
University of Tennessee, Knoxville University of Tennessee, Knoxville

TRACE: Tennessee Research and Creative TRACE: Tennessee Research and Creative

Exchange Exchange

Doctoral Dissertations Graduate School

8-2020

Design of Discrete-time Chaos-Based Systems for Hardware Design of Discrete-time Chaos-Based Systems for Hardware

Security Applications Security Applications

Aysha Shanta
University of Tennessee, ashanta1@vols.utk.edu

Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss

Recommended Citation Recommended Citation
Shanta, Aysha, "Design of Discrete-time Chaos-Based Systems for Hardware Security Applications. " PhD
diss., University of Tennessee, 2020.
https://trace.tennessee.edu/utk_graddiss/6823

This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee
Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized
administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact
trace@utk.edu.

https://trace.tennessee.edu/
https://trace.tennessee.edu/
https://trace.tennessee.edu/utk_graddiss
https://trace.tennessee.edu/utk-grad
https://trace.tennessee.edu/utk_graddiss?utm_source=trace.tennessee.edu%2Futk_graddiss%2F6823&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:trace@utk.edu

To the Graduate Council:

I am submitting herewith a dissertation written by Aysha Shanta entitled "Design of Discrete-

time Chaos-Based Systems for Hardware Security Applications." I have examined the final

electronic copy of this dissertation for form and content and recommend that it be accepted in

partial fulfillment of the requirements for the degree of Doctor of Philosophy, with a major in

Electrical Engineering.

Garrett Rose, Major Professor

We have read this dissertation and recommend its acceptance:

Jayne Wu, Hoon Hwangbo, Jinyuan Stella Sun

Accepted for the Council:

Dixie L. Thompson

Vice Provost and Dean of the Graduate School

(Original signatures are on file with official student records.)

Design and Implementation of

Discrete-Time Chaos-Based Systems

for Hardware Security Applications

A Dissertation Presented for the

Doctor of Philosophy

Degree

The University of Tennessee, Knoxville

Aysha Siddique Shanta

August 2020

© by Aysha Siddique Shanta, 2020

All Rights Reserved.

ii

I dedicate this work to my beloved father, Md Siddique Hossain, without whom this day

would not have been possible and to my wonderful husband, Md Arifur Rahman, who stood

by me through thick and thin.

iii

Acknowledgments

I would like to thank my advisor Dr. Garrett S. Rose for giving me the opportunity to work

in his research group and for providing guidance throughout my PhD career at University

of Tennessee, Knoxville (UTK). I will always be indebted to him for believing in me when I

was going through a rough patch in life.

I am thankful to Dr. Jayne Wu, Dr. Jinyuan Stella Sun and Dr. Hoon Hwangbo for

serving on my PhD committee and dedicating their valuable time in helping and guiding me

through the process.

I am extremely grateful to Dr. Hairong Qi and Dr. Leon Tolbert for their support and

help during my time as a student at UTK. I would also like to thank Dr. Syed Kamrul Islam

for giving me the opportunity to come to UTK for higher studies.

I would like to thank the Department of Electrical Engineering and Computer Science

at University of Tennessee, Knoxville for their excellent service throughout the course of my

degree. I would especially like to thank Dana Bryson, Linda Robinson and Melanie Kelley

for helping me with useful information and reimbursement procedures.

I am grateful to have had the opportunity to work with wonderful people during my

graduate studies. I would like to extend my gratitude to Md Sakib Hasan, Md. Badruddoja

Majumder, Samira Shamsir, Mohammad Habib Ullah Habib, Khandaker Abdullah Al

Mamun, Ava Hedayatipour, Shaghayegh Aslanzadeh, George Niemela, Sagarvarma Sayya-

paraju, Mohammad Aminul Haque and Sherif Amer.

Finally, I would like to thank my family and friends for their support throughout different

phases in life. These people made me the person I am today. This work would not have

been possible without their endless love, support and kindness.

iv

Abstract

Security of systems has become a major concern with the advent of technology. Researchers

are proposing new security solutions in order to meet the area, power and performance

specifications of the systems. The additional circuitry required for security purposes can

consume significant area and power. This work proposes a solution which utilizes discrete-

time chaos-based systems to address multiple hardware security issues. The nonlinear

dynamics of chaotic maps is leveraged to build a system that mitigates IC counterfeiting,

overbuilding, disables hardware Trojan insertion and enables authentication of connecting

devices (such as IoT and mobile). Chaos-based systems are also used to generate pseudo-

random numbers (PRN) for cryptographic applications.

The chaotic map is the building block for the design of discrete-time chaos-based

oscillator. The analog output of the oscillator is converted to digital value using a comparator

or analog-to-digital converter in order to build logic gates or generate PRNs. The chaos-

based logic gate is reconfigurable since parameters in the circuit topology can be altered

to implement multiple Boolean functions using the same system. The tuning parameters

are iteration number, control input, bifurcation parameter and threshold voltage of the

comparator.

The proposed PURCS system is a hybrid between standard CMOS logic gates and

reconfigurable chaos-based logic gates where original gates are replaced by chaos-based gates.

The system works in two modes: logic locking and authentication. In logic locking mode,

the goal is to ensure that the system achieves logic obfuscation in order to mitigate IC

counterfeiting. The secret key for logic locking is made up of the tuning parameters of

the chaotic oscillator. Each gate has 10-bit key which ensures that the key space is large

which exponentially increases the computational complexity of any attack. In authentication

v

mode, the aim of the system is to provide authentication of devices so that adversaries

cannot connect to devices to learn confidential information. Chaos-based computing system

is susceptible to process variation which can be leveraged to build a physical unclonable

function (PUF). The proposed system demonstrates near ideal PUF characteristics which

means systems with large number of primary outputs can be used for authenticating devices.

vi

Table of Contents

1 Introduction 1

1.1 Motivation and Research Goals . 1

1.1.1 Chaos-based Logic Gates and Functionality Space 1

1.1.2 Random Number Generation . 3

1.1.3 IC Counterfeiting . 3

1.1.4 Authentication . 5

1.1.5 Physically Unclonable and Reconfigurable System 6

1.2 Dissertation Overview . 6

2 Background 7

2.1 Introduction to Chaos Theory . 7

2.1.1 Classification of Chaotic Map . 8

2.1.2 Study of Chua’s Circuit . 8

2.2 Introduction to Chaos Computing . 11

2.2.1 Continuous-time Nonlinear System 13

2.2.2 Discrete-time Nonlinear System . 16

2.2.3 Digital Logic Obtained by Varying Iteration Number 19

2.2.4 Distinguishing Between (0,1) and (1,0) Input Pairs 20

2.2.5 Design of Multi-Input Multi-Output Logic Functions 21

2.3 Concluding Remarks . 22

3 Design of Chaotic Oscillator and Chaos-Based Logic Gate Using Three

Transistor Chaotic Map 24

vii

3.1 Design of Chaotic Map . 25

3.1.1 DC Transfer Characteristics of the Map 26

3.2 Design of Chaotic Oscillator . 27

3.2.1 Iterating through the Map . 30

3.2.2 Sensitivity to Initial Condition . 30

3.2.3 Ergodicity of the Chaotic Map . 30

3.2.4 Bifurcation Diagram . 31

3.2.5 Lyapunov Exponent . 31

3.3 Reconfigurable Chaos-based Logic Gates . 33

3.3.1 Introduction . 33

3.3.2 Design of Reconfigurable Chaos-based Gates 35

3.3.3 Complex Functions Obtained Using Single Chaotic Element 40

4 Expansion of Functionality Space Using Three Transistor Chaotic Map 45

4.1 Introduction . 45

4.2 Expansion of Design Space . 46

4.2.1 Comparison of Area and Power Overhead 47

4.2.2 Design Space Enhancement . 49

4.3 Application . 52

5 Four Gate Transistor Negative Differential Resistance (NDR) Based

Discrete-Time Chaotic Map 53

5.1 Background . 53

5.2 Four Terminal Transistor (G4FET) . 54

5.2.1 G4FET Operation . 56

5.3 G4FET Based Negative Differential Resistance 59

5.4 G4NDR Based Chaotic Map . 61

5.4.1 Design of Chaotic Oscillator Using G4NDR Based Map 62

5.4.2 Bifurcation Diagram and Lyapunov Exponent 62

5.5 Design of Logic Gates Using G4NDR Based Map 63

5.6 Expansion of Design Space Using G4NDR Map 63

viii

6 Pseudo-Random Number Generation (PRNG) Using Three Transistor

Chaotic Map 71

6.1 Introduction . 71

6.2 True Random Number Generator (TRNG) 72

6.3 Pseudo-Random Number Generator (PRNG) 73

6.3.1 Linear PRNG . 74

6.3.2 Nonlinear PRNG . 74

6.4 Proposed Lightweight and Reconfigurable PRNG 75

6.4.1 Chaotic Oscillator for PRNG Design 76

6.4.2 Correlation Coefficient . 79

6.4.3 Seed Sensitivity . 81

6.4.4 National Institute of Standards and Technology Tests 81

6.5 Overhead Analysis . 84

6.6 Application Lies in Security of IoT Devices 86

7 Physically Unclonable and Reconfigurable Computing System (PURCS) 87

7.1 IC Counterfeiting and Logic Locking . 87

7.1.1 IC Counterfeiting . 87

7.1.2 Background of Logic Locking . 89

7.1.3 Threat Model for Logic Locking . 90

7.1.4 IC Design Flow . 90

7.1.5 Issues Mitigated by Logic Locking . 91

7.1.6 Types of Logic Locking . 91

7.1.7 Techniques of Inserting Key Gates 93

7.1.8 Types of Key Gates . 93

7.2 Authentication and Physical Unclonable Functions (PUFs) 96

7.2.1 Authentication of Devices . 96

7.2.2 Types of Authentication Architectures 97

7.2.3 Process variation . 98

7.2.4 Background of Physical Unlconable Functions (PUFs) 98

ix

7.2.5 Classification of PUFs . 100

7.2.6 Chaos-based PUFs . 104

7.2.7 Authentication Protocol . 104

7.2.8 PUF Metrics . 106

7.3 Proposed Computing System (PURCS) . 107

7.3.1 Design of Chaotic Oscillator for PURCS System 108

7.3.2 Bifurcation Diagram . 108

7.3.3 Chaos-Based Logic Gate Implementation 110

7.3.4 Characterization of the Chaos-based Logic Gate 112

7.3.5 Functions Generated by the Logic Gate in Different ICs 113

7.3.6 Reliability of the Functions Generated from Logic Gate 113

7.3.7 Creating the Characterization Table 115

7.3.8 Replacement Algorithm . 117

7.3.9 Configuration Key of the Hybrid Circuit 119

7.4 Simulation and Results . 121

7.4.1 Logic Locking Results . 121

7.4.2 Authentication Results . 123

7.5 Security Performance . 125

7.5.1 Security of Logic Locked Circuits . 125

7.5.2 Security of PUFs . 133

7.6 Overhead Analysis . 136

7.7 Modes of Operation . 137

7.7.1 Logic Locking Mode . 139

7.7.2 Authentication Mode . 139

8 Contribution and Future Work 140

8.1 Original Contribution . 140

8.2 Future Work . 142

Bibliography 143

x

Appendices 164

A Random Number Generator . 165

A.1 SKILL Code for Modeling the Chaotic Oscillator 165

A.2 Matlab Code for Plotting the Bifurcation Diagram 169

A.3 Matlab Code for Plotting the Lyapunov Exponent 171

A.4 Matlab Code for Generating the Random Numbers 175

B PURCS System . 183

B.1 SKILL Code for Modeling the Chaotic Oscillator 183

B.2 Matlab Code for Creating the Characterization Table 185

B.3 SKILL Code for Generating Data for Monte Carlo Simulation 186

B.4 Python Code for Calculating the Controllability 192

B.5 Python Code for Calculating the Observability 195

B.6 Python Code for Calculating the Testability 200

B.7 Python Code for Solving a Given Netlist 204

B.8 Python Code for Replacing the Gates Based on Testability 207

B.9 Python Code for Calculating the Hamming Distance 209

Vita 218

xi

List of Tables

2.1 Necessary and sufficient conditions to obtain different logic functions from the

nonlinear dynamical element [43]. 17

2.2 One specific solution to yield different logic functions using logistic map [43]. 18

2.3 Necessary conditions to implement logic functions from nonlinear systems for

varying iterations [43]. 19

2.4 Necessary and sufficient conditions to build half-adder from the nonlinear

dynamical element [43]. 22

3.1 Evolution of chaotic oscillator output with number of iterations. (Vc= 690

mV , C = (111010)2 = 58, Vth = 1.03 V , n = 5) [63]. 42

3.2 Different configurations for 3-input 1-output instructions [63]. 42

3.3 Design of 1-bit full-adder using chaotic oscillator (Vc= 677.5 mV and C =

(011001)2 = 25). 43

3.4 Design of 3 × 8 decoder using chaotic oscillator (Vc= 710 mV and C =

(011001)2 = 25). 44

4.1 Overhead comparison of proposed work with previous work [150]. 48

5.1 Evolution of analog output from chaotic oscillator with different iterations

(µ1 = 0.95 MΩ, µ2 = 0 V, µ3 = 0 V , Cb = 0, Vth = 1.25 V). Functions are

represented in decimal value. 70

5.2 Three different configurations for six logic functions. 70

6.1 Correlation coefficient between the original sequence and the three cases. . . 82

6.2 NIST test results of the proposed PRNG [148]. 85

xii

6.3 Overhead comparison of established PRNGs with the proposed design [148]. 85

7.1 Evolution of chaotic oscillator output with number of iterations. (Vc= 552

mV , Cb = 1, Vth = 625 mV) [149]. 111

7.2 Characterization table of the 2-input reconfigurable chaos-based logic gate for

Vth = 625 mV [149]. 111

7.3 Characterization table of the reconfigurable chaos-based logic gate in different

chips for Vth = 625 mV [149]. 114

7.4 Percentage of gates replaced to reach almost 50% Hamming distance in

ISCAS’85 benchmark circuits [149]. 122

7.5 Results of standard PUF metrics for the benchmark circuits using testability

based replacement method [149]. 124

7.6 SAT attack on a logic locked circuit shown in Fig. 7.16b. [182]. 130

7.7 Result of machine learning based modeling attacks on PURCS system using

testability based replacement method [149]. 138

7.8 An estimate of transistor count in different logic locking schemes [149]. . . . 138

7.9 Estimation of transistor count for both PUF and logic locking in a system

with 30-bit key/challenge [149]. 138

xiii

List of Figures

2.1 Chua’s autonomous circuit [108]. 9

2.2 Double scroll attractor using Chua’s circuit. 9

2.3 Chaotic Chua’s attractor implemented in circuit to build logic gates [115]. . . 16

3.1 Three transistor chaotic map circuit designed in 65 nm process [150, 46]. . . 25

3.2 DC transfer characteristic of the three transistor map circuit [150]. 26

3.3 Traditional chaotic oscillator using buffer [85]. 28

3.4 Chaotic oscillator using two map circuits [150, 46]. 28

3.5 Iterating through the chaotic map. 28

3.6 Sensitivity of the chaotic oscillator to slight change in initial condition. . . . 32

3.7 (a)-(d): Sampled output of chaotic oscillator for Vin = 750 mV showing

different states as Vc is changed (a) Period 2 (b) Period 4 (c) Period 8 (d)

