResNet encoder sub-network as AuthNet-R and to AuthNet
employing DenseNet encoder as AuthNet-D.

2) DISCRIMINATOR SUB-NETWORK
The discriminator sub-network has three main inputs: i) sam-
ples from target prior distributions, ii) latent vector out-
put from the encoder sub-network z having size d , and
iii) one-hot vector a used during the training process to tell the
discriminator whether the sample is authorized or unautho-
rized. The discriminator is a fully connected network consist-
ing of 8 layers with the ReLU activation function employed at
the output of each layer. This number was chosen empirically
so that the discriminator has enough capacity to compete with
the encoder sub-network. We found from empirical testing
that the chosen network sizes worked well across different
d-values, and they make the discriminator strong enough and
with enough capacity to compete with the given encoder
(i.e. ResNet-18 or DenseNet-50) and thus lead to a stable
training. Indeed, the layer size depends on the structure of
the encoder sub-network: if the discriminator layers are prop-
erly sized the encoder loss might quickly drop to zero, thus
stopping the training. We found that 8 discriminator layers
are enough to cope with the ‘‘capacity’’ (or the number of
parameters) of the encoder sub-network.
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The input of the discriminator sub-network is the con-
catenation of latent vector z from the encoder sub-network
and the one hot vector a indicating the class to which the
corresponding user belongs to. The first fully connected
layer has an output size equal to 100. This size gradually
increases to a maximum of 1000. After this, the size gradually
decreases with the final layer having an output of size equal
to 1 to which a sigmoid activation is applied estimating the
probability that the sample is coming from the encoder or the
target prior distribution.

3) PREPROCESSING AND TRAINING PARAMETERS
The network is trained using Adam optimizer [42] using an
iterative algorithm as discussed in [1]; the optimization is
carried out one step for the encoder and one for the dis-
criminator. Weight decay is set to 0.0004 and a dropout of
0.7 is used. The learning rate is set to 0.01 for first 5000
iterations and it is then decreased by a factor of 10 after every
5000 iterations. In total, the network is trained for 30000
iterations. The only pre-processing employed for AuthNet on
all considered datasets is energy normalization of the input
images.

B. DATA AUGMENTATION
Having a diverse and large dataset is crucial for deep neu-
ral networks training. The performance of a neural network
depends upon the features learned from the training data.
In the case of biometric authentication the acquisition pro-
cess should be fast and usually the number of acquired
samples during the enrollment is very limited. An efficient
augmentation strategy is hence needed, so that enough data
are provided to the network. In addition, we aim to have a
general purpose augmentation strategy which could work for
different biometric traits.

As summarized in Fig. 4, our augmentation process is
based on both image crops and samples mixup. For each
sample of size m × m, all possible crops of size n × n are
extracted. Since the number of positive samples (authorized
users) is much less than the number of available negative
samples (unauthorized users), we employ two different aug-
mentation factors, namely F and F1. The former refers to the
augmentation factor for the positive samples, the latter for the
negative ones. Clearly, in our case F > F1.
After obtaining multiple crops of the samples, positive and

negative training samples are mixed using a convex combi-
nation as described in [43] in order to create more diverse
training samples. As a side advantage, as shown in [43], the
mixup also helps to regularize and improve the network gen-
eralization. Given a positive and a negative sample, respec-
tively denoted as xa=1 and xa=0, a new sample is fabricated
as x′m = λxa=1+(1−λ)xa=0, where λ ∈ [0, 1] follows a Beta
distribution with parameters α and β that in our case are both
fixed to 0.4. This parameter choice results in a distribution
peaked at 0 and 1 and achieves the lowest probability for
λ = 0.5. This avoids creating augmented samples that are

FIGURE 4. The data augmentation makes use of random crops to
increase the number of input samples to a factor of F and F1 for
authorized and unauthorized users respectively. Then, positive and
negative samples are mixed by means of a convex combination.

too distant from the centroid of either class. To associate a
label to a newly created sample, we use l = round(λ).

V. PERFORMANCE ANALYSIS
AuthNet is a general purpose network designed to seamlessly
work on different types of biometric traits. We have con-
ducted experiments on faces and fingerprints. In biometric
authentication systems it is common to assume that the user
puts him/herself in a controlled condition for the biometric
traits acquisition. In this regard, the datasets we consider are
among the biggest ones acquired in such conditions.

