12 research outputs found

    Grid Multi-Butterfly Memristive Neural Network With Three Memristive Systems: Modeling, Dynamic Analysis, and Application in Police IoT

    Get PDF
    © 2024, IEEE. This is an open access accepted manuscript distributed under the terms of the Creative Commons Attribution License (CC BY), https://creativecommons.org/licenses/by/4.0/Nowadays, the Internet of Things (IoT) technology has been widely applied in the police security system. However, with more and more image data that concerns crime scenes being transmitted through the police IoT, there are some new security and privacy issues. Therefore, how to design a safe and efficient secret image sharing solution suitable for police IoT has become a very urgent task. In this work, a grid multi-butterfly memristive Hopfield neural network (HNN) with three memristive systems is constructed and its complex dynamics are deeply analyzed. Among them, the first memristive system is modeled by emulating a self connection synapse, the second memristive system is modeled by coupling two neurons, and the third memristive system is modeled by describing external electromagnetic radiation. Dynamic analyses show that the proposed memristive HNN can not only generate two kinds of 1-directional (1D) multi-butterfly chaotic attractors but also produce complex grid (2D) multi-butterfly chaotic attractors. More importantly, by switching the initial states of the second and third memristive systems, the grid multi-butterfly memristive HNN exhibits initial-boosted plane coexisting multi-butterfly attractors. Moreover, the number of butterflies contained in a multi-butterfly attractor and coexisting attractors can be easily adjusted by changing memristive parameters. Based on these complex dynamics, an image security solution is designed to show the application of the newly constructed grid multi-butterfly memristive HNN to police IoT security. Security performances indicate the designed scheme can resist various attacks and has high robustness. Finally, the test results are further demonstrated through RPI-based hardware experimentsPeer reviewe

    Bidirectional Synchronization of Two Identical Jerk Oscillators with Memristor

    Get PDF
    In this paper, the case of introducing memristor as a coupling component when synchronizing two identical simple chaotic oscillator (3-D Jerk equations) were observed. Also, the numerical simulation of the phase portraits are in good agreement with the MultiSIM and experimental simulations. Due to the complex chaotic dynamics of this oscillator, the realization of the electronic circuit involving two identical Jerk oscillator with memristor as coupling component were synchronized via bidirectional coupling and further applied to secure communication

    ASB-CS: Adaptive sparse basis compressive sensing model and its application to medical image encryption

    Get PDF
    Recent advances in intelligent wearable devices have brought tremendous chances for the development of healthcare monitoring system. However, the data collected by various sensors in it are user-privacy-related information. Once the individuals’ privacy is subjected to attacks, it can potentially cause serious hazards. For this reason, a feasible solution built upon the compression-encryption architecture is proposed. In this scheme, we design an Adaptive Sparse Basis Compressive Sensing (ASB-CS) model by leveraging Singular Value Decomposition (SVD) manipulation, while performing a rigorous proof of its effectiveness. Additionally, incorporating the Parametric Deformed Exponential Rectified Linear Unit (PDE-ReLU) memristor, a new fractional-order Hopfield neural network model is introduced as a pseudo-random number generator for the proposed cryptosystem, which has demonstrated superior properties in many aspects, such as hyperchaotic dynamics and multistability. To be specific, a plain medical image is subjected to the ASB-CS model and bidirectional diffusion manipulation under the guidance of the key-controlled cipher flows to yield the corresponding cipher image without visual semantic features. Ultimately, the simulation results and analysis demonstrate that the proposed scheme is capable of withstanding multiple security attacks and possesses balanced performance in terms of compressibility and robustness

    Fake Malware Generation Using HMM and GAN

    Get PDF
    In the past decade, the number of malware attacks have grown considerably and, more importantly, evolved. Many researchers have successfully integrated state-of-the-art machine learning techniques to combat this ever present and rising threat to information security. However, the lack of enough data to appropriately train these machine learning models is one big challenge that is still present. Generative modelling has proven to be very efficient at generating image-like synthesized data that can match the actual data distribution. In this paper, we aim to generate malware samples as opcode sequences and attempt to differentiate them from the real ones with the goal to build fake malware data that can be used to effectively train the machine learning models. We use and compare different Generative Adversarial Networks (GAN) algorithms and Hidden Markov Models (HMM) to generate such fake samples obtaining promising results

    Crowdfunding Non-fungible Tokens on the Blockchain

    Get PDF
    Non-fungible tokens (NFTs) have been used as a way of rewarding content creators. Artists publish their works on the blockchain as NFTs, which they can then sell. The buyer of an NFT then holds ownership of a unique digital asset, which can be resold in much the same way that real-world art collectors might trade paintings. However, while a deal of effort has been spent on selling works of art on the blockchain, very little attention has been paid to using the blockchain as a means of fundraising to help finance the artist’s work in the first place. Additionally, while blockchains like Ethereum are ideal for smaller works of art, additional support is needed when the artwork is larger than is feasible to store on the blockchain. In this paper, we propose a fundraising mechanism that will help artists to gain financial support for their initiatives, and where the backers can receive a share of the profits in exchange for their support. We discuss our prototype implementation using the SpartanGold framework. We then discuss how this system could be expanded to support large NFTs with the 0Chain blockchain, and describe how we could provide support for ongoing storage of these NFTs