Chaotic region. 32

3.8 Bifurcation diagram of the chaotic oscillator [148]. 34

3.9 Lyapunov exponent of the chaotic oscillator [148]. 34

3.10 A basic 2-input chaogate using a single chaotic oscillator [139]. 34

3.11 Chaotic oscillator is shown in the dotted box. Two-input chaos-based logic

gate including digital encoding of the inputs and digital decoding of the

outputs [86]. 36

3.12 Two-input reconfigurable chaos-based logic gate demonstrating all the tuning

parameters in red circles. 36

3.13 Three-bit DAC for encoding digital inputs to analog values [86]. 38

3.14 Decoder which converts final states to digital outputs [86]. 38

xiv

3.15 Multi-input multi-output reconfigurable chaos-based logic gate [63]. 40

3.16 1-bit full-adder designed using chaotic oscillator [63]. 42

3.17 3× 8 decoder designed using chaotic oscillator [63]. 43

4.1 Transient response of the chaotic oscillator displaying that Vc is changed cycle

to cycle [150]. 48

4.2 Comparison between the functionality space of the proposed work with

existing work for varying number of iterations [150]. 51

4.3 Number of individual functions increases linearly with the total functionality

space [150]. 51

5.1 Four gate transistor (G4FET) (a) Structure (b) Symbol [7]. 55

5.2 Cross-section of the G4FET device [64]. 55

5.3 Traditional 2-terminal JFET NDR [163]. 55

5.4 Tunable NDR made with n- channel and p- channel G4FETs (a) Circuit (b)

Symbol [9]. 58

5.5 Transfer characteristics of G4NDR. 58

5.6 G4NDR based discrete-time chaotic map which has three bifurcation param-

eters (a) Circuit (b) Symbol. 60

5.7 Transfer curve of the G4NDR map circuit for varying µ1. 60

5.8 G4NDR based chaotic oscillator using buffer in the feedback. 64

5.9 G4NDR based chaotic oscillator using another G4NDR map in the feedback. 64

5.10 (a) Bifurcation diagram and (b) Lyapunov exponent of the chaotic oscillator

for varying µ1; µ2 = 0 V , µ3 = 0 V . 65

5.11 (a) Bifurcation diagram and (b) Lyapunov exponent of the chaotic oscillator

for varying µ2; µ1 = 1 MΩ, µ3 = 0 V . 66

5.12 (a) Bifurcation diagram and (b) Lyapunov exponent of the chaotic oscillator

for varying µ3; µ1 = 1 MΩ, µ2 = 0 V . 67

5.13 G4NDR based reconfigurable logic gate. 67

5.14 Comparison of functionality space among proposed and previous works. . . . 70

xv

6.1 4-bit linear feedback shift register [151]. 73

6.2 Chaotic oscillator. The dotted lines represent the chaotic map [148]. 78

6.3 Proposed pseudo-random number generator [148]. 78

6.4 Distribution of correlation coefficient. 80

6.5 Seed sensitivity of the PRNG for slight changes in the seed. 80

7.1 IC design flow with logic locking capabilities [132]. 91

7.2 (a) Unlocked circuit (b) Locked circuit with three XOR/XNOR gates [132]. 92

7.3 Arbiter PUF [54]. 103

7.4 Generic strong PUF based authentication protocol [161]. 103

7.5 Reconfigurable 2-input chaos-based logic gate designed using chaotic oscilla-

tor, comparators and DAC [149]. 109

7.6 Transient response of the chaotic oscillator [149]. 109

7.7 Number of AND, OR and XOR functions in 10 chips [149]. 114

7.8 Effect of temperature variation on the oscillator output (Vin = 193.2 mV and

Vc = 490 mV). 116

7.9 Effect of supply voltage variation on the oscillator output (Vin = 193.2 mV

and Vc = 520 mV). 116

7.10 Algorithm for replacing gates using testability method [149]. 120

7.11 (a) Unobfuscated circuit from ISCAS’85 benchmark suite (b) Obfuscated

circuit where two NAND gates are replaced with reconfigurable chaos-based

logic gates and the secret key is 20 bits long [149]. 120

7.12 Hamming distance vs. percentage of gates replaced in ISCAS’85 benchmark

circuits (a) Gates replaced randomly (b) Gates replaced by measuring

testability [149]. 122

7.13 Post-processing scheme for authentication [149]. 124

7.14 Circuit to determine distinguishing input patterns (DIPs) [182]. 127

7.15 Logic locking example (a) Original circuit (b) Locked circuit [160]. 127

7.16 Logic locking second example (a) Original circuit (b) Locked circuit [182]. . . 130

xvi

7.17 SAT attack implemented on C432 benchmark circuit for varying percentage

of gates and key sizes [149]. 130

7.18 (a) Logic locking mode (b) Authentication mode. 139

xvii

Chapter 1

Introduction

Hardware is a fundamental and root of trust component in any security system. Recently,

many software-based security solutions have been migrated to hardware in order to mitigate

security threats. All cryptographic protocols rely on two basic assumptions: 1) read-

proof hardware that prevents the adversary from learning the contents stored 2) tamper-

proof hardware that prevents the adversary from altering the information stored. Existing

cryptographic algorithms are stored in tamper-proof hardware which the adversary has

knowledge of, but cannot change the content. There is also a secret key involved which

is stored in read-proof as well as tamper-proof hardware which the adversary does not

know about and cannot change either. It has been brought into light that hardware is also

vulnerable to security threats and that adversaries can learn information from the systems

using reverse engineering, testing and side-channel analysis.

1.1 Motivation and Research Goals

1.1.1 Chaos-based Logic Gates and Functionality Space

In the 1960s, Gordon Moore predicted that the number of transistors in a chip will double

every two years. This hypothesis has been true for a long time. As technology is scaling,

designers are able to integrate more transistors in an IC but it comes at a cost of short

channel effects and heat production in a chip due to increased density of transistors per

1

square area. A solution is to build gates that can implement multiple functionalities using

the same system by altering the circuit parameters.

Researchers have studied chaos theory for the past few decades and proposed to build

a chaos-based computing system which utilizes chaos-based logic gates. These logic gates

are reconfigurable and capable of implementing multiple functions by tweaking different

parameters in the system. This feature of chaos-based logic gates can be leveraged to reduce

the number of gates in a system. Chaos-based logic gates are comparable to look-up tables

(LUTs). The hardware required for increasing the number of inputs scales exponentially

in LUTs due to usage of SRAMs, MUXs and inverters. In chaos-based logic gates, the

only component that needs to be scaled for increased input is the digital-to-analog-converter

(DAC) which is used at the input of the chaotic oscillator and the rest of the system remains

unchanged. It is also possible to design complex functions (multi-input multi-output) such

as adder, subtractor, decoder and encoder using the complex dynamical systems.

Chaos-based logic gates have additional overhead compared to conventional CMOS logic

gates. One way to justify the additional hardware cost is to ensure that a single chaos-

based logic gate possesses a huge functionality space. Here, functionality means the Boolean

function as well as the configuration of the chaos gate in order to achieve that function. The

functionality space is large if there are numerous ways to execute the same Boolean function.

This work explores two types of discrete-time chaotic maps, three transistor map and

a G4NDR based map. The goal is to design a chaos-based logic gate which has multiple

tuning parameters to change the logic function of the gate. The parameters are bias

voltages (bifurcation parameters), threshold voltage, control bit and iteration number. Bias

voltages are chosen from the chaotic region using the bifurcation diagram. Changing the

bias voltage in each cycle of the chaotic oscillator can lead to an increase in the entire

functionality space and number of individual functions with respect to iteration number.

The three transistor map has one bifurcation parameter whereas the G4NDR map has

three independent bifurcation parameters. The three bifurcation parameters enhance the

functionality space without using a very high value of iteration number.

The increase in functionality space can be applied to security of computing systems

against power analysis based side channel attack. The attacker learns the power profile of

2

the executed instructions on the processor and tries to decipher the code by making an

educated guess based on the collected data. Chaos-based logic gates can help in mitigating

this attack since different functions can be executed using the same reconfigurable block and

the power signature of different instructions will be difficult to classify.

1.1.2 Random Number Generation

Good quality random number generators (RNG) are required for cryptographic applications.

Linear RNGs repeat after a short period which makes it unsuitable for security applications.

If the period needs to be extended then the circuit design becomes very complex and

performance overhead increases. Chaotic systems are nonlinear dynamical systems which

maps inputs to outputs in a deterministic but random manner. A lot of research has been

done on using chaotic systems such as logistic map, tent map and sine map to be used as a

pseudo-random number generator (PRNG). These maps are mathematical equations which

can require a handsome amount of hardware to be implemented in an IC.

The goal of this work is to use a simple three transistor chaotic map which portrays

chaotic behavior because it has non-monotonic transfer characteristics. A chaotic oscillator

is used to map the inputs to outputs. The output of the oscillator is analog so the output is

converted to digital value using 10-bit ADC. The least significant bit (LSB) or the 10th bit of

the ADC is used since it has the most entropy. A single chaotic oscillator is not sufficient for

the sequence to pass all the NIST tests. Two chaotic oscillators are used and the outputs are

XORed to ensure that the generated sequence passes the NIST tests and that the sequence

can be used for security applications. G4NDR based discrete-time chaotic map can also be

used to generate random numbers.

1.1.3 IC Counterfeiting

Silicon fabrication facilities are very expensive to build, maintain, operate and manage due

to which many U.S. high-tech companies have gone fabless in recent years. In 2015, the cost

of building a new semiconductor fab was approximately calculated to be $5 billion dollars

along with large recurring maintenance costs [185]. The cost will keep on increasing as the

3

technology scales down to smaller technology nodes. This has led to the globalization of

the Integrated Circuit (IC) supply chain and the fabrication of the chips are outsourced

to multiple facilities in the design flow process. However, the globalization of IC design

is making it easier for adversaries in the supply chain to overbuild ICs, pirate ICs and add

hardware Trojans to the design. The semiconductor industry loses $4 billion dollars annually

due to counterfeiting issues [87, 78].

Researchers have proposed various solutions to mitigate counterfeiting such as watermark-

ing, split manufacturing, IC camouflaging and logic locking. Among all these techniques,

logic locking has gained the most attention because it can protect the IC content throughout

the entire IC design flow. Logic locking adds extra gates to the IC design in order to hide

the original functionality of the design. If conventional XOR/XNOR gates are added, then

the attacker can reverse-engineer the layout in order to figure out the netlist. The attacker

can apply different keys and match it with the outputs of a functional IC bought from the

market. The XOR gates are just standard gates added to the design and attackers can utilize

techniques such as FIBing to bypass the XOR logic.

The goal of this work is to provide logic obfuscation by replacing some standard CMOS

gates with chaos-based logic gates. The chaos-based logic gates will be difficult to bypass

because they replace original circuitry. Moreover, each chaos-based logic gate has 10-bit

key whereas each XOR gate can only provide 1-bit key. The 10-bit key is made up of the

tuning parameters in the circuit topology such as iteration number, control bit, bifurcation

parameter and threshold voltage of the comparator. Hamming distance between correct and

wrong output is measured and the aim of the design is to ensure that half of the output

bits are corrupted. In order to achieve 50% Hamming distance with lower overhead, the

chaos-based logic gates are replaced using testability based method. Boolean SAT attack

has been implemented on a single benchmark circuit and the attack complexity increases

exponentially due to increase in number of replaced gates and increase in key size for a fixed

percentage of gates replaced.

4

1.1.4 Authentication

Due to technology advancement, smart devices have become a major part of everyone’s life.

Application of smart devices can range from mobile phones to smart cities. All the devices

are connected to each other and it is essential to ensure that information is being exchanged

between two authentic parties. Authentication of devices is important otherwise attackers

can steal confidential information such as passwords. The devices are usually used in an

untrusted zone and the adversary might have physical access to the system. The solution

to saving confidential information is to install a key unique to each device which can be

achieved by using a physical unclonable function (PUF).

PUFs demonstrate unique characteristics in each IC due to the process variation in the

manufacturing process. Each device will respond differently to inputs because of slight

changes in the internal characteristics of the device due to fabrication procedure. The input

to a PUF is called “challenge” and the output is called “response”. If the PUF has many

challenge-response pairs, then it is impossible for the attacker to model the PUF. Even the

manufacturer will not be able to replicate the same PUF if the same manufacturing process

is executed.

Chaotic systems are vulnerable to small changes in the initial condition. During the

manufacturing process, the internal characteristics of the circuit will be slightly altered

which means that the same circuit in different ICs will respond differently to inputs. The

hybrid system of CMOS gates and chaos-based logic gates, discussed earlier, can be used as

a PUF. The chaotic oscillator will map the current states to future states in a unique manner

in each IC due to process variation. The output of the system requires post-processing to be

used for authentication purposes. The post-processing technique adds very little overhead

to the design. The system demonstrates ideal PUF characteristics such as uniqueness, bit-

aliasing and uniformity. The immunity of the hybrid system has been tested against common

machine learning based attacks.

5

1.1.5 Physically Unclonable and Reconfigurable System

A single computing system is proposed that can provide both authentication and logic

locking. It is possible to provide both features because chaos-based logic gates are used

in the design. Each chip needs to be characterized after fabrication since process variation

will change the functionality of the system. The correct keys can be stored in a tamper-proof

memory for correct functionality in logic locking mode. In authentication mode, the keys and

primary inputs make up the “challenges” to the system. The “challenges” are provided from

the verifier using the CRP table in the authentication protocol. The PURCS system behaves

like PUF due to the unclonability feature present due to the effects of process variation. The

overhead of the system is significantly lower compared to a system that contains hardware

for both logic locking and authentication purposes.