A. DATASETS
For face authentication, we evaluate our method on CMU
Multi-PIE [44] and Yale Face database DB2 [45].

CMU Multi-PIE consists of 750,000 images of
337 candidates. The dataset is acquired over a span
of 5 months in four different sessions. The dataset consists of
images having 15 view points and 19 illumination conditions.
It contains images with different poses, illuminations and
expressions. We consider the frontal posed images with dif-
ferent expressions and illuminations to highlight the robust-
ness of the algorithm. Indeed, as hinted above we assume to
have controlled acquisitions which lead us to consider only
the frontal pose. However, to keep high intra-class variability,
we do not fix other sources of noise such as facial expressions
and illumunation conditions.

For each user enrollment 75% of the samples are employed
for the training and remaining 25% are left for testing. For
unauthorized users, out of 128, 96 users samples are drawn
for the training and remaining 32 users samples are left
for testing. Further, train and test splits are made in such a
way to avoid the sharing of the same facial expressions or
illumination conditions and thus reducing the probability of
overfitting.

Samples are resized to 144×192×3maintaining the aspect
ratio. To create more diverse samples, positive and negative
users samples are combined through a mixup strategy as
discussed in Sec. IV-B.

VOLUME 8, 2020 149321



A. Ali et al.: Adversarial Learning of Mappings Onto Regularized Spaces for Biometric Authentication

The second dataset we employ is the cropped version of
extended Yale Face Database B. It contains the frontal pose
of 38 subjects with varying illumination conditions. For each
authorized user enrollment 75% of the samples are drawn for
training, and remaining 25% are left for testing. For unautho-
rized users, 31 users samples are used for training and 6 users
samples are left for testing. Further, by employing crops of
size 184 × 160, the samples are augmented as described in
Sec. IV-B by an augmentation factor of F = 81 and F1 = 25
respectively. As a last step, for each training batch of size bwe
randomly select b samples from both authorized and unautho-
rized users datasets. Then, positive and negative samples are
combined through mixup as explained in Sec. IV-B resulting
in b new samples.

The fingerprint authentication experiments are performed
on Fingerprint Verification Competition (FVC 2006) DB2
[46] dataset. Albeit old, this is still an actively used dataset
[47], [48]. It consists of 150 users samples acquired through
an optical sensor. Maintaining the aspect ratio, the samples
are resized to 202×149. For each authorized user enrollment
75% of the samples are used for training and remaining 25%
are left for testing. For the case of unauthorized users, 124
users samples are used for training and 25 users samples are
left for testing. Finally the dataset is augmented by factors of
F = 289 and F1 = 25 using the crops of sizes 186 × 133
pixels and mixup augmentation as done for the faces dataset
is employed.

B. EVALUATION METRICS
The main metric we will use in our experiments is Equal
Error Rate (EER) defined as the value at which the False
Acceptance Rate (FAR) equals the False Rejection Rate
(FRR). Given a threshold τ , the FAR indicates the number
of accepted samples that should have been rejected over the
total number of samples. Conversely, the FRR indicates the
number of rejected samples which should have been accepted
over the total number of samples.

It is important to notice that in biometric authentication
systems the FAR is a critical parameter: a large value indi-
cates a high number of unauthorized users wrongly autho-
rized by the system. This situation is indeed more dangerous
with respect to having high false rejections of authorized
users (large FRR). For good biometric systems minimum
FAR is desired. For this reason we also test the systems at
small values of FAR: we report the Genuine Acceptance Rate
(GAR), namely the relative number of correctly accepted
users at FAR equal to 10−2 and 10−3. Finally, we report the
maximum accuracy, defined as the value at which the number
of correctly classified samples is maximized.

In the results section, the metrics are first computed
independently for each of the considered users, report-
ing the resulting average values and their relative standard
deviations. This will give insights on how the system per-
forms, on average, on a per-user basis. Additionally, to gain
a better understanding of the overall performance, we also
report the aggregated results on all the users scores and

TABLE 1. GAR comparison of randomly selected users from Yale DB2 and
CMU MultiPIE when considering different dimensionality of the latent
space d . The best case is obtained for d = 1: highest GAR for a fixed
FAR = 10−3.