    Ridge orientation modeling and feature analysis for fingerprint identification

    Get PDF
    This thesis systematically derives an innovative approach, called FOMFE, for fingerprint ridge orientation modeling based on 2D Fourier expansions, and explores possible applications of FOMFE to various aspects of a fingerprint identification system. Compared with existing proposals, FOMFE does not require prior knowledge of the landmark singular points (SP) at any stage of the modeling process. This salient feature makes it immune from false SP detections and robust in terms of modeling ridge topology patterns from different typological classes. The thesis provides the motivation of this work, thoroughly reviews the relevant literature, and carefully lays out the theoretical basis of the proposed modeling approach. This is followed by a detailed exposition of how FOMFE can benefit fingerprint feature analysis including ridge orientation estimation, singularity analysis, global feature characterization for a wide variety of fingerprint categories, and partial fingerprint identification. The proposed methods are based on the insightful use of theory from areas such as Fourier analysis of nonlinear dynamic systems, analytical operators from differential calculus in vector fields, and fluid dynamics. The thesis has conducted extensive experimental evaluation of the proposed methods on benchmark data sets, and drawn conclusions about strengths and limitations of these new techniques in comparison with state-of-the-art approaches. FOMFE and the resulting model-based methods can significantly improve the computational efficiency and reliability of fingerprint identification systems, which is important for indexing and matching fingerprints at a large scale

    Design of Discrete-time Chaos-Based Systems for Hardware Security Applications

    Get PDF
    Security of systems has become a major concern with the advent of technology. Researchers are proposing new security solutions every day in order to meet the area, power and performance specifications of the systems. The additional circuit required for security purposes can consume significant area and power. This work proposes a solution which utilizes discrete-time chaos-based logic gates to build a system which addresses multiple hardware security issues. The nonlinear dynamics of chaotic maps is leveraged to build a system that mitigates IC counterfeiting, IP piracy, overbuilding, disables hardware Trojan insertion and enables authentication of connecting devices (such as IoT and mobile). Chaos-based systems are also used to generate pseudo-random numbers for cryptographic applications.The chaotic map is the building block for the design of discrete-time chaos-based oscillator. The analog output of the oscillator is converted to digital value using a comparator in order to build logic gates. The logic gate is reconfigurable since different parameters in the circuit topology can be altered to implement multiple Boolean functions using the same system. The tuning parameters are control input, bifurcation parameter, iteration number and threshold voltage of the comparator. The proposed system is a hybrid between standard CMOS logic gates and reconfigurable chaos-based logic gates where original gates are replaced by chaos-based gates. The system works in two modes: logic locking and authentication. In logic locking mode, the goal is to ensure that the system achieves logic obfuscation in order to mitigate IC counterfeiting. The secret key for logic locking is made up of the tuning parameters of the chaotic oscillator. Each gate has 10-bit key which ensures that the key space is large which exponentially increases the computational complexity of any attack. In authentication mode, the aim of the system is to provide authentication of devices so that adversaries cannot connect to devices to learn confidential information. Chaos-based computing system is susceptible to process variation which can be leveraged to build a chaos-based PUF. The proposed system demonstrates near ideal PUF characteristics which means systems with large number of primary outputs can be used for authenticating devices

    Fingerprint images encryption via multi-scroll chaotic attractors

    No full text
    This paper proposes a chaotic fingerprint images encryption approach. An image of a fingerprint is encrypted via a two-dimensional (2D) chaotic sequence obtained from multi-scroll chaotic attractors. Initial values of the chaotic attractors are served as the private key, which can be generated from the pixel distribution of the binary images of the captured fingerprints. Due to the dynamic uncertainties in the acquisition process of fingerprint images, the keys generated from the pixel value distribution are virtually random. With the elaborately designed 2D chaotic sequence, the encrypted fingerprint images have balanced 0-1 ratio and ideal nonlinearity. Only with the valid private key can the images of fingerprint be recovered. Simulation results and 2D-DFT validate this chaotic encryption approach

    Key management for wireless sensor network security

    Get PDF
    Wireless Sensor Networks (WSNs) have attracted great attention not only in industry but also in academia due to their enormous application potential and unique security challenges. A typical sensor network can be seen as a combination of a number of low-cost sensor nodes which have very limited computation and communication capability, memory space, and energy supply. The nodes are self-organized into a network to sense or monitor surrounding information in an unattended environment, while the self-organization property makes the networks vulnerable to various attacks.Many cryptographic mechanisms that solve network security problems rely directly on secure and efficient key management making key management a fundamental research topic in the field of WSNs security. Although key management for WSNs has been studied over the last years, the majority of the literature has focused on some assumed vulnerabilities along with corresponding countermeasures. Specific application, which is an important factor in determining the feasibility of the scheme, has been overlooked to a large extent in the existing literature.This thesis is an effort to develop a key management framework and specific schemes for WSNs by which different types of keys can be established and also can be distributed in a self-healing manner; explicit/ implicit authentication can be integrated according to the security requirements of expected applications. The proposed solutions would provide reliable and robust security infrastructure for facilitating secure communications in WSNs.There are five main parts in the thesis. In Part I, we begin with an introduction to the research background, problems definition and overview of existing solutions. From Part II to Part IV, we propose specific solutions, including purely Symmetric Key Cryptography based solutions, purely Public Key Cryptography based solutions, and a hybrid solution. While there is always a trade-off between security and performance, analysis and experimental results prove that each proposed solution can achieve the expected security aims with acceptable overheads for some specific applications. Finally, we recapitulate the main contribution of our work and identify future research directions in Part V
    corecore