1.2 Dissertation Overview

The dissertation is organized as follows. Chapter 2 introduces chaos theory and how

chaos can be used to make computing systems. Chapter 3 discusses the three transistor

discrete-time chaotic map and oscillator and focuses on features such as bifurcation diagram,

Lyapunov exponent and transfer characteristics of the map. The functionality enhancement

technique of the three transistor chaotic system is discussed in chapter 4. In chapter 5, a

novel G4NDR based discrete-time chaotic map is introduced and its functionality space is

explored. Pseudo-random number generator designed using the three transistor chaotic map

is discussed in chapter 6. Chapter 7 elaborates on how a single system containing chaos-based

logic gates can be utilized to obtain both authentication of devices and logic obfuscation to

mitigate counterfeiting. Chapter 8 contains the contribution of the entire dissertation and

discusses the future direction of the proposed work.

6

Chapter 2

Background

2.1 Introduction to Chaos Theory

Chaos has generated a lot of research interest in the past few years. Chaos is present in

many disciplines such as engineering, biology, chemistry, medicine and physics. Chaotic

phenomena is found in electronic circuits, lasers, chemical systems, hearts and brains. The

discovery of chaos along with quantum mechanics and theory of relativity are considered

the three monumental scientific findings of the twentieth century. Lorenz described chaos

as a deterministic non-periodic flow of a system’s state through its entire state space [100].

Chaotic behavior is present in a range of natural and made-made systems starting from

weather to integrated circuits. Chaotic systems have two important features:

1. High sensitivity to initial conditions.

2. The behavior is apparently random but deterministic.

Chaotic systems are hard to predict, difficult to study and change their behavior

very fast over time. Chaotic systems are aperiodic in nature and even though they are

finite, they never converge to any value. Chaotic behavior of systems open up new

areas of applications in the field of engineering, annealing noise of networks, chaos-based

communication systems and chaotic neural networks [72, 69]. Design of chaos-based systems

should have a simple structure and most importantly they should be compatible with

standard CMOS technologies. Deterministic chaos can be used to implement electronic

7

random signal generators by leveraging their sensitivity to initial conditions which is also

known as the butterfly effect. A chaotic system is ideal for encryption schemes since it is

extremely difficult to predict their long-term behavior [11, 12].

2.1.1 Classification of Chaotic Map

Chaotic maps can be classified into two types.

One-dimensional (1D) Chaotic Map

One-dimensional chaotic maps are mathematical systems that capture the evolution of a

single variable in discrete time. Examples of 1D map are Gauss map, logistic map and tent

map. 1D maps are easy to implement and have simple structures. However, they suffer

from some weaknesses such as small parameter number, the outputs are predictable with

low reverse-engineering cost and their dynamic range is limited.

High-dimensional (HD) Chaotic Map

High-dimensional (HD) maps are mathematical systems which model the evolution of at

least two variables in discrete time. Examples of HD maps are Lorenz system, Henon map,

Chen and Lee system and hyperchaotic systems. HD maps have better chaotic performance

and their chaotic sequences are harder to predict in comparison to 1D maps. However, HD

maps are difficult to implement in hardware and they incur high computational cost. This

limitation does not allow designers to use them in real-time applications.

2.1.2 Study of Chua’s Circuit

The study of the complex behavior of nonlinear dynamical systems can be easily done by

using Chua’s autonomous circuit as shown in Fig. 2.1. Chua’s circuit was the first chaotic

system that has been derived [32], diligently studied [31] and physically confirmed [108].

The simple circuit can be used to study the characteristics of dynamical systems such as

period doubling, bifurcation, chaos and attractors. Chua’s circuit represents a continuous-

time dynamical system. The circuit is made up of a capacitor, C2 and inductor, L in

8

Figure 2.1: Chua’s autonomous circuit [108].

Figure 2.2: Double scroll attractor using Chua’s circuit.

9

parallel which makes up the lossless resonant component. The conductance, G provides the

coupling between nonlinear resistor, R and the capacitor, C1 in parallel with it. The transfer

characteristic of the nonlinear resistor is a three-segmented piecewise curve.

The nonlinear element, R can be designed in several ways in practice. It has been

designed with a single operational amplifier (op-amp), two diodes and resistors [109], two

bipolar transistors, two diodes and resistors [31] and two op-amps and six resistors [84].

Initially, the system demonstrates a transient response by finally settling into a steady-state

response. The steady-state response is also known as the attractor of the system which

means that the passive part of the system can have many different initial conditions but

eventually the system converges to the same steady-state behavior. The control parameter

in the circuit is the conductance, G and small or large changes in its values causes the current

and voltage of the passive elements to portray the same values after a certain period. The

period of repetition of the values is the same as the driving force so the system is called

a period-one attractor. As the value of the conductance increases, the period of repetition

doubles from the period-one solution and the system displays a discontinuous change in the

response known as bifurcation.

Period doubling is a universal phenomenon in nonlinear dynamical systems. The

same behavior can be observed in many physical systems such as the forced movement

of pendulum. Period doubling cascade is a common behavior of chaos-based systems. In

any chaotic circuit, it can be seen that period-two doubles to period-four and period-four

doubles to period-eight. Small changes in the control parameter can create an endless series of

period doublings representing all the characteristics of the chaotic attractor. An interesting

property of chaos is that infinite number of periodic solutions from all periods exist with

chaos. Slight tuning of the control parameter can result in absence of chaos and instead a

periodic solution appears. The chaotic attractor can suddenly reappear after the conductance

is changed minutely. This behavior is known as the appearance of periodic window [70]. The

existence of the periodic windows prove that a chaotic solution is available rather than noise.

A demonstration of double scroll chaotic attractor using Chua’s circuit is shown in Fig. 2.2.

10

2.2 Introduction to Chaos Computing

Chaos-based systems generate sequences and their sensitivity to initial conditions allows

them to switch between different sequences exponentially fast. Even lower dimensional

chaotic systems can exhibit a variety of behaviors depending on their initial condition,

function of time or parameters. Chaos-based systems are popular for their rich temporal

behavior and determinism for applications in computation with contrast to stochastic and

linear systems. Linear systems will not be able to generate all the possible logic functions

because their temporal patterns are inherently limited. As a result, linear systems do

not have versatility and reconfigurability. On the other hand, stochastic systems contain

many temporal patterns but the sequences are not deterministic so they cannot be used for

computing purposes.

Nonlinearity is an essential feature in order to generate all the logic functions but chaos

may not always be required. In some maps, all the functions exist only when the system

is chaotic. The amount of nonlinearity necessary for producing all the Boolean functions

depends on the chosen system and the technique that is used to generate the input-output

mapping. It is also possible that some systems will generate logic functions without actually

being in the chaotic region.

Boolean functions can be generated from chaotic systems by tuning the control

parameters in both continuous-time and discrete-time systems. Sensitivity to initial

conditions can be leveraged to achieve fast switching between all the logic gates generated by

chaos-based system. The chaos-based computing systems can be made of arrays of chaotic

elements that can be individually programmed to generate all the possible Boolean functions.

The array of chaotic elements can then be used to perform higher order functions such

as memory, arithmetic logic and input/output operations and the system will be able to

switch rapidly between different function executions. The chaotic computing system will be

able to provide the reconfigurability of field programmable gate arrays (FPGA), the speed

and optimization of application specific integrated circuits (ASIC) and the general usage of

central processing unit (CPU) within the same architecture [45]. Chaos-based logic gates

11

can be beneficial for many research areas such as hardware security, reliability enhancement

and reconfigurable logic.

It was proposed in 1998 that chaotic systems can be used to design computing systems

[154]. When the research on chaos computing started, the motivation was to prove that

chaotic systems can be exploited to perform universal computing. The main objective was to

leverage the sensitivity to initial conditions and sequence generation features. In later years,

researchers found out that chaotic elements are reconfigurable and are able to generate all the

logic functions by using a thresholding mechanism [113, 155]. Traditional programmable gate

array elements achieve their reconfigurability and flexibility through the usage of multiple

single function logic gates whereas chaotic elements are able to perform several functionalities

using the same chaotic element. Sinha et al. demonstrated that dynamical systems are able

to encode numbers, perform arithmetic operations such as multiplication and addition and

also calculate least common multiplier from a list of integers [154]. Murali et al. built an

universal NOR gate using continuous-time chaotic Chua’s circuit [115]. Rizk et al. designed

a universal logic gate which can perform all logic functions such as AND, OR, NAND, NOR

and XOR using Chua’s circuit [136]. Chaos-based system has been used to design flip-flops

which is a building block for memory elements [27].

The method of thresholding provides a flexible tool for controlling chaos and there can

be a wide variety of applications ranging from engineering to biology [114]. The strategy

is to monitor one state variable and changing its value when it exceeds a certain threshold.

In this type of control mechanism, computation and run time knowledge is not required to

gain the desired controllability. The method only involves monitoring a single state variable

and other parameters are not changed in the system. The thresholding mechanism does not

stabilize unstable periodic orbits instead, it focuses on clipping the desired time sequence

and enforces a periodicity of the sequence by resetting the initial conditions. Chaos-based

systems are ideal candidates for this controlling mechanism because it possesses a wide range

of temporal patterns which can be clipped to demonstrate different behaviors.

When chaos-based logic gates are implemented in VLSI technology, the input and output

should have the same level which allows a direct connection between different gates without

12

the need of level converters. In [137], researchers proposed a method that allows continuous-

time chaos-based system to be morphed into any logic function by using thresholding

mechanism while keeping the input and output level unaltered.

In the earlier days, two-input reconfigurable chaotic logic gates (chaogate) were built and

were capable of generating all the Boolean functions [117, 115, 116]. Researchers have also

demonstrated the design of multiple-input logic gates using chaotic elements which reduces

area overhead and propagation delay in circuits. Multiple-input chaotic elements would have

a wider range of applications, more power efficient and demonstrate higher performance.

The advantages of using chaogate are:

• Fast switching between different logic functions using the same chaos-based logic gate.

• Ability to perform complex instructions which require complex design of logic gates.

• Reduction in transistor count for performing complex tasks.

Dynamical systems can be of two types, continuous-time and discrete-time. A discrete-

time system is also known as an iterated map. In order to design a nonlinear iterated map,

the output of the map has to feedback to the input. A dynamical system maps the initial

condition to future states which is identical to a function mapping its inputs to the outputs.

Examples of both types of systems are described in sections below.

2.2.1 Continuous-time Nonlinear System

Digital logic can be obtained from a continuous-time nonlinear system. The nonlinear system

is defined by the following equation:

dx

dt
= F(x, t). (2.1)

where x are the state variables x1, x2, x3....xN and F is the nonlinear function. In this

system, if x1 is chosen to be thresholded by E, then x1 = E whenever x1 is greater than E.

13

In continuous-time systems, 2-input 1-output logic functions are realized by choosing an

input-dependent threshold voltage represented by:

E = Vc + I1 + I2. (2.2)

where Vc represents the dynamic control signal which chooses the functionality of the

processor and I1 and I2 are inputs to the logic gate. As mentioned earlier, I1 or I2 has a

value of 0 when logic input is zero and has a value of Vin when logic input is high. Threshold,

E is equal to Vc when I1 and I2 are (0, 0), Vc+Vin when I1 and I2 are (0, 1) or (1, 0) and

Vc+2Vin when I1 and I2 are (1, 1).

The output, V0 is interpreted as logic 0 if x1 < E and V0 = 0. The logic output is 1, if x1

> E and V0 = (x1–E) ∼ Vin. For example, in order to implement a NOR gate (Vc = VNOR),

the following equations must hold true:

1. when inputs are (0, 0), logic output is 1, which implies that E = VNOR, output is V0

= (x1–E) ∼ Vin.

2. when inputs are (0, 1) or (1, 0), logic output is 0, which implies that E = VNOR+Vin,

x1 < E so output is V0 = 0.

3. when inputs are (1, 1), logic output is 0, which implies that E = VNOR+2Vin, x1 < E

so output is V0 = 0.

An example of a continuous-time chaotic map is the double-scroll chaotic Chua’s circuit

which is represented by the following set of differential equations:

ẋ1 = α(x2 − x1 − g(x1)). (2.3)

ẋ2 = x1 − x2 + x3. (2.4)

ẋ3 = −βx2. (2.5)

where x1, x2 and x3 are the input variables, α and β are system parameters and g(x) is

a characteristic function described below in equation 2.6.

14

gx = m1x+ 1/2(m0 −m1)(|x+ 1| − |x− 1|). (2.6)

Realization of Multiple-Input Logic Gates

Previously, 2-input logic gates have been discussed and in this section we discuss about

designing 3-input logic gates using chaotic elements. Here, continuous-time system is chosen

as discussed in section 2.2.1 to demonstrate the functionality of 3-input logic gates. In this

system, if a state variable, x1 is chosen to be thresholded, then whenever the value of the

variable exceeds the threshold, E, x1 resets to E. The value of E is selected based on the

logic inputs, I1, I2 and I3. The equation of the threshold for 3-input logic gate is given by:

E = Vc + I1 + I2 + I3. (2.7)

where Vc is the dynamic control signal determining the functionality of the system. By

changing the value of Vc, the logic operation can be changed.

I1 or I2 or I3 has a value of 0 when logic input is zero and has a value of Vin when logic

input is high. Threshold, E is equal to Vc when I1, I2 and I3 are (0, 0, 0), Vc+Vin when I1,

I2 and I3 are (0, 0, 1) or (0, 1, 0) or (1, 0, 0), Vc+2Vin when I1, I2 and I3 are (0, 1, 1) or (1,

0, 1) or (1, 1, 0) and Vc+3Vin when all the inputs are (1, 1, 1).

As discussed before, the output is interpreted as logic 0 if x1 < E and V0 ∼ 0. The logic

output is 1 if x1 > E, and V0 = (x1–E) ∼ Vin. In order to design logic gates like NOR and

NAND, knowledge of the dynamics of the nonlinear system is required in order to choose

the values of Vc and V0.

The differential equations 2.3, 2.4 and 2.5 are used to represent the double-scroll chaotic

Chua’s attractor. The chaotic system that implements the attractor is shown in Fig. 2.3.

In the figure, E = Vc + I1 + I2 + I3 known as the dynamically varying threshold voltage.

Voltage, VT represents the signal from the threshold controller and V0 is the difference voltage

signal. The state variable, x1 which is represented by voltage V1 is thresholded by the control

circuit with voltage E setting different threshold voltages. Equation 2.4 is changed from

15

dx2/dt = x1 – x2 – x3 to dx2/dt = E – x2 – x3 only if x1 > E, otherwise, no controlling

action takes place.