FIGURE 5. Accuracy, kurtosis and skewness comparison of a randomly
selected user from CMU-MultiPIE having P0 =N (k,1) where
k = [0.5,90], and P1 =N (0,1). If the means of the two distribution are
too far apart the training process gets unstable, hence it effects the
accuracy, kurtosis and skewness of the imposed distributions.

illustrate the Receiver Operating Characteristic (ROC) curve
computed on the aggregated scores of the considered users.

C. DIMENSIONALITY OF LATENT SPACE
An important parameter in the design of AuthNet is the choice
of the latent space dimensionality d . The datasets we are
considering are medium sized, thus it is not surprising that
a smaller d achieves better results. In case of large datasets,
a larger latent space improves the data separation and leads
to improved performance.

In our tests, we fixed the hyperparameter d = 1, since in
our experiments this choice gave us better results as can be
seen in Tab. 1. Intuitively, as the latent space grows in dimen-
sionality, a larger number of training samples are required to
avoid overfitting. As an example MultiPIE has a relatively
larger size compared to Yale dataset, it can be observed from
Tab. 1 that for MultiPIE higher GAR is achieved at larger
values of d compared to Yale dataset.

D. PARAMETERS OF AUTHORIZED AND UNAUTHORIZED
USERS DISTRIBUTIONS
In AuthNet the authorized and unauthorized target distribu-
tions are set to be Gaussian. This choice comes from the
fact that the output of a (large enough) fully connected layer,
by the central limit theorem, will naturally tend to a Gaussian
distributed output [49], [50]. We set the distributions to be
P1 = N (0, 1) and P0 = N (40, 1). We choose µ1 = 0 and
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FIGURE 6. ROC comparison on overall results of the different users from
FVC2006 DB2 for augmented and unaugmented datasets. The augmented
dataset shows the same performance without quantization of probability
values.

µ0 = 40 to be different enough to keep the distributions
far apart from each other. Further, we set σ1 = σ0 = 1
as the choice lead to simple decision boundaries. As for
the Gaussian discrimination problem if σ1 = σ0, then a
linear decision boundary (hyperplane) is optimal. In more
detail, in Fig. 5 we show the maximum accuracy obtained
by AuthNet, together with skewness and kurtosis of the
latent representation as a function of (µ0 − µ1)/σ for a
randomly selected CMU-MultiPIE user. It can be seen that
the region for which the accuracy is maximum, corresponds
roughly to 15 ≤ (µ0 − µ1)/σ ≤ 45; in this region, skew-
ness and kurtosis are close to 0 and 3 respectively, showing
that the training indeed converges to Gaussian distributions.
Further, if (µ0 − µ1)/σ is too large, the training process
becomes unstable and the distributions become far from
Gaussian.

E. RESULTS
Before presenting the results it is important to consider that
the precision of the performance metrics we consider is
proportional to the number of test samples. The maximum
precision which can be obtained for the considered metrics
(explained in Sec. V-B) is given by 1/c with c = min{L ×
F,Q × F1}. Therefore, we will verify that the proposed
augmentation strategy does not introduce any bias on the
measured performance. As can be seen in Fig. 6, augmenta-
tion avoids coarse quantization of probability values without
introducing any bias. For this reason, the metrics we will
consider from now on will be computed on the augmented
dataset.

For our results, in addition to biometric-related methods,
we also include the comparison with the Encoder network of
AuthNet-R used as a classifier and trained with sigmoid cross
entropy loss. In Sec. I we discussed the issue of classifiers
having highly non-linear and complex to analyze boundaries.
Therefore, we evaluate the behavior of a deep learning classi-
fier based on the same architecture as the AuthNet-R encoder
but which is not trained in an adversarial way, in order to
assess the benefits of the adversarial scheme employed in
AuthNet.

Tab. 2 presents the results achieved by AuthNet and bench-
marking methods in terms of EER, GAR values at FAR =
{10−2, 10−3} and maximum accuracies on the individual
and aggregated scores. Fig. 7-9 depict the histogram of the
aggregated scores obtained by different methods. The ROC
comparison for different benchmarking methods is depicted
in Fig. 10. Lastly, for the sake of readability, unless differently
specified from now on we will refer to both AuthNet-R and
AuthNet-D as ‘‘AuthNet’’.