The classical Chua’s circuit in Fig. 2.3 works in the following manner:

1. When the value of E is greater than the value of V1, diode, D turns on. The circuit

now acts as a voltage follower and voltage, VT is equal to V1.

2. When the value of E is less than the value of V1, diode, D is off and voltage, VT is the

same as voltage, E.

2.2.2 Discrete-time Nonlinear System

In discrete-time dynamical systems, the chaos is generated by using a set of differential

equations known as a chaotic map. A discrete-time chaotic map can be used where the

state is represented by variable, x. In order to generate responses by utilizing the different

patterns generated by chaotic circuits, a thresholding mechanism can be used to generate

AND, OR, NAND, NOR, XOR and NOT functions [44]. The simple steps used to make

logic gates from chaotic systems is given below:

Figure 2.3: Chaotic Chua’s attractor implemented in circuit to build logic gates [115].

16

Table 2.1: Necessary and sufficient conditions to obtain different logic functions from the
nonlinear dynamical element [43].

Logic Gate I1, I2 Output Necessary condition

AND

(0,0) 0 f(xAND) < E

(0,1), (1,0) 0 f(xAND+Vin) < E

(1,1) 1 f(xAND+2Vin) ≥ E

OR

(0,0) 0 f(xOR) < E

(0,1), (1,0) 1 f(xOR+Vin) ≥ E

(1,1) 1 f(xOR+2Vin) ≥ E

XOR

(0,0) 0 f(xXOR) < E

(0,1), (1,0) 1 f(xXOR+Vin) ≥ E

(1,1) 0 f(xXOR+2Vin) < E

NOR

(0,0) 1 f(xNOR) ≥ E

(0,1), (1,0) 0 f(xNOR+Vin) < E

(1,1) 0 f(xNOR+2Vin) < E

NAND

(0,0) 1 f(xNAND) ≥ E

(0,1), (1,0) 1 f(xNAND+Vin) ≥ E

(1,1) 0 f(xNAND+2Vin) < E

1. Inputs:

x→ x0 + I1 + I2. (2.8)

x→ x0 + I. (2.9)

Equation 2.8 is the state equation for two-input logic gates and similarly equation 2.9

represents the state condition for single input gates. Here x0 is the initial state of the

system, I = 0 for logic input zero and I = Vin for logic input high.

2. Dynamical system:

x→ f(x). (2.10)

Here f(x) represents a highly nonlinear function.

17

3. Threshold mechanism:

V0 =

0, if f(x) ≤ E

f(x)− E, otherwise.

(2.11)

Here, E represents the threshold.

In a chaotic system, if the initial state is required to be set accurately, then a controlling

mechanism is required. A threshold controller can be used to set the initial state, x0. It is

also important to ensure that the input and output have equivalent definitions for different

logical operations. In order to ensure this condition, same Vin is used throughout the system

and this will allow the output of one chaotic element to couple with the input of another

chaotic element. An example of discrete-time chaotic map is the well-known 1-D function

called logistic map which is implemented using the following equation:

f(x) = ax(1− x). (2.12)

where x ∈ [0, 1] and the variable, a determines whether the system is in chaotic or

periodic region. The characteristic of logistic map is analogues to biological and physical

phenomena. Nonlinear oscillators and electrical circuits portray such phenomena. The

logistic map generates sequences in real number domain and needs to be converted to binary

representation in order to be used in different applications.

Table 2.1 shows the necessary conditions that must be fulfilled in order to implement the

different logic gates. If logistic map is used as the chaotic element, then typical values of x0

and E are shown in Table 2.2. The value of a from equation 2.12 is equal to 4 and Vin equals

1/4 for all logic gates [43].

Table 2.2: One specific solution to yield different logic functions using logistic map [43].

Operation AND OR XOR NAND

x0 0 1/8 1/4 3/8

E 3/4 11/16 3/4 11/16

18

In chaos computing, a set of initial conditions and parameters need to be determined to

produce logic functions from a specific chaotic system. A set of parameters can produce the

results for a logical OR or a logical AND. The parameters can be stored as a ”lookup-

table” for future computations. There might be conditions or parameters that do not

generate desired logical functions and those parameters can be discarded. The chosen set of

parameters should lead to the correct output.

2.2.3 Digital Logic Obtained by Varying Iteration Number

In addition to perturbing the initial condition of the nonlinear dynamical system, digital

logic can also be obtained from the time evolution of the states. This concept is stating

that logic gate can be obtained if the initial condition is kept fixed and output is sampled at

different iterations, then it is possible to obtain multiple logic functions. The advantage of

this technique is that a single system will be able to perform complex operations efficiently.

In section 2.2.2, it was shown how different logic functions like AND, OR and XOR were

obtained by sampling at a fixed iteration. With varying iterations, it is possible to obtain an

AND logic in the first iteration and an OR logic in the second iteration. Hence, a sequence of

logical or mathematical operations can be performed as smoothly as a single operation. As

discussed previously, for two-input logic operation the initial state is given by the following

equation:

x→ x0 + I1 + I2. (2.13)

Here, x0 is the initial state, I = 0 for logic input zero and I = Vin for logic input high.

Table 2.3: Necessary conditions to implement logic functions from nonlinear systems for
varying iterations [43].

Logic AND OR XOR NOR NAND

Iteration n 1 2 3 4 5

Input (0, 0) x1=f(x0) < E f(x1) < E f(x2) < E f(x3) > E f(x4) > E

Input (0, 1), (1, 0) x1=f(x0 + Vin) < E f(x1) > E f(x2) > E f(x3) < E f(x4) > E

Input (1, 1) x1=f(x0 + 2Vin) > E f(x1) > E f(x2) < E f(x3) < E f(x4) < E

19

After n iterations, the output is determined by using the following equations:

V0 =

0, if fn(x) ≤ E

fn(x)− E, otherwise.

(2.14)

Here, E is the threshold.

The main difference from the previous approach is that n is the tuning parameter and

it is varied to implement different logic functions. In earlier approach, n was held constant

at the first iteration, i.e. n = 1 and Vc was tuned to change the mapping of input-output

patterns. The inputs set up the initial condition of the system using equation 2.13. The

system evolves over n iterations and reaches the final state, xn. The final state is compared

with a predetermined threshold, E. If the state is greater than E, the output is 1, otherwise

the output is 0. Table 2.3 shows the necessary conditions to implement logic functions

from nonlinear dynamical systems by altering the iteration number and keeping the initial

condition fixed.

2.2.4 Distinguishing Between (0,1) and (1,0) Input Pairs

Section 2.2.2 describes a discrete-time nonlinear system that cannot distinguish between the

input pairs (0,1) and (1,0). There might be cases where it is required that the two pairs

generate different logical outputs. In this technique, a two-input logic gate is considered

with inputs, I1 and I2. The initial condition is generated by the following equation:

x→ x0 +X1 +X2. (2.15)

where X1 = 0 when I1 = 0 and X1 = Vin when I1 = 1. X2 = 0 when I2 = 0 and X2 =

2Vin when I2 = 1. Vin is a positive constant.

All the input combinations are considered below:

1. I1 = I2 = 0 so x = x0+0+0 = x0.

2. I1 = 1, I2 = 0 so x = x0 + Vin + 0 = x0 + Vin.

3. I1 = 0, I2 = 1 so x = x0 + 0 + 2Vin = x0 + 2Vin.

20

4. I1 = 1, I2 = 1 so x = x0 + Vin + 2Vin = x0 + 3Vin.

The above encoding of the inputs treats (0,1) and (1,0) as separate input combinations

and hence can implement asymmetric logic functions. Logic outputs are determined in

the same manner as in equation 2.11. Symmetric gates can also be evaluated using this

scheme which is capable of generating all the 16 possible Boolean functions in contrast to

the maximum 8 functions when (0,1) and (1,0) were equivalent. The designer needs to

determine values for the threshold, E, constant Vin and initial state, x0 to implement the

logic gates.

Another method of distinguishing the input pairs is to utilize the iteration number, n by

using the following equation:

n→ n+X1 +X2. (2.16)

The above equation yields four distinct conditions.

1. I1 = I2 = 0 so n = n+0+0 = n.

2. I1 = 1, I2 = 0 so n = n + Vin + 0 = n + Vin.

3. I1 = 0, I2 = 1 so n = n + 0 + 2Vin = n + 2Vin.

4. I1 = 1, I2 = 1 so n = n + Vin + 2Vin = n + 3Vin.

After n evolution in time, the final state is achieved and fn(x) is the desired output.

2.2.5 Design of Multi-Input Multi-Output Logic Functions

Combinational logic can be implemented by a single chaotic element. An example can be bit-

by-bit arithmetic addition which involves two logic gates, an AND gate to generate the carry

and an XOR gate to generate the sum. Using the previously mentioned scheme, the half-

adder operation can be obtained in consecutive iterations. Table 2.4 shows the necessary

conditions for implementing half-adder using a single chaotic element.

21

Table 2.4: Necessary and sufficient conditions to build half-adder from the nonlinear
dynamical element [43].

Logic Operation I1, I2 Output Initial State Necessary Condition

Carry

(0,0) 0 x0 x1=f(x0) ≤ E

(0,1) 0 x0 + Vin x1=f(x0 + Vin) ≤ E

(1,0) 0 x0 + 2Vin x1=f(x0 + 2Vin) ≤ E

(1,1) 1 x0 + 3Vin x1=f(x0 + 3Vin) > E

Sum

(0,0) 0 x0 x2=f(x0) ≤ E

(0,1) 1 x0 + Vin x2=f(x0 + Vin) > E

(1,0) 1 x0 + 2Vin x2=f(x0 + 2Vin) > E

(1,1) 0 x0 + 3Vin x2=f(x0 + 3Vin) ≤ E

Moreover, the implementation of full-adder requires two half-adders along with an OR

gate. A full-adder requires five gates in total including two XOR gates, two AND gates and

an OR gate. If logistic map is used as the chaotic oscillator, then only three iterations are

required to implement the full-adder operation. This technique allows combinational circuits

to be implemented with fewer computational components and without cascading.

2.3 Concluding Remarks

Previous sections demonstrated how a single computing system made with nonlinear

dynamical system can implement all the Boolean functions. The nonlinear responses

generated by the system is utilized to generate functions. In contrast, field programmable

gate arrays use multiple single purpose gates which makes the reconfiguration feature

wasteful of area on a chip and degrades the performance of the system. Preliminary goal

was to prove that chaotic elements can be used to design computers which provides better

performance and flexibility. Systems that combine CMOS circuits along with programmable

chaos-based circuits are also a design option.

A major drawback of using chaotic-based logic gates is that the hardware cost is larger

compared to traditional logic gates. In [35], it is discussed that the op-amp based design

22

of Chua’s circuit along with the capacitor and inductor area, a total of 52 transistors are

required to implement the chaogate. This limitation of chaos-based systems can be overcome

by increasing the number of inputs of the logic gate.

23

Chapter 3

Design of Chaotic Oscillator and

Chaos-Based Logic Gate Using Three

Transistor Chaotic Map

**Portions of this chapter were published in:

[150] Aysha S. Shanta, Md Badruddoja Majumder, Md Sakib Hasan, Mesbah Uddin, and

Garrett S. Rose. “Design of a reconfigurable chaos gate with enhanced functionality space in

65nm cmos.” In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems

(MWSCAS), pp. 1016-1019. IEEE, 2018.

[148] Aysha S. Shanta, Md Sakib Hasan, Md Badruddoja Majumder, and Garrett S. Rose.

“Design of a Lightweight Reconfigurable PRNG Using Three Transistor Chaotic Map.” In

2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS),

pp. 586-589. IEEE, 2019.

[63] Md Sakib Hasan, Md Badruddoja Majumder, Aysha S. Shanta, Mesbah Uddin, and

Garrett S. Rose. “A Chaos-Based Complex Micro-instruction Set for Mitigating Instruction

Reverse Engineering.” Journal of Hardware and Systems Security (2019): 1-17.

24

Figure 3.1: Three transistor chaotic map circuit designed in 65 nm process [150, 46].

3.1 Design of Chaotic Map

In this work, a three transistor CMOS circuit is implemented in 65 nm process which can be

used as a map to generate chaotic signals [46, 80]. The circuit is extremely compact which

makes it suitable for integration in VLSI chips with area and power concerns. The nonlinear

map circuit is analog since the state variables are analog. A one-dimensional discrete-time

chaotic series can be generated by a simple iterative method:

xn+1 = f(xn). (3.1)

where f(x) represents a nonlinear function. Several analog circuits have been proposed in

order to generate chaotic signals [164, 48, 37]. The CMOS implemented circuits are usually

designed to imitate one of the popular chaos maps, such as, tent map or logistic map. Chaos

maps can be achieved with V-shaped functions [37]. The branches of the V-shaped curve

can be generated by different functions which allows a degree of freedom in constructing

the map circuit. This kind of design is more suitable for applications in stochastic neural

networks where accuracy of the map function and the statistical properties of the generated

signal are not important as long as the map is able to generate random-like signals. The

V-shape can be designed using two circuits and the nonlinear function achieved will be the

DC characteristics of the final circuit.

25

0 0.2 0.4 0.6 0.8 1 1.2

V
in

 (V)

0.2

0.4

0.6

0.8

1

1.2

V
o

u
t (

V
)

Vc = 200 mV

Vc = 400 mV

Vc = 600 mV

Vc = 800 mV

Vc = 1.0 V

Figure 3.2: DC transfer characteristic of the three transistor map circuit [150].

Chaos map circuits are expected to portray a non-monotonic characteristic where the

‘average steepness’ of the generated chaotic signal is greater than unity. The chaotic map

circuit used in this work is shown in Fig. 3.1. The DC transfer characteristics of the map

circuit for different values of the bias voltage voltage, Vc is shown in Fig. 3.2. As can be

seen from the figure, the three transistor circuit generates a V-shaped map. The negative

slope is constructed using a common-source amplifier and the positive slope can be obtained

from a source follower. The circuits are connected in parallel so that the final response is

a summation of their DC characteristics. In the three transistor map circuit, transistor M3

acts as the source follower with M1 as load and transistor M1 acts as the common source

amplifier with M2 as load. The two sub-circuits share the same input and output in creating

the V-shaped transfer curve. The operation of the map circuit is explained below.

3.1.1 DC Transfer Characteristics of the Map

When Vin is less than the threshold voltage of transistor M1, the output Vout remains at VDD

= 1.2 V . At this point, transistor M3 is turned-off. As the value of Vin increases, Vout starts

to decrease as transistors M1 and M2 act like an inverter. The slope of the transfer curve

depends on the sizes of M1 and M2 and the value of the bias voltage, Vc. At some point,

the value of Vout falls below Vin such that the gate-source voltage of transistor, M3 becomes

larger than its threshold voltage and the transistor starts conducting. If the value of Vin is

26

increased further, Vout increases since M3 acts like a source follower. The current through

transistor M1 keeps increasing due to increase in Vout. The slope of Vout against Vin can be

close to unity if the aspect ratio of width to length of transistor M3 is much larger than M1.

Process variation might affect the steepness of the slope of the transfer curve so it is

important to make the design robust. The physical implementation of the two map circuits

will never be identical due to component mismatch. Despite this mismatch, the mapping

function will result in chaotic behavior. In this design, the controllability and flexibility exists

since the bias voltage, Vc of the map circuit can be adjusted to get different transfer curves

as shown in Fig. 3.2. The bias voltage, also known as the bifurcation parameter, determines

whether the chaotic generator produces periodic or chaotic signals. The controllability of

the circuit can be essential for applications such as chaotic neural networks [6].

3.2 Design of Chaotic Oscillator

Traditionally, two sample-and-hold circuits were required in addition to the map circuit

to design the chaos generator in order to generate discrete-time chaotic signals [37]. The

schematic of the conventional chaotic oscillator design is shown in Fig. 3.3. It is assumed

that the map circuit has high-impedance input. Two non-overlapping clocks, φ1 and φ2 are

used in order to avoid race conditions. Initially, the input of the map is equal to xn. The

nonlinear map circuit evaluates the initial voltage and output, xn+1 is generated which is

sampled on the capacitor, C1. On the second phase, φ2, the value of xn+1 is transferred to

capacitor, C2 where it is held constant at the input of the map circuit for the next iteration.

In some cases, the buffer is not used and a large ratio of C1/C2 is used in order to reduce

charge-sharing error of the second sample-and-hold circuit.

The settling time, tset of the map circuit along with C1 sets the limit on the minimum

period of φ1. The disadvantage is that the time required to perform the second sample-and-

hold reduces the maximum operating frequency of the chaotic oscillator. In this work, a

chaotic oscillator with two identical map circuits is used so that the maximum frequency,

fmax = 1/tset. The schematic of the proposed chaotic oscillator is shown in Fig. 3.4. Each

27

Figure 3.3: Traditional chaotic oscillator using buffer [85].

Figure 3.4: Chaotic oscillator using two map circuits [150, 46].

Figure 3.5: Iterating through the chaotic map.

28

map implements a nonlinear function which helps to generate chaotic signals. The discrete-

time dynamical system can only map analog inputs to analog outputs. The replacement of

buffer with another map circuit doubles the rate at which the map iterates which in turn

helps to speed up the computation process.

On the first phase, φ1, initial condition, xn is applied to the forward path map circuit

and it produces the next response by using equation 3.1. On phase, φ2, the next response is

generated from the second map circuit in the feedback path by using the following equation:

xn+2 = f(xn+1). (3.2)

The response, xn+2 is then applied to the forward path map circuit again and the process

continues to generate new responses. The frequency and duty cycle of the clocks are defined

by the RC time constant of the sample-and-hold circuits and the propagation delay of the

system. Pass transistors are used to select which map circuit produces the response. This

method of using two map circuits is efficient since all the transistors are part of the map

circuit or act as switches and the system does not consume extra power and area due to

sample-and-hold buffer.

The chaotic oscillator has been designed in 65 nm process. The size of the transistors

used in the map circuit are: M1: 0.15 µm/60 nm, M2: 0.15 µm/60 nm and M3: 4 µm/60

nm. The switches in the chaotic oscillator are implemented by pass transistors consisting of

n−MOS and p−MOS transistors. The size of p−MOS transistor is 8 µm/100 nm and

the size of n −MOS transistor is 4 µm/100 nm. C1 and C2 are implemented by utilizing

the inherent input capacitance of the map circuits which contributes to saving area on the

chip. The oscillator is made up of 12 transistors including the switches. If a more compact

design is required, the switches can be implemented with a single transistor.

In practical implementation of the chaotic oscillator, two major challenges can be the

frequency of operation and the power supply required to generate the chaotic signals. In

[80], Juncu et al. fabricated the chaos generator in 0.6 µm process. It was observed the

circuit gave a constant performance upto 2.5 MHz and beyond this frequency the generator

was still chaotic but had less amplitude since the sample-and-hold circuits were not fully

29

charged or discharged during the clock cycle. The reason for limited operating frequency

can be off-chip capacitances and bonding pads. The power consumption of the circuit is

another concern and depends on the current flowing from VDD to ground through transistors

M1 and M3 for large values of Vin.

3.2.1 Iterating through the Map

Fig. 3.5 demonstrates how the different values are generated from the chaotic map. In

iteration, n = 1, Vin ≈ 0.95 V and Vout ≈ 0.4 V . When n = 2, the previous output is the

new input to the map, thus Vin ≈ 0.4 V and the output Vout ≈ 1.18 V . The loop continues

until the desired number of iterations are completed.

3.2.2 Sensitivity to Initial Condition

The chaotic oscillator’s sensitivity to initial conditions is shown in Fig. 3.6 for Vc = 520

mV . The initial seed is changed from 600 mV to 601 mV and it can be seen that around

40th iteration, the output of the oscillator starts to diverge from each other. Sensitivity and

reconfigurability of the map means that there can be a huge number of initial conditions

and control parameters to generate random sequences which means that the key space will

be large and it will be able to withstand statistical attacks from the adversaries in case the

map is used to design pseudo-random number generators (PRNGs).

3.2.3 Ergodicity of the Chaotic Map

Ergodicity is defined in statistics as a random phenomena where the time average of one

sequence of events is the same as the average of the entire sequence. The ergodicity can be

expressed by the distribution of the state value of the chaotic map. The ergodicity of a map

can also be demonstrated by fixing the bifurcation parameter and choosing a random initial

value. The map will be iterated for a few thousand iterations and the distribution of the

map is plotted against the iteration number, n. The results in Fig. 3.7 shows the values

of Vc for which the map is chaotic and the ergodicity is better. When Vc = 180 mV , the

output oscillates between two values. As the value of Vc is increased, the periodicity of the

30

oscillator increases and at one point, it enters into the chaotic region. The first 100 iterations

are discarded in order to avoid the transient phase.

3.2.4 Bifurcation Diagram

Bifurcation diagram helps in understanding the dynamics of nonlinear dynamical systems.

The bifurcation diagram of the chaotic oscillator is shown in Fig. 3.8. For small bias voltages,

Vc, the system displays periodic behavior. The number of functions that the circuit can

implement does not increase exponentially in the periodic region. As Vc increases, a period-

doubling cascade takes place and the system moves into chaotic region. In this region, the

number of logic functions that the system can implement exponentially increases. Further

increase in the bias voltage leads the system into periodic region again and the process of

chaotic and periodic region shifts continues. There are mainly two chaotic regions in the

bifurcation diagram. The first region starts at 527 mV and ends at 622.5 mV . The second

chaotic region lies between 890 mV and 952.5 mV . The bias voltage has been chosen from

the first chaotic region since the span of the output voltage is larger and ranges from 294

mV to 1.194 V . The initial value of the map is also chosen from this output range. The

delay of the circuit is higher for large values of bias voltage so the value of Vc is chosen from

the first region only. The first 1000 iterations are discarded to avoid the transient phase and

a total of 4000 iterations have been used to generate the bifurcation diagram.

3.2.5 Lyapunov Exponent

Lyapunov exponent (LE) is the average convergence or divergence of states due to small

changes in the initial conditions. A positive Lyapunov exponent means that the system is

in chaotic region and that the perturbations in initial conditions diverge the states by a

significant amount. It indicates that a chaotic system becomes more unpredictable if the LE

is more positive. If a nonlinear circuit is not sensitive to initial conditions, then the following

statements are true.

1. The nonlinear system is incapable of generating multiple logic functions.

2. The Lyapunov exponent is zero or negative.

31

0 20 40 60 80 100

Iteration Number, n

0

0.2

0.4

0.6

0.8

1

1.2

V
o

u
t (

V
)

V
in

 = 600 mV

V
in

 = 601 mV

Figure 3.6: Sensitivity of the chaotic oscillator to slight change in initial condition.

0 200 400 600 800

Iteration Number, n

0

0.5

1

V
o

u
t(V

)

V
c
 = 180 mV

(a)

0 200 400 600 800

Iteration Number, n

0

0.5

1

V
o

u
t(V

)

V
c
 = 390 mV

(b)

0 200 400 600 800

Iteration Number, n

0

0.5

1

V
o

u
t(V

)

V
c
 = 460 mV

(c)

0 200 400 600 800

Iteration Number, n

0

0.5

1

V
o

u
t(V

)

V
c
 = 506 mV

(d)

Figure 3.7: (a)-(d): Sampled output of chaotic oscillator for Vin = 750 mV showing different
states as Vc is changed (a) Period 2 (b) Period 4 (c) Period 8 (d) Chaotic region.

32

The equation for the Lyapunov exponent is given below:

λ = lim
n→∞

1

n

n−1∑
i=0

ln|f ′(xi)|. (3.3)

The diagram of Lyapunov exponent is shown in Fig. 3.9. It can be seen that the values of

positive Lyapunov exponent correlates to the chaotic regions in the bifurcation diagram. The

perturbation value of the initial condition used in this work is 1 mV . In order to calculate

the Lyapunov exponent, 3000 iterations were considered out of which 300 iterations were

truncated in order to eliminate the transient phase.

3.3 Reconfigurable Chaos-based Logic Gates

3.3.1 Introduction

Chaos-based logic gates have many advantages over traditional logic circuits. A single chaos-

based logic gate can implement all the universal logic functions such as AND, OR, XOR,

NAND, NOR and XNOR. In conventional reconfigurable logic gates such as look-up tables

(LUTs), the need for additional hardware grows exponentially with the increase in number

of inputs. Therefore, using chaos-based logic gates saves significant area for large number of

inputs. The apparent randomness of chaos-based logic gates helps to mitigate power analysis

based side-channel attacks [105, 104]. Implementation of chaos-based logic gates have a high

probability of useful functions but there will still exist a handsome number of unused or

“garbage” functions which can be utilized to obfuscate the desired computation.

Ditto et al. made the concept of chaos computing concrete by building logic gates called

chaogates. The gate utilizes a chaotic oscillator, C which can be Chua’s function or logistic

map to generate logic functions from the logic gate at a given time. The schematic of one-

dimensional chaogate is shown in Fig. 3.10. The initial condition of the chaotic oscillator

is made up of the summation of the analog control input, xg and the two inputs, A and B.

The digital inputs are converted to analog values by multiplying with the constant weighting

factor, δ. The digital output, Y is generated by using a comparator with threshold voltage,

Vth. The logic function generated from the chaogate can be altered by varying the parameters,

33

Figure 3.8: Bifurcation diagram of the chaotic oscillator [148].

0 0.2 0.4 0.6 0.8 1 1.2

V
c
(V)

-4

-2

0

L
y

a
p

u
n

o
v

 E
x

p
o

n
e

n
t,

Figure 3.9: Lyapunov exponent of the chaotic oscillator [148].

Figure 3.10: A basic 2-input chaogate using a single chaotic oscillator [139].

34

control input, xg, weighting factor, δ and the threshold voltage, Vth. The chaotic oscillator

can be seen as a pseudo-random number generator where xg and δ make up the initial seed

and Vth converts the analog output into digital voltages, 0 or 1.

It is possible to generate 16 different logic functions from a 2-input reconfigurable chaos-

based logic gate. The disadvantage of using the one-dimensional chaogate is that the logic

inputs {0, 1} and {1, 0} will produce the same initial condition for the chaotic oscillator.

As a result, the generated digital logic output will be the same. This limitation on the

outputs reduces the possible generated number of functions from 16 to 8. The generated

logic functions are: TRUE, AB, A+B, AB, A+B, A⊕B, A⊕B and FALSE.

Previous research in chaos-based systems demonstrated the existence of inherent

obfuscation available across multiple abstraction layers. Rose implemented a chaos-based

arithmetic logic unit (ALU) and displayed how each function can be obtained in multiple

ways by changing the control input, xg, weighting factor, δ, threshold voltage, Vth and

iteration number, n [139]. Moreover, since the ALU is designed with chaotic oscillators,

there is no pattern to relate the various ways a specific function is implemented.

The major design limitations of a chaos-based system is the probability of generation

of the desired function, circuit size and performance. Considering applications in hardware

security, it is imminent that a chaos-based circuit will generate huge number of garbage

functions which are not part of the desired instruction set. The two methods of changing

the probability of functions in a chaos-based system are:

1. Tuning the comparator threshold value.

2. Modifying the chaos-based logic circuit.

3.3.2 Design of Reconfigurable Chaos-based Gates

In Fig. 3.11, the digital inputs of a logic gate are encoded as initial conditions to the

dynamical system and the digital output are decoded from the final state to generate a

digital function. The encoder converts digital inputs to analog inputs and the decoder

converts the analog output of the map to binary outputs. There are four control inputs,

35

Figure 3.11: Chaotic oscillator is shown in the dotted box. Two-input chaos-based logic gate
including digital encoding of the inputs and digital decoding of the outputs [86].

Figure 3.12: Two-input reconfigurable chaos-based logic gate demonstrating all the tuning
parameters in red circles.

36

CB, Vc, Vth and n available in the design to tune the block diagram to generate different

functions as illustrated in Fig. 3.12.

The nonlinear dynamical system accepts data bits and control bits simultaneously and

control bits can be different in different clock cycles. As a result, different functions are

achievable at each clock cycle. The control input, CB changes the initial condition of the

dynamical system as a way of reconfiguring the block diagram. It is a known fact that small

changes in the initial condition of the nonlinear dynamical systems can change the final

state by a huge amount. However, this sensitivity to initial conditions puts a limit on the

maximum number of iterations on the iterated map so that random noise will not be able

to change the future state. The iteration number should be high enough so that the change

in the future states created by CB can take place but not so high that random noise can

change the final states of the system and make the computation unreliable.

The bifurcation parameter of a nonlinear dynamical system determines whether the

system is periodic or chaotic. The bifurcation parameter is typically an analog voltage

such as gate voltage of a transistor. The control input, Vc changes the qualitative behavior

of the map circuit. This control input can be tuned to change the way the map circuit

connects the inputs to the outputs. Additional auxiliary circuitry is required to convert the

digital input to analog value for application as bifurcation parameter.