FIGURE 7. MultiPie authentication scores for authorized users (blue) and unauthorized users (red). (a), (b) Histogram of z decision statistics
of AuthNet; (c) Histogram of the sigmoid outputs of AuthNet encoder classifier; (d) Histogram of the sigmoid outputs of FaceNet embeddings
classifier; (e) Histogram of the sigmoid outputs of ArcFace embeddings classifier. The plots in (c)-(e) depict a detailed view to better
appreciate the leakage effects.

FIGURE 8. Face Yale authentication scores for authorized users (blue) and unauthorized users (red). (a), (b) Histogram of z decision statistics of
AuthNet; (c) Histogram of the sigmoid outputs of AuthNet encoder classifier; (d) Histogram of the sigmoid outputs of FaceNet embeddings
classifier; (e) Histogram of the sigmoid outputs of ArcFace embeddings classifier. The plots in (c)-(e) depict a detailed view to better appreciate
the leakage effects.
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FIGURE 9. Fingerprint authentication scores for authorized users (blue) and unauthorized users (red). (a), (b) Histogram of z decision statistics
for AuthNet; (c) Histogram of the sigmoid outputs of the AuthNet encoder classifier; (d) histogram of the matching scores of Verifinger;
(e) histogram of the matching scores of the hybrid approach. The plot in (c) depicts a detailed view to better appreciate the leakage effects.

FIGURE 10. ROC comparison on aggregated results of users for faces (a) CMU Multi-PIE, (b) Face Yale database B, - fingerprint (c) FVC 2006 DB2
datasets. (a-b); AuthNet is compared with the AuthNet encoder classifier, FaceNet [19] and ArcFace [20] in (c); with AuthNet encoder classifier,
VeriFinger [51] and the hybrid approach [35] in (b). In all the cases, AuthNet (red) and (black) achieves higher GAR with respect to other
authentication schemes at different values of FAR.

TABLE 2. Performance comparison of AuthNet with respect to other face authentication schemes. Average values of the considered metrics computed
independently on each user and on the aggregated scores (shown in parenthesis) are reported. We mark as 0* and 100* values below the minimum
achievable precision, i.e. smaller than 4.1 · 10−5 and 5.68 · 10−4 for Yale and MultiPIE datasets respectively.

1) FACE AUTHENTICATION
The datasets we employ for face authentication are CMU
Multi-PIE and Yale Face database B, as detailed in Sec. V-A.
For benchmarking with state-of-the-art deep learning tech-
niques, we compare with ArcFace [20] and FaceNet [19].
FaceNet and ArcFace tend to work better on aligned face
patches. For CMU-Multi-PIE, we pre-process the dataset by
aligning and cropping the input faces using the well-known
approach of joint face detection and alignment using Multi-
task Cascaded Convolutional networks (MTCNN) [52]. Yale
Face database already consists of frontal face images of the
subjects, so face alignment and crop are not needed.

Regarding the training process of Facenet and ArcFace,
we employ the standard architecture as described in their
respective papers using 512-dimensional embeddings. Since

the above methods are meant to learn a generic face embed-
ding to be used for either face recognition, verification,
or clustering, they 1) require a very large training dataset, and
2) cannot learn a user-specific embedding. This will result in
an unfair comparison with AuthNet. To alleviate this issue
andmake the comparison fair, we follow a two-step approach.
At first we train FaceNet and Arcface on the large CASIA
WebFace dataset [53] in such a way that we can obtain 512
dimensional embeddings from given input face images. Then,
given the embeddings, we train two-class FC classfiers (one
for each user) which have to classify the embeddings as either
authorized or unauthorized.

Tab. 2 presents a comparison of EER, GAR at FAR =
{10−2, 10−3}, and maximum accuracy for CMU Multi-PIE
and Yale Face Database B, calculated on the individual and

149324 VOLUME 8, 2020



A. Ali et al.: Adversarial Learning of Mappings Onto Regularized Spaces for Biometric Authentication

TABLE 3. Performance comparison of AuthNet with respect to other fingerprint authentication schemes on FVC 2006 DB2 dataset. Average values of the
considered metrics computed independently on each user and on the aggregated scores (shown in parenthesis) are reported. We mark as 0* and 100*
values below the minimum achievable precision, i.e. smaller than 5.5 · 10−5.

the aggregated scores of the users. From the results it can be
observed that, in terms of EER, AuthNet achieves the lowest
value outperforming other methods. Further, a very small
advantage of AuthNet-R with respect to AuthNet-D can also
be observed. Nevertheless, as shown in later experiments the
performance of the these two AuthNet flavors is comparable
and a clear winner cannot be identified.