Encoder/Digital-to-Analog Converter (DAC)

In the design of two-input reconfigurable chaos-based logic gate, two inputs, I1 and I2 along

with a control input, CB make up the initial condition for the map circuits. There are

various encoding schemes present in literature. Fig. 3.13 shows a simple 3-bit digital-to-

analog converter (DAC) to convert the digital inputs to an analog value. The transistors are

turned on or off based on the data input values of I1, I2 and CB. The transistors alter the

value of resistor ratio and hence produces a voltage proportional to the digital data applied

at the inputs. The 2-input reconfigurable chaos-based logic gate can be easily changed to

multi-input system by using the initial control bits as data bits. Extra input lines can also

be added to the encoder by increasing the input size of the DAC.

37

Figure 3.13: Three-bit DAC for encoding digital inputs to analog values [86].

Figure 3.14: Decoder which converts final states to digital outputs [86].

38

The initial condition, xn can be calculated by the DAC using data and control bits. Let

us consider a bits of data, D and b bits of control, C and the voltage span is between 0 and

VDD. The equation for calculating xn is given below:

xn = VDD ×
∑b

j=1 2j−1Cj +
∑a

i=1 2i+b−1Di

2a+b
. (3.4)

Here, C1 and D1 are the least significant bits.

Decoder/Analog-to-Digital Converter (ADC)

In order to decode the analog state of the map circuit to digital output, the output state

space is divided into two parts. One partition decides if the digital output is 1 and the other

decides if it is 0. A simple thresholding circuit is shown in Fig. 3.14. The decoder circuit

either generates VDD or 0 V which represents a 1 or 0 bit respectively. The output depends

on the final state of the map circuit, either xn+1 or xn+2 depending on which map circuit

is sampled. Any threshold voltage, Vth could be chosen to divide the output state space

of the map. The critical point of the V-shaped transfer curve shown in Fig. 3.2 can be a

suitable choice for partition between 0 and 1. The main point to note is that the partitioning

should be able to retain the entropy in the system [33]. In order to ensure a quick transition

region at Vth and to reduce the decoder’s dependence on temperature variations, an analog

comparator circuit is used which compares the analog output of the map against an internally

generated threshold voltage.

The digital output from the final state of the map circuit is obtained by a simple

thresholding mechanism. The state space is partitioned in two parts. The equation for

the partition is given below:

On+1 =

1, if xn+1/xn+2 > Vth

0, otherwise.

(3.5)

39

Figure 3.15: Multi-input multi-output reconfigurable chaos-based logic gate [63].

The digital outputs produced by the two map circuits are usually different. The functions

change at each iteration if the map circuits are in the chaotic region. If the control inputs

put the map circuit in an unstable regime and the orbits are guided towards Vth, then the

binary output is more susceptible to noise because a small noise can now grow quickly until

it switches the final state to an incorrect region producing an incorrect digital output.

3.3.3 Complex Functions Obtained Using Single Chaotic Element

As discussed in section 2.2.5, chaotic oscillators can be used to build multi-input multi-output

functions such as adders, decoders etc. Flexibility which means different configurations to

achieve the same logic function can be achieved by tuning only a few parameters in the

chaotic system. Implementing complex functions by using a single digital system can reduce

area and power issues which arise due to technology scaling. The complex instructions

generated from chaos-based systems are more uniform than its traditional counterparts.

Presence of uniformity makes it difficult for adversaries to decode an instruction by power

analysis based side channel attack. This work has explored 3-input multiple output (1 - 8)

instructions using a single discrete-time chaos-based system [63]. The tuning parameters in

the circuit topology are control bit, threshold voltage of the comparator, iteration number,

initial seed value and bifurcation parameter.

40

The number of functions that a single chaos-based logic gate can implement increases with

increasing the number of iterations. It is seen that when the system is operating in chaotic

region, a different function is generated in each iteration. Other circuit parameters can be

changed dynamically in order to implement different functionalities. It should be noted that

all the generated functions will not be reliable or usable due to noise or instability.

Fig. 3.15 shows the design of multi-input and multi-output reconfigurable chaos-based

logic gate. The dotted lines enclose the three-transistor map circuit, DAC, buffer and sample-

and-hold circuits. A 3-input gate is designed whose inputs are 3-bit data (D), 6-bit control

(C) and bifurcation parameter, Vc. A 9-bit digital-to-analog converter (DAC) is required to

convert the data bits and control bits to the initial state of the map. The analog output

of the map circuit is sampled at each iteration, n and converted to digital voltage using a

threshold voltage, Vth in the comparator. The size of the transistors in the three transistor

map circuit are - M1: 1.2 µm/60 nm and M2, M3: 0.12 µm/60 nm. The size of the transistors

are chosen after simulating with several different geometries and finding the optimum case

in regards to area, power, width of the chaotic region in the bifurcation diagram and delay.

In order to generate the chaotic signals, an oscillator is required so that the output of

the map circuit is fed back to the input. The feedback mechanism requires a buffer, two

capacitors and two transmission gates. φ1 is used to apply the initial input to the map

circuit. When φ2 is high, the analog output of the map circuit is sampled onto capacitor, C1

and when φ3 is high, the output is held at C2.

The functionality generated from the chaos-based logic gate can be varied by changing

the threshold voltage, control bit, iteration number and bifurcation parameter. The three

transistor map has been designed in IBM 65 nm process. All the other blocks, DAC,

comparator, buffer, switches and clocking circuitry has been designed using Verilog-A. The

entire reconfigurable logic gate has been simulated using Cadence Spectre.

The input-output values for different values of Vc is obtained from Cadence Virtuoso. A

MATLAB code has been developed which varies the four tuning parameters of the design

and searches for the configuration of the instruction required. The number of iterations has

been contrained within 21 iterations. Higher iteration number might be distorted by noise

so it is wise to decide on a suitable limit for n. The evolution of 3-input 1-output AND

41

Table 3.1: Evolution of chaotic oscillator output with number of iterations. (Vc= 690 mV ,
C = (111010)2 = 58, Vth = 1.03 V , n = 5) [63].

xn (V)
xn+1 (V)

n = 1 n = 2 n = 3 n = 4 n = 5
0.136(000) 1.2(1) 0.52(0) 0.36(0) 1.06(1) 0.43(0)
0.287(001) 1.19(1) 0.51(0) 0.39(0) 0.91(0) 0.35(0)
0.437(010) 0.72(0) 0.27(0) 1.19(1) 0.51(0) 0.38(0)
0.587(011) 0.24(0) 1.2(1) 0.52(0) 0.37(0) 1.02(0)
0.737(100) 0.27(0) 1.19(1) 0.51(0) 0.38(0) 0.96(0)
0.888(101) 0.34(0) 1.13(1) 0.47(0) 0.56(0) 0.25(0)
1.038(110) 0.42(0) 0.79(0) 0.3(0) 1.18(1) 0.51(0)
1.188(111) 0.51(0) 0.39(0) 0.93(0) 0.36(0) 1.04(1)

Table 3.2: Different configurations for 3-input 1-output instructions [63].

Operation
Configurations

Config.1 Config.2 Config.3
Vc C Vth n Vc C Vth n Vc C Vth n

AND 0.69 58 1.02 5 0.74 63 1.17 3 0.62 0 0.69 4
OR 0.71 40 0.3 3 0.65 26 0.3 5 0.62 46 0.27 8

XOR 0.65 0.42 28 5 0.67 41 0.51 7 0.73 63 0.5 15
NAND 0.74 63 0.32 5 0.66 61 0.34 4 0.62 0 0.4 3
NOR 0.63 34 0.61 7 0.69 54 1.17 8 0.74 63 1.19 1

XNOR 0.65 28 0.69 6 0.66 63 0.81 15 0.69 63 0.82 13

Figure 3.16: 1-bit full-adder designed using chaotic oscillator [63].

42

Table 3.3: Design of 1-bit full-adder using chaotic oscillator (Vc= 677.5 mV and C =
(011001)2 = 25).

Input (a, b, cin)
Vth = 497.5 mV n = 16 Vth = 502.5 mV n = 17

Sum Carry
0.0587(000) 0.4954(0) 0.5023(0)
0.2090(001) 0.5095(1) 0.4394(0)
0.3593(010) 0.5146(1) 0.4170(0)
0.5096(011) 0.4287(0) 0.8044(1)
0.6599(100) 0.9574(1) 0.3767(0)
0.8102(101) 0.2458(0) 1.1961(1)
0.9605(110) 0.4153(0) 0.8636(1)
1.1108(111) 1.1962(1) 0.5148(1)

Figure 3.17: 3× 8 decoder designed using chaotic oscillator [63].

43

gate is shown in Table 3.1 column 5. Table 3.2 shows different configurations for generating

standard 3-input 1-output instructions using the chaotic oscillator.

Multi-output functions/instructions like adder, subtractor, decoder and encoder uses a

common pair of Vc and C for all the output functions. For example, a 3-to-8 decoder uses

the same Vc and C but changes Vth and n to generate the 8 possible outputs. This is how it

is possible to use a single chaotic element to generate multiple instructions. The schematic

of 1-bit full adder and 3× 8 decoder is shown in Fig. 3.16 and Fig. 3.17 respectively. Table

3.3 shows one of the configurations for designing 1-bit full adder and the generated analog

voltages. Table 3.4 shows the configuration for the design of 3-to-8 decoder where Vc and C

has been kept constant.

Table 3.4: Design of 3× 8 decoder using chaotic oscillator (Vc= 710 mV and C = (011001)2
= 25).

Input (a1, a2, a3) Decoder Output
Configuration

Vth (V) n

0.0587(000) d1 1.1875 11

0.2090(001) d2 0.9150 19

0.3593(010) d3 0.5150 3

0.5096(011) d4 1.14 7

0.6599(100) d5 1.1675 2

0.8102(101) d6 0.7475 9

0.9605(110) d7 0.4975 6

1.1108(111) d8 1.18 4

44

Chapter 4

Expansion of Functionality Space

Using Three Transistor Chaotic Map

**Portions of this chapter were published in:

[150] Aysha S. Shanta, Md Badruddoja Majumder, Md Sakib Hasan, Mesbah Uddin, and

Garrett S. Rose. “Design of a reconfigurable chaos gate with enhanced functionality space in

65nm cmos.” In 2018 IEEE 61st International Midwest Symposium on Circuits and Systems

(MWSCAS), pp. 1016-1019. IEEE, 2018.

4.1 Introduction

Despite its tremendous success, binary computers fail to meet the needs of today’s

requirements and specifications. A binary computer contains arrays of transistors which

acts as switches. In 1965, Gordon Moore predicted that the density of transistors in a

chip will double every two years [102]. The growth in the transistor count ensured that

computer hardware is able to meet the needs of the trending applications. Nowadays, it is

becoming increasingly difficult to increase the density of transistors as Moore’s law predicted.

Moreover, with increasing density of transistors in a chip, heat production and sink and power

consumption are becoming huge challenges. Mobile applications and embedded systems are

examples of applications that require low power consumption. Researchers have invented

45

new ways to improve the performance of computing systems without increasing the number

of transistors. One such alternative was to increase the amount of computation performed by

devices without adding more hardware [81]. Multi-valued digital circuits have been developed

to increase bit-handling capacity of each device [138].

Instead of studying transistors as binary switches, the nonlinear dynamics in the

transistor circuits and their ability to perform intrinsic computation should be analyzed.

Dynamics of a circuit can be defined as mapping initial states to future states. A nonlinear

circuit can have complex dynamics and contain many different functions. Each different

function generated means that the mapping of initial state to future state is different. It

is seen that the intrinsic functions present in a nonlinear system is able to generate many

logic functions using the same circuit. The data and the control bits are combined to make

the initial conditions of the system and finally the final state is converted to a binary value

using a comparator.

In [85], it has been shown that a simple nonlinear circuit contains an infinite number

of functions. The number of logic functions that a chaotic circuit can implement increases

exponentially with time. All the functions generated from the circuit are not accessible due

to issues such as noise and instability of the functions. The chaos-based computing system

opens up options for designing extremely low-power circuits that are capable of performing

multiple functions using the same system. The nonlinear dynamical system can be seen as

a reconfigurable computing system where different functions can be selected by changing

parameters in the circuit topology. The simplest way of selecting a new function is changing

the initial condition of the dynamical system which is made up of data and control bits.

Data bits are the logic inputs that is applied to the chaos-based logic gate and control bit

alters the internal mapping of the system to select a logic function. The output of the map

is fed to a threshold circuit which generates a 1-bit digital output.

4.2 Expansion of Design Space

A conventional CMOS logic gate requires less number of transistors compared to reconfig-

urable chaos-based logic gate. One possible way to compensate for this lacking is to make

46

sure that the functionality space of the chaos-based gate is huge. This work proposes to

increase the design space by varying the threshold voltage of the comparator and using a

new bias voltage in each iteration. The total number of functions generated exponentially

increases compared to previous work found in literature which only demonstrates linear

growth. The number of individual functions such as OR, XOR and AND also increases with

the increase in design space.

The characteristics of the chaotic map and oscillator are discussed in sections 3.1 and

3.2 respectively. The characteristic of the map circuit can be changed by changing the bias

voltage, Vc as shown in Fig. 3.2. Fig. 3.4 represents the chaotic oscillator where clocks φ2

and φ2, are two non-overlapping clocks to control the feedback in the loop containing the

two map circuits. Clock φ1 initializes the system to an initial condition and the map starts

iterating. When the map is in the long period regime or in chaotic region, at each iteration

a new set of outputs are produced and the generated sequence has a long period. Iteration

number is another method to tune the circuit to implement different logic functions. Since

there are two maps in the chaotic oscillator, two bias voltages can be applied to generate

different logic functions. Although, in this work, only one bias voltage has been used by

shorting the bias voltages together.

4.2.1 Comparison of Area and Power Overhead

This work has been simulated in 65 nm CMOS process [150]. The supply voltage used in this

technology node is 1.2 V . The chaotic oscillator has smaller area and power consumption

compared to previous work found in literature. The previously designed chaotic oscillator

was designed in 0.6 µm process and used a supply voltage of 5 V . The capacitors for sample-

and-hold circuits are implemented using the internal capacitance of the map circuits. The

absence of capacitors in the design leads to huge saving in the chip area.

The total power consumption of the chaotic oscillator in this work is 18.4 µW whereas

the power consumption in the 5 V process was 7.85 mW . The consumption in the 5 V is

higher since huge amount of current flows from VDD to ground as the applied input voltage

increases. The consumed area of the proposed design is only 0.556 µm2 whereas the area

47

Table 4.1: Overhead comparison of proposed work with previous work [150].