It is also interesting to observe that for the AuthNet, even
for very small values of FAR, high GAR values are obtained.
The high performance for Multi-PIE compared to Yale Face
database B is understandable since the former has a sig-
nificantly larger number of high-quality samples per user
compared to other datasets. Further, AuthNet outperforms the
competing methods in terms of maximum accuracy achieved.
It can be observed that for AuthNet encoder classifier the
performance in terms of EER is an order of magnitude less
than that of AuthNet. In more detail, we can exclude that
this is due to AuthNet encoder classifier overfitting on the
negative samples. Indeed, this case be seen by looking at
Fig. 13 where it is depicted the ROC for the considered
approaches when tested on out-of-domain or never-seen neg-
ative examples. It can be noticed that the performance drop
of AuthNet encoder classifier is mostly bounded, and thus the
poorer performance is due to the lack of regularization of the
decision space. Indeed, the results of this comparison imply
that by regularizing the latent space through well-behaved
distributions, it is possible to increase the accuracy of the
system by decreasing the number of false positives. This
highlights the superiority of the proposed latent space regular-
ization over a traditional classifier. Additionally, the achieved
EER by FaceNet and ArcFace is also an order of magnitude
less than that of AuthNet. Furthermore, for small values of
FAR, the genuine acceptance for these methods significantly
reduces, which is not the case with AuthNet. This indicates
a high variablity of the results on a per-user basis, which can
be observed from both individual and aggregated user scores
in Tab. 2.

Furthermore, to better appreciate the effective regulariza-
tion of the latent space of AuthNet, in Fig. 7 and 8 the
face authentication scores for authorized and unauthorized
users are depicted for different benchmarking algorithms.
The blue curve in the figure depicts the histogram of the
score obtained for the authorized users, and the red curve
depicts the histogram of the scores obtained for unauthorized
users. The histogram of the z scores obtained fromAuthNet-R

and AuthNet-D are depicted in Fig. 7a, 7b for Multi-PIE and
Fig. 8a, 8b for Yale Face database B respectively. It can be
observed that for both datasets, AuthNet very effectively sep-
arates authorized and unauthorized users samples and there is
no mixing of authorized and unauthorized users distributions.
The scores of the sigmoid output obtained from the AuthNet
encoder classifiers are depicted in Fig. 7c and 8c. It can
be observed that, being the output a sigmoid activation, the
distributions are mainly peaked at 0 and 1; however there
is noticeable spillover in the area in between. This is the
reason for lower EER and GAR at small values of FAR. The
histogram of the sigmoid output obtained from FaceNet and
ArcFace embeddings classifiers is depicted in Fig. 7d, 7e for
Multi-PIE and Fig. 8d, 8e for Yale Face database B, respec-
tively. In both cases it is possible to appreciate a non-perfect
separation of the scores: these misclassified users eventually
lead to lower performance.

Lastly, Fig. 10a and 10b illustrates the ROC comparison of
AuthNet with respect to other benchmark techniques on the
aggregated scores of the users. It can be clearly observed that
the ROC curves for AuthNet lie above all other methods and
consistently achieve higher GAR even at very low values of
FAR proving its superiority.

2) FINGERPRINT AUTHENTICATION
For the fingerprints, we employ the FVC 2006 DB2 dataset,
detailed in Sec. V-A.
For benchmarking, we compare AuthNet with Auth-

Net encoder classifier, Verifinger [51] and the hybrid
approach described in [35]. Verifinger is a well-known and
commercially available system commonly used for minutiae
extraction and fingerprint matching achieving state-of-the-art
performance in fingerprint identification [54].

Tab. 3 depicts the comparison of EER, maximum accu-
racy, and GAR of AuthNet at small values of FAR with
the benchmarking methods. From Tab. 3, it can be observed
that AuthNet achieves the lowest EER and highest accuracy,
outperforming all benchmark methods. However, differently
from the previous results, it can be observed that AuthNet-D
has a slight performance advantage over AuthNet-R. In gen-
eral it is difficult to state which of the two AuthNet fla-
vors achieves higher performance. Indeed, the performance
of AuthNet is to some extent independent of the encoder
network architecture. As long as the encoder network has
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FIGURE 11. Normalized logits scores for correctly accepted authorized users (blue), wrongly rejected authorized users (green), correctly rejected
unauthorized users (red), and wrongly accepted unauthorized users (yellow). (a), (b) Histogram of z decision statistics of AuthNet; (c) Histogram of the
logits scores of AuthNet encoder classifier; (d) Histogram of the logits scores of FaceNet embeddings classifier; (e) Histogram of the logits scores of
ArcFace embeddings classifier.

enough capacity, any recent CNN architecture will be able
to reach, on average, high performance.

Additionally, for small values of FAR, both AuthNet-R and
AuthNet-D achieve high values of GAR. Verifinger, AuthNet
encoder classifier and hybrid approach, also achieve small
EER values; however, it can be observed that the GAR values
significantly drop as the FAR values are decreased, which is
not the case with AuthNet.

Further, it can be seen fromFig. 9a and 9b that the proposed
method separates the authorized and unauthorized users very
effectively. Conversely, in the case of non-deep learning
approaches such as Verifinger in Fig. 9d, and the hybrid
approach in Fig. 9e, the authorized and unauthorized users
do not have a clear scores separation and the related regions
are not well-behaved. Moreover, it can be noticed in Fig. 9c
that similarly to the case of face datasets, while AuthNet
encoder classifier provides a separation between the scores
it also introduces some ‘‘leakage’’.

Lastly, in Fig. 10c the ROC comparison of AuthNet
with respect to other fingerprint authentication schemes is
depicted. The red curve depicts the GAR at different FAR
values obtained by AuthNet. It can be seen that AuthNet ROC
curve lies above other benchmarking methods. Furthermore,
it can be clearly observed here that at small values of FARs,
AuthNet clearly outperforms all the other competing algo-
rithms, maintaining highest GAR values.

VI. IN-DEPTH ANALYSIS OF AuthNet
In order to better understand the performance improvement
of AuthNet with respect to competing methods, a deeper
technical insight is provided with the purpose of explain-
ing how the regularization of the distributions performed by
AuthNet yields fewer misclassifications compared to existing
methods. Further, it is shown how Authnet is able to cor-
rectly classify samples that are misclassified by competing
approaches.

A. MOTIVATION BEHIND HIGHER MISCLASSIFICATION
RATE BY COMPETING METHODS
In the first set of experiments, shown in Fig. 11 the latent
space outputs of AuthNet and the logit scores obtained by
the competing methods, normalized to the target means of
µ = 0 for the authorized users and µ = 40 for unauthorized

users are presented; this normalization allows us to directly
compare these methods with AuthNet. It can be observed that
the logit scores of the other methods naturally tends to be
Gaussian, from the central limit theorem [49], [50]. During
AuthNet training, the target distributions are enforced to fol-
low Gaussian distributions that are well separated, with pre-
definedmean and standard deviation. However, for traditional
classification methods this is not specifically enforced which
results in distributions with unpredictable mean and standard
deviation. As a result, it can be observed in Fig. 11 that the
normalized logit score distributions of the competing meth-
ods exhibit higher variance with heavier tails, compared to
that of AuthNet which instead obtains distributions which are
well-separated in the latent space. Moreover, in Fig. 11 nor-
malized logit scores for correctly accepted authorized users
(blue), wrongly rejected authorized users (green), correctly
rejected unauthorized users (red), and wrongly accepted
unauthorized users (yellow) are highlighted. It can be clearly
observed that for AuthNet the authorized and unauthorized
users scores are well separated based on the predefined tar-
get distributions, yielding very few misclassifications, i.e.
false rejections of authorized users (green) and false accep-
tance of unauthorized users (yellow) area. On the other side,
in the competing methods, the logit scores distributions of the
authorized and unauthorized users are broader, which results
in a higher number of misclassifications as can be observed
from the green and yellow areas.

Tab. 4 reports the standard deviation σ and kurtosis β2 of
the latent space features of AuthNet and the normalized logit
scores obtained by different methods. It can be observed from
the table that the lack of regularization of the distributions in
the competing methods tends to have much higher σ . Sim-
ilarly, the distributions obtained by the competing methods
are heavy-tailed as can be seen from the measured values
of β2. This points out a higher spread of the authorized
and unauthorized user distributions with respect to the mass
center, resulting in a higher number of misclassifications.