Previous Work [80] This Work
Technology 0.6 µm 65 nm

Supply Voltage 5 V 1.2 V
Area 32× 19 µm 0.556 µm2

Power 7.85 mW (experimental) 18.4 µW (simulated)

0 20 40 60 80

Time (s)

0

0.5

1

1.5

c
lk

1

0 20 40 60 80

Time (s)

0

0.5

1

1.5

c
lk

0 20 40 60 80

Time (s)

0

0.5

1

1.5

V
c
 (

V
)

0 20 40 60 80

Time (s)

0

0.5

1

1.5

V
in

 (
V

)

0 20 40 60 80

Time (s)

0

0.5

1

1.5

Y
 (

V
)

Figure 4.1: Transient response of the chaotic oscillator displaying that Vc is changed cycle
to cycle [150].

48

in 0.6 µm process was 32 × 19 µm. The calculation of the area does not include the pass

transistors. Table 4.1 shows the comparison between the two designs.

4.2.2 Design Space Enhancement

It has been seen in literature that simple nonlinear dynamical systems are able to generate

infinite number of functionalities [85]. The term “functionality” does not only represent

particular logic functions but also considers multiple ways of achieving the functions. All

the functions generated by a dynamical system might not be usable due to instability of the

outputs or presence of noise. Kia et al. implemented the three transistor chaotic map to

produce a large functionality space where the authors mapped the control inputs and the

digital inputs using a digital-to-analog converter (DAC) (shown in Fig. 3.13) and converted

the analog output of the chaotic oscillator into digital output by using a comparator (shown

in Fig. 3.14). The output of the oscillator is compared to a threshold voltage in order to

compute the digital value using equation 3.5.

Kia et al. increased the functionality space by using 4 data inputs along with 16 control

bits. Different digital output can be obtained in different iterations since the output might

change from the previous one. Let c be the control input, n be the number of iterations and

b represent the bias voltage (Vc). In previous work, the threshold voltage has been fixed to

2.5 V . The equation for representing the functionality space from [85] is as follows:

f(n) = b× 2c × n. (4.1)

From equation 4.1, it can be seen that the functionality space increases linearly with the

increase in number of iterations, n. The space is limited by the number of control bits used

in the DAC and the number of bias voltage levels for a fixed number of iterations. Moreover,

the bifurcation diagram in Fig. 3.8 shows that not all bias voltages lead to chaotic behavior.

The number of possible bias voltages that can be used to increase the design space is limited.

The size of the DAC used in the design depends on the number of input and control bits.

Although, there is a limitation on the achievable resolution of the DAC due to signal to noise

ratio (SNR). This issue poses a limitation on the number of control bits, c that can be used

49

in the design. The only option left is to have more number of iterations in the design for an

optimal choice of values of b and c. As shown by equation 4.1, the increase in n only has

a linear effect on the increase of functionality space. This means that the iteration number

has to be huge in order to gain larger design space.

In this work, new techniques have been implemented to increase the design space

exponentially. The bias voltage is randomly varied cycle to cycle in order to increase the

functionality space with increasing iteration number, instead of using a fixed bias voltage.

In this design, both the map circuits are connected to the same bias voltage, Vc. However,

applying different bias voltage might increase the design space significantly. We have chosen

three bias voltages in this design by partitioning 1.2 V into eight partitions. Three bias

voltages out of eight have displayed more chaotic behavior than others. The values of the

bias voltages used are: 525 mV , 675 mV and 825 mV .

Multiple threshold voltages are applied to the comparator to extract the digital output

from the system instead of using a fixed threshold voltage. Four threshold voltage values

have been chosen to expand the functionality space which are: 150 mV , 450 mV , 750 mV

and 1.05 V . The four analog voltages chosen to represent the inputs, (0, 0), (0, 1), (1, 0) and

(1, 1) are 150 mV , 450 mV , 750 mV and 1.05 V respectively.

The transient response of the chaotic oscillator with varying bias voltage is shown in Fig.

4.1. Whenever clk1 is high, a new analog input, Vin is applied to the chaotic oscillator. When

clk1 is low, clk runs through different iterations to generate the analog output voltages.

As can be seen in the figure, Vc changes randomly in each cycle and the final output, Y

demonstrates a chaotic behavior.

The equation for representing the functionality space of the proposed design is as follows:

f(n) = bn × NVth × n. (4.2)

where b is the number of bias voltage levels, NVth is the number of threshold voltage levels

and n is the number of iterations.

Fig. 4.2 displays the entire functionality space with increasing number of iterations in

the proposed and existing work ([85]). The increase in functionality space with respect to

50

1 2 3 4 5 6 7 8

Iteration Number, n

0

0.5

1

1.5

2

2.5

F
u

n
c
ti

o
n

a
li
ty

 S
p

a
c
e

10
5

Existing

Proposed

Figure 4.2: Comparison between the functionality space of the proposed work with existing
work for varying number of iterations [150].

1 2 3 4 5

Total functions (x10
3
)

0

100

200

300

400

500

In
d

iv
id

u
a

l
fu

n
c
ti

o
n

s

AND

OR

XOR

Figure 4.3: Number of individual functions increases linearly with the total functionality
space [150].

51

iteration number is linear for the existing work and represented by the blue curve. On the

other hand, the increase in functionality space of the proposed system is exponential and

represented by red curve. It can be seen that the functionality space for the first six iterations

is higher in existing work. After the 6th iteration, the proposed work picks up and in the 8th

iteration, the functionality space has reached almost three times the existing work.

It is important to ensure that the individual functions also increase with the increase

in functionality space. In Fig. 4.3, it can be seen that the individual functions, AND, OR

and XOR increases with the enhanced design space. This result ensures that the individual

functions grow linearly with the increase in iteration number. In order to generate Fig. 4.3,

SKILL file has been written where the circuit output has been probed in total of 2000 times

for four inputs representing (0,0), (0,1), (1,0) and (1,1). Each input has 10 iterations each.

New sequence of Vc has been applied 500 times and a total of 2000 (= 500 × 4) sequences

are generated. The file is imported into Matlab where four different threshold voltages are

applied at least 20 times after the sequence is varied and the average result of the total

functions is plotted.

4.3 Application

Security is an important design consideration in modern digital systems. Side channel

attack is an attack mounted on a system where the attacker collects information about

the power profile of several instructions and tries to learn the content of the processor data.

Researchers have proposed several strategies to mitigate against side channel attack. Chaos-

based systems can help to mitigate power analysis based side channel attack due to the

enhanced design space. Chaotic computations generates a random power signature which is

difficult to decipher by the attacker.

52

Chapter 5

Four Gate Transistor Negative

Differential Resistance (NDR) Based

Discrete-Time Chaotic Map

5.1 Background

It is becoming very difficult to integrate more transistors on a chip as technology scaling has

slowed down in the past decade. Researchers have dived into producing new solutions to

achieve higher performance without increasing the transistor count. One possible solution

is to develop a system or a device that can perform multiple computations [86]. G4FET

is a silicon-on-insulator (SOI) four gate device that has been utilized in various digital and

analog applications since it requires less number of transistors [8]. SOI technology mitigates

a lot of issues associated with bulk silicon scaling. The advantages of using SOI technology

are reduced parasitic capacitance, increased switching speed, ideal device isolation, resolved

latch-up issue, excellent sub-threshold slope and reduced leakage current [65].

Some of the traditional chaotic maps are logistic map, tent map and sine map. These

maps incur a lot of hardware overhead since they are represented by ideal mathematical

equations. This is why researchers have dived into discovering new transistor level maps

with good chaotic behavior. A large functionality space is available from the transistor level

53

chaotic maps and these functions can be leveraged in the field of hardware security. Most of

the chaotic maps in literature which require less hardware can only provide one bifurcation

parameter. The functionality space is mainly extended by increasing the iteration number

which was seen in section 4.2.2. However, there is a limitation on how much the iteration

number can be increased. As the number of iterations increase, the reliability of the system

reduces and it becomes more susceptible to noise. It has become essential to develop a

discrete-time chaotic map with simple hardware whose functionality space can be increased

by utilizing the various control knobs in the designed system. In this work, a G4NDR based

chaotic map is proposed whose transfer characteristics is similar to that of logistic map. The

map demonstrates excellent chaotic property and has wider chaotic region in the bifurcation

diagram compared to the three-transistor map used in previous chapters 3 and 4.

5.2 Four Terminal Transistor (G4FET)

G4FET is a multiple terminal SOI device which is used in applications where less transistors

are required. The designed circuits are able to produce more functionality [23, 9, 8]. The

device can be fabricated in partially/fully depleted SOI process. The channel conductance

can be altered using four terminal gates that can be independently biased [47]. A traditional

inversion-mode p-channel SOI MOSFET with two body terminals on the opposite sides of

the channel can be used to construct an accumulation/depletion mode n-channel G4FET.

The symbol and structure of the n-channel G4FET is shown in Fig. 5.1. The cross-section

of the G4FET device displaying all the four terminals is shown in Fig. 5.2. The junction

gates of G4FET are formed from the p+ doped source and drain of the traditional MOSFET.

The channel width can be controlled using the two lateral gates whose functionality is similar

to JFET gates. The channel width can be decreased by reverse-biasing the junction gates.

The top gate (TG) is similar to the conventional accumulation-mode MOSFET gate. The

substrate or bottom gate (BG) imitates a fourth MOS gate and can be biased using the

bottom gate terminal due to the presence of buried oxide. The vertical gates are used to

change the accumulation/inversion/depletion of free carriers in the silicon epi layer near the

54

(a) (b)

Figure 5.1: Four gate transistor (G4FET) (a) Structure (b) Symbol [7].

Figure 5.2: Cross-section of the G4FET device [64].

Figure 5.3: Traditional 2-terminal JFET NDR [163].

55

top/bottom oxide interfaces [62]. The body contacts are highly doped to make ohmic contact

with the channel.

The function of G4FET is controlled by two JFET gates and two MOSFET gates that

can be biased independently. The conductive path in original MOSFET relates to the gate

length whereas the JFET channel length is altered by adjusting the width of the MOSFET.

In G4FET, the gate length is the width of the original MOSFET and gate width is defined by

MOSFET’s gate length. The drain current comprises of majority carriers flowing from one

body contact to the other (here, the body contacts of the MOSFET are used as drain and

source) and it is inversely proportional to the length of the G4FET. The current in G4FET

flows in perpendicular direction to that of an inversion-mode MOSFET. G4FET combines

both MOS and JFET characteristics by allowing both surface and volume conduction. The

top and bottom gates work like MOSFET while the lateral gates work as JFET. The

threshold voltage of the vertical gates are influenced by the lateral gates. There are three

conduction paths in G4FET. They are:

1. Top surface conduction near gate-oxide interface.

2. Bottom surface conduction near buried-oxide interface.

3. Volume conduction away from vertical oxide interfaces.

G4FETs provide the flexibility to design multiple input systems with reduced transistor

count in comparison to its CMOS counterparts. CMOS technology scaling should enhance

the performance of the G4FET transistor as MOS gate length shrinks. This means that the

channel will be easier to pinch-off if body doping is optimized [23]. Moreover, it does not

require special fabrication steps to manufacture the device.

5.2.1 G4FET Operation

The G4FET works as an accumulation mode MOSFET and it has two junction gates on

opposite sides of the channel. The junction gates act as JFETs by altering the potential

distribution within the body by utilizing the induced lateral depletion regions. In a partially-

depleted body, if the amount of reverse-bias voltage (|VJG|) applied to the junction gates

56

is high, it can switch the transistor operation from normally-on to normally-off. If |VJG| is

increased further, it can modulate the threshold voltage associated with TG.

When VJG = 0 V , the transistor is normally-on because the electron concentration

(depends on the doping level) in the body enables conduction of carriers. As VJG is decreased

from 0 V to a negative value, e.g. −1.5 V , depletion region in the junction gates increase

in width and start suppressing the flow of carriers in the body which in turn reduces the

current. If VJG = −2 V , the G4FET becomes normally-off. At this point, the body is fully-

depleted and the drain current depends only on the electrons accumulated at the front gate

which is controlled by the voltage, VTG. If VJG < −2 V , the body potential reduces and

charge coupling occurs between front gate and junction gates making it harder to accumulate

electrons at the front-interface. This phenomenon results in an increase in threshold voltage.

In an n- channel G4FET, when the top gate is biased negatively relating to a maximum

depth of the depletion region, the conductive channel shrinks and repelled towards the back

gate. The front interface is depleted of carriers and the conductive path reduces gradually.

At a certain point, the path vanishes and the device turns off completely.

When the back-gate is in strong accumulation-mode, the device will not be turned-off

even when large negative voltages are applied at the junction gates and the front gate.

However, the lateral gates and the top gate have control on the current level. The G4FET

can be used in this mode for high current applications. When negative voltage is applied

to back-gate, the back interface is depleted of carriers and the channel thickness decreases.

The device can be easily turned off even when moderate values of voltages are applied to

the lateral gates and top gate [34]. When the back interface and lateral gates are depleted,

the conductive path will not be able to cover the whole body of the transistor, even if the

top gate is accumulated.

In a partially depleted SOI MOSFET, it is not possible for the vertical gates to achieve

full depletion. The current can only be switched off by adding the lateral junctions and

keeping the body narrow in a G4FET. The coupling of depletion and vertical regions allow

for full depletion even before the lateral or vertical depletion regions merge.

57

(a) (b)

Figure 5.4: Tunable NDR made with n- channel and p- channel G4FETs (a) Circuit (b)
Symbol [9].

0 0.5 1 1.5 2

V
in

 (V)

0

2

4

I o
u

t (
A

)

10
-6

Figure 5.5: Transfer characteristics of G4NDR.

58

5.3 G4FET Based Negative Differential Resistance

Resistance is always present in electronic devices. The resistance of materials change with

varying temperatures. Most materials obey Ohm’s law at ambient temperature but some

tend to show a negative resistance. Ohms’s law states that in order to determine the

resistance of a component, voltage should be applied across it and current is measured

flowing through it. The resistance equals to the voltage divided by the current as shown in

the following equation:

R = V/I. (5.1)

Many objects have a constant resistance and the current tends to display a linear

relationship with changes in the applied voltage. The linear relationship holds true only

if the temperature is kept constant. If the temperature is varied slightly, obtained resistance

values will be different. All the devices do not seem to portray a linear relationship. For

example, a diode made with silicon dioxide has very high resistance for applied voltages

below 700 mV . It is possible for devices to demonstrate different values of resistance as the

applied voltage is altered. The Ohm’s law holds true for these cases because the resistance is

measured with constant circuit parameters. This is an example of static resistance because

the voltage is kept constant while current is measured [42].

Dynamic resistance refers to a resistance that is measured due to changes in circuit

parameters. Therefore, dynamic resistance is defined as the change in voltage divided by

the resulting change in current. In a resistor, the dynamic resistance and static resistance

are equal but in a diode the dynamic resistance is a function of the applied voltage. Most of

the devices have positive dynamic resistance but there are devices which display a negative

dynamic resistance. Negative dynamic resistance happens when the current starts decreasing

with increase in the applied voltage although the measured static resistance will be positive

for a given voltage.

Tunnel diode might be the only device whose physical characteristics display negative

resistance due to its physical mechanism. The traditional lambda diode consists of

complementary JFETs and it exhibits a region with negative differential resistance [163]. The

59

(a) (b)

Figure 5.6: G4NDR based discrete-time chaotic map which has three bifurcation parameters
(a) Circuit (b) Symbol.

0 0.5 1 1.5 2 2.5

V
in

 (V)

0

0.5

1

1.5

2

2.5

V
o
u

t (
V

)

2
 = 0 V

3
= 0 V

1
= 0.2 M

1
= 0.4 M

1
= 0.6 M

1
= 0.8 M

1
= 1 M

Figure 5.7: Transfer curve of the G4NDR map circuit for varying µ1.

60

peak currents and peak voltages are dependent on the pinch-off voltage and transconductance

of the transistors. The current in lambda diode approaches zero as voltage increases until

it reaches a breakdown point of the FET. At this point, the current starts increasing again.

The conventional two-terminal NDR is shown in Fig. 5.3. The n- channel JFET is fabricated

using two types of diffusion, n+ diffusion for the source and drain contacts and p diffusion for

the gate contact. Similarly, the p-channel JFET has n+ diffusion for the gate and back-gate

contact while the p diffusion forms the source and drain contacts.

A voltage-controlled negative differential resistance (VC-NDR) circuit using n-channel

and p-channel G4FETs was first proposed in [9]. G4NDR has been developed using the same

idea but the JFETs are replaced with complementary G4FETs. The circuit and symbol

of G4NDR is shown in Fig. 5.4. The resulting current changes with applied voltage is

shown in Fig. 5.5. The junction gates of the G4FETs are tied together and act as a single

gate in the NDR. The back-gate is connected to ground and not shown for simplicity. The

resulting G4NDR is a four-terminal device which is made up of the top gates and the tied

junction gates. The top gate voltages are denoted by VN and VP respectively. In G4NDR,

the transconductance and pinch-off voltage vary with the applied voltage on the MOS front

gates. This is why G4NDR properties can be tuned using both VN and VP . If VP increases,

the peak current and valley voltage of the G4NDR decreases since the pinch-off voltage of

the G4FET is reduced. VN controls the conductance of n- channel G4FET and modulates

the peak current since the front gate oxide interface changes from accumulation to depletion.

The sizes used for G4FETs are p- channel: 0.35 µm/1.2 µm and n- channel: 0.35 µm/3.4

µm. All the simulations have been performed using the MOS-JFET macromodel in [65].

5.4 G4NDR Based Chaotic Map

A novel chaotic map has been designed by implementing a voltage-controlled negative

differential resistance (VC-NDR) circuit consisting of two G4FETs and a transimpedance

amplifier which converts the generated current to voltage using a variable gain, R. The

transfer characteristics of the G4NDR map is very similar to the behavior of logistic map. The

map circuit and symbol are shown in Fig. 5.6. G4NDR map is better than traditional chaotic

61

maps such as tent map, sine map or logistic map. Traditional maps require high overhead

to implement the idealized mathematical equations in hardware. Moreover, G4NDR map

has three independent bifurcation parameters (µ1, µ2, µ3) instead of one parameter provided

by the conventional maps and the three transistor map. The proposed chaotic map shows

excellent chaotic property and the bifurcation diagram shows wider chaotic regions. Fig.

5.7 shows the transfer characteristics of the proposed map where µ1 is varied from 0.2 MΩ

to 1 MΩ and µ2 and µ3 are fixed at 0 V . The differentiable unimodal characteristic of the

transfer curve is ideal for chaotic operation.

5.4.1 Design of Chaotic Oscillator Using G4NDR Based Map

Fig. 5.8 shows the chaotic oscillator with sample-and-hold circuits and a buffer in the

feedback whereas the oscillator in Fig. 5.9 utilizes another G4NDR map in the feedback

path. When the chaotic oscillator is in chaotic region, it is capable of generating a new

analog voltage in every iteration. The oscillator in Fig. 5.8 works by applying an initial

input through clock, φ1. After application of the initial value, φ1 is disabled and clocks,

φ2 and φ3 are used to apply the generated output of the G4NDR map to the input of the

forward path map. Only one output can be sampled in each iteration. The oscillator in Fig.

5.9 works in a similar way but the second map in the feedback path is able to generate a

new chaotic value which can be sampled as well.

5.4.2 Bifurcation Diagram and Lyapunov Exponent

The importance of bifurcation diagrams and Lyapunov exponent in chaotic systems has been

discussed in detail in section 3.2. As mentioned earlier, the G4NDR chaotic map has three

bifurcation parameters, µ1, µ2 and µ3. The bifurcation diagrams for the three parameters

are shown in Fig. 5.10a, 5.11a and 5.12a. In Fig. 5.10a, the bifurcation diagram has been

simulated for changing µ1. The first 1000 iterations are ignored because the values are in

transient state. The three bifurcation diagrams clearly demonstrate the periodic and chaotic

regions. The corresponding Lyapunov exponent diagrams are shown in Fig. 5.10b, 5.11b

and 5.12b. It can be seen from the figures that the Lyapunov exponent has a positive value

62

whenever the chaotic oscillator is in chaotic region. Lyapunov exponent demonstrates zero

or negative value for periodic regions.

5.5 Design of Logic Gates Using G4NDR Based Map

Previously in section 4.2.2, the design space has been increased by varying the bifurcation

parameter in each iteration and changing the threshold voltage of the comparator. The

procedure to design reconfigurable chaos-based logic gates has been discussed in section

3.3.2. The schematic for the design of chaos-based gate is shown in Fig. 5.13 where the DAC

is used to convert the digital input to analog voltage which is the initial seed (x0) for the

chaotic oscillator. A control bit, Cb is used to change the initial value of the seed slightly in

order to generate a different chaotic sequence. Data, Ib is the digital input applied to the

logic gate. At each iteration, the analog voltage from the chaotic oscillator is converted to a

digital output by using a comparator with threshold voltage, Vth.

This work focuses on designing a 2-bit chaos-based logic gate with 1-bit control.

Therefore, a 3-bit DAC is needed to convert the initial digital voltage to an analog value.

The chaos-based logic gates are reconfigurable and are capable of implementing all the 16

functions. The functions are numbered in decimal starting from 0 (0000) to 15 (111). Table

5.1 demonstrates the evolution of analog voltages from the chaotic oscillator with changing

iteration number. The values of the tuning parameters are µ1 = 0.95 MΩ, µ2 = 0 V , µ3 = 0

V , Vth = 1.25 V and Cb = 0. The table shows that the functions vary with each iteration. For

example, when iteration number , n = 4, the generated function is NAND and the decimal

value is 14 (1110). Multiple configurations are possible in order to obtain the logic functions

from the chaotic oscillator. Three different configuration for six different functions (AND,

OR, XOR, NAND, NOR and XNOR) are shown in Table 5.2.

5.6 Expansion of Design Space Using G4NDR Map

The benefits of expanding the design space has already been discussed in chapter 4.

63

Figure 5.8: G4NDR based chaotic oscillator using buffer in the feedback.

Figure 5.9: G4NDR based chaotic oscillator using another G4NDR map in the feedback.

64

(a)

(b)

Figure 5.10: (a) Bifurcation diagram and (b) Lyapunov exponent of the chaotic oscillator
for varying µ1; µ2 = 0 V , µ3 = 0 V .

65

(a)

(b)

Figure 5.11: (a) Bifurcation diagram and (b) Lyapunov exponent of the chaotic oscillator
for varying µ2; µ1 = 1 MΩ, µ3 = 0 V .

66

(a)

(b)

Figure 5.12: (a) Bifurcation diagram and (b) Lyapunov exponent of the chaotic oscillator
for varying µ3; µ1 = 1 MΩ, µ2 = 0 V .

Figure 5.13: G4NDR based reconfigurable logic gate.

67

In [80], the parameters that are changed to enhance the design space are control bit,

c, number of iterations, n and bifurcation parameter, µ. Let Nµ be the available number

of voltage levels in the bifurcation diagram where the system is chaotic. The functionality

space, F1(n) in [80] can be expressed as:

F1(n) = n× 2c ×Nµ. (5.2)

In [150], control bit is not used but the threshold voltage is varied. The functionality

space was extended by varying the bifurcation parameter in each iteration. Let Nvth be the

number of threshold voltage levels. The functionality space, F2(n) in [150] can be expressed

as:

F2(n) = n×Nvth ×Nn
µ . (5.3)

The three transistor chaotic map shown in Fig. 3.1 has one bifurcation parameter. On

the other hand, the proposed G4NDR based chaotic map has three independent bifurcation

parameters which can be leveraged to increase the functionality space. There are two types

of oscillator that utilizes G4NDR based chaotic map. The oscillator in Fig. 5.8 has only one

chaotic map in the forward path. There are 6 tuning parameters in the design, bifurcation

parameters (µ1, µ2 and µ3), control bit (c), iteration number (n) and threshold voltage (Vth).

The bifurcation parameters are varied cycle to cycle. The functionality space, F3(n) for the

chaotic oscillator in Fig. 5.8 can be expressed as:

F3(n) = Nvth × 2c ×Nn
µ1
×Nn

µ2
×Nn

µ3
× n. (5.4)

The functionality space can be further expanded if the chaotic oscillator in Fig. 5.9 is

used which utilizes another chaotic map in the feedback path. The forward path map and the

feedback path map each has three independent bifurcation parameters. The functionality

space, F4(n) for the chaotic oscillator in Fig. 5.9 can be expressed as:

F4(n) = Nvth × 2c ×N2n
µ1
×N2n

µ2
×N2n

µ3
× n. (5.5)

68

The functionality space for the four equations 5.2 - 5.5 is shown in Fig. 5.14. The

functionality space is significantly larger for G4NDR based chaotic map due to the presence

of multiple bifurcation parameters. The bottom gates of the G4FET can be utilized to

further extend the design space instead of connecting them to ground terminal. It is highly

desirable to have a large design space so that multiple reliable functions can be chosen to

implement a single logic function. This feature can be utilized to mitigate power analysis

based side channel attacks [105].

69

Table 5.1: Evolution of analog output from chaotic oscillator with different iterations (µ1 =
0.95 MΩ, µ2 = 0 V, µ3 = 0 V , Cb = 0, Vth = 1.25 V). Functions are represented in decimal
value.

xn (V) xn+1 (V)
n = 1 n = 2 n = 3 n = 4 n = 5

0.1(00) 0.46(0) 1.62(1) 0.63(0) 1.89(1) 0.31(0)
0.757(01) 1.98(1) 0.24(0) 1.02(0) 1.84(1) 0.35(0)
1.414(10) 1.01(0) 1.86(1) 0.34(0) 1.33(1) 1.2(0)
2.071(11) 0.19(0) 0.82(0) 1.98(1) 0.24(0) 1.01(0)

Func (dec) 4 10 1(AND) 14(NAND) 0

Table 5.2: Three different configurations for six logic functions.

Operation Configurations
Configuration 1 Configuration 2 Configuration 3

µ1(MΩ) µ2(V) µ3(V) Cb Vth(V) n µ1(MΩ) µ2(V) µ3(V) Cb Vth(V) n µ1(MΩ) µ2(V) µ3(V) Cb Vth(V) n
AND 0.97 0 0 0 1.1 3 0.94 -0.3 0 1 1.5 5 0.99 -0.3 0.3 0 1.4 7
OR 0.94 0 0 1 1.2 7 26 0.96 -0.3 0 0 0.7 0.99 -0.3 0.3 0 0.7 5

XOR 0.95 0 0 1 0.6 4 41 0.97 -0.3 0 0 0.7 0.99 -0.3 0.3 0 0.7 1
NAND 0.95 0 0 0 1.4 6 61 0.95 -0.3 0 1 0.5 0.99 -0.3 0.3 1 1.1 5
NOR 0.93 0 0 1 1.4 6 54 0.9 -0.3 0 0 1.4 0.99 -0.3 0.3 1 1.6 7

XNOR 0.98 0 0 1 1.6 3 63 0.92 -0.3 0 1 1.4 0.99 -0.3 0.3 0 1.6 6

1 2 3 4 5 6 7 8

Iteration number, n

10
0

10
10

10
20

10
30

F
u

n
c

ti
o

n
a

li
ty

 S
p

a
c

e

[1]

[2]

proposed1

proposed2

Figure 5.14: Comparison of functionality space among proposed and previous works.

70

Chapter 6

Pseudo-Random Number Generation

(PRNG) Using Three Transistor

Chaotic Map

**Portions of this chapter were published in:

[148] Aysha S. Shanta, Md Sakib Hasan, Md Badruddoja Majumder, and Garrett S. Rose.

“Design of a Lightweight Reconfigurable PRNG Using Three Transistor Chaotic Map.” In

2019 IEEE 62nd International Midwest Symposium on Circuits and Systems (MWSCAS),

pp. 586-589. IEEE, 2019.

6.1 Introduction

Intel incorporated a random number generator (RNG) in their motherboards, desktop

systems and chipsets. The RNG was introduced in 1999 and it was the first of Intel’s family

of primitives which was used for hardware security [79]. In order to define randomness, it is

important to get a grasp on the idea of unpredictability. The simplest idea of randomness

states that the sequence is non-deterministic, uniformly distributed and has independent bits

over an infinite length of data set. In statistical definition, it means there is no correlation

between the numbers. Random numbers find its applications in many areas such as games of

71

chance, simulations, secure communication systems, diagnostics and sampling. The security

of cryptographic systems relies on the true randomness of the numbers used. Random

numbers are intrinsic to some algorithms such as Digital Signature Algorithm (DSA) or

protocols such as zero knowledge. In smart card based applications, good quality random

numbers might be required for protection against side-channel attacks [134]. Cryptographic

key exchange mechanisms and integrity mechanisms require good quality random numbers

[20]. Random numbers can also protect against traceability attacks