B. HOW AuthNet CORRECTLY MAPS USERS THAT ARE
MISCLASSIFIED BY OTHER METHODS
In Fig. 13, depicting latent features obtained by Authnet, the
latent feature outputs corresponding to authorized users that
are wrongly rejected by competing networks are highlighted
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FIGURE 12. Correct mapping of the misclassified users by other methods using AuthNet: mapping of the wrongly rejected authorized users (green)
and wrongly accepted unauthorized users (yellow) by competing methods on AuthNet, (a) misclassified users of AuthNet encoder classifier mapped
on AuthNet; (b) misclassified users of FaceNet embeddings classifier mapped on AuthNet; (c) misclassified users of ArcFace embeddings classifier
mapped on AuthNet.

FIGURE 13. ROC comparison of AuthNet and benchmarking methods when tested on the same dataset used during training (MultiPIE) and on face
(YTF, LFW, CALFW) and non-face (Caltech 101) datasets that have not been used during training. In all the cases, AuthNet performs consistently and
give stable GAR at different FAR values.

TABLE 4. Standard deviation σ and Kurtosis β2 of normalized test logit scores for authorized and unauthorized users.

in green, whereas features corresponding towrongly accepted
unauthorized users are highlighted in yellow. It can be
observed that in all the cases AuthNet maps the wrongly
accepted unauthorized users near the mass center of correctly
rejected unauthorized users i.e. the red area. Similarly, Auth-
Net properly maps the wrongly rejected authorized users in
the right class in the blue area.

In summary defining well separated target Gaussian distri-
butions having specified mean and standard deviation during
training avoids spread of the authorized and unauthorized
users samples yielding a lower number of misclassifications.

VII. ROBUSTNESS ANALYSIS
In this second set of experiments, we show that regularizing
the latent space to simple target distributions leads not only
to improved accuracy, but also to more robust authentication.
In particular, we test AuthNet and the benchmark methods

trained on MultiPIE on datasets that the network has not seen
during the training. Further, we also test the robustness of the
proposed approach against targeted perturbations.

A. EVALUATION ON NEW DATASETS NOT SEEN DURING
TRAINING
To show the robustness and resilience of AuthNet against
the face datasets that the network has never seen during
training, we test AuthNet-R and competing methods trained
on MultiPIE on LFW [55], YTF [56], and CALFW [57]
datasets. Fig. 13 shows the ROC comparison of methods
trained and tested on MultiPIE versus the same methods
trained on MultiPIE and tested on YTF, LFW, and CALFW
datasets, for the class of unauthorized users (note that in
this setup the unauthorized users are not present in the test
dataset). The solid curves depict the results when methods
are trained and tested on the same dataset, the dotted curves
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TABLE 5. Absolute performance drop comparison of AuthNet and benchmarking methods when trained on MultiPIE and tested on different datasets.
We mark as 0* values below the minimum achievable precision, i.e. smaller than 5.6 · 10−4.

depict the test results on the datasets which the network has
not seen during training. The robustness is measured in terms
of the performance drop on the datasets that have not been
seen during the training. It can be observed that AuthNet is
robust against the datasets which were not presented at train-
ing time: it correctly maps the samples from these datasets
to the unauthorized target distribution. This effect is more
significant at small FAR (10−3) where a large performance
drop can be observed for the competing methods, whereas
AuthNet maintains high GAR value, outperforming them by
a big margin.

For a more detailed analysis, Tab. 5 reports the abso-
lute difference in GAR at different values of FAR and the
maximum accuracy difference achieved by different methods
when tested on MultiPIE versus the other datasets. It can
be seen that AuthNet consistently outperforms all competing
methods, yielding a very small performance drop when tested
on different datasets. The effect is very evident at small values
of FAR.

To further evaluate the robustness of AuthNet, we also con-
sidered a non-face dataset: we test AuthNet and competing
methods trained on MultiPIE on Caltech 101 [58] dataset.
This dataset does not include faces and it is made of images
of objects belonging to 101 different categories. From both
Fig. 13d and Tab. 5 it can be observed that the performance
drop is very significant for the competing methods. Con-
versely, AuthNet still maps the images of Caltech 101 to the
unauthorized distribution giving stable results even at small
FAR values.

The results in this section show that regularizing the
latent space using well-behaved target distributions leads to
robust authentication against features that have never been
seen before. Furthermore, the behavior of the non-authorized
region of AuthNet is consistent across different datasets.

B. EVALUATION ON TARGETED PERTURBATIONS
We further analyse the robustness of the AuthNet approach
against the targeted perturbations. We consider white-box

Fast Gradient Sign Method (FGSM) [59] due its simplicity
and speed in crafting the perturbations. In FGSM the input
samples are adjusted to maximize the loss based on the back
propagated gradients. The model back propagates to the input
data to calculate ∇xJ (θ, x, a), then the input samples are
adjusted by a step of ε in the direction of sign(∇xJ (θ, x, a))
that will maximize the loss.

For this experiment, we compare AuthNet-R with the
AuthNet encoder classifier trained on Multi-PIE in order to
highlight the advantages of learning the mapping instead of
the boundaries. The rationale is to show that for traditional
methods producing arbitrary boundaries, it is usually possible
to craft samples that result in incorrect classification with a
minimal perturbation, whereas for the proposed method this
is much more difficult, leading to improved robustness.

For both AuthNet and AuthNet encoder classifier, every
test sample is perturbed with `∞ bounded perturbation and
the results are aggregated. We define n as the noise vector
such that ‖(n)‖∞ ≤ ε where noise strength ε is defined as the
ratio ‖(n)‖∞/‖(x)‖∞. As an example 100% noise strength
means themodel is able to corrupt the imagewith noise values
within the full range of the input image.

In Fig. 14 we depict the probability of success of FGSM as
a function of the noise strength. For AuthNet it can be noticed
that trying to move the authorized users into the unauthorized
region (z < 20) has a high probability of success for large
noise strength, i.e. larger than 10% of the maximum pixel
values of the input images. However, by lowering ε, the prob-
ability of success decreases accordingly. Conversely, granting
access to unauthorized users is a much harder task. The max-
imum probability of success, reached at 2% noise strength,
is 0.27. Furthermore, the probability of success in such setting
is close to zero even for very large perturbations. This can be
explained by the way AuthNet regularizes the latent space:
authorized users are strictly enclosed within the high mass
region of P1. If the perturbation is too strong, the likelihood
that the perturbed samples are treated as unauthorized users
increases. We further study this effect in Fig. 15 where we
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FIGURE 14. Probability of success of FGSM for authorized, unauthorized
users and overall success as a function of the noise strength for
AuthNet-R and AuthNet-R encoder classifier.

FIGURE 15. Trajectory of decision statistics for a perturbed sample (from
an unauthorized user) in the latent space at different noise strength
levels.

show the trajectory of z in the latent space: for a perturbed
sample coming from an unauthorized user as a function of
the noise level. It can be seen that for large perturbations, z
stays within the high mass region of P0. Similarly, if ε is
limited to less than 1%, the value of z remains close to 40.
Between these limits we have a region whichmay lead tomis-
classification of unauthorized users. An interpretation of this
behavior is that the regularized decision boundary provided
byAuthNet does not allow to choose an easy path for crossing
the boundary from a generic point within the decision region,
i.e., every point on the other side of the boundary tends to be
equally far away. If we compare these results with those of
the AuthNet encoder classifier in Fig. 14, it is immediate to
notice that overall FGSM is muchmore successful, especially
for large noise strength. Also in this case FGSM targeting
authorized users is more successful. This confirms our con-
jecture that the highly complex boundaries learned through
a classifier are more vulnerable to adversarial perturbations.
Conversely, the proposed AuthNet architecture, by properly
regularizing the latent space is able to greatly reduce such
effects and thus reduce the likelihod of targeted perturbations
to succeed.

VIII. CONCLUSION
We presented a novel approach for biometric authentication
based on adversarial learning in which the latent space reg-
ularization leads to improved robustness and accuracy of the
biometric classification. Our intuition behind this behavior
is that the non-linear boundaries learned by standard deep

learning classifiers indeed become very complex as they try
to closely fit the training data, leaving room for misclassifica-
tion. Conversely, the adversarial learning of AuthNet enables
much simpler boundaries to be used as it does not learn
how to partition the space but rather how to map the input
space into the latent space. With extensive experimentation,
on multiple large biometric datasets with several state-of-
the-art benchmark methods, we showed that AuthNet consis-
tently outperforms other existing techniques.We further show
that regularizing the latent space makes the architecture less
vulnerable to targeted and non targeted perturbations.

Future workwill consider adding new users to a pre-trained
AuthNet and to handle user revocation.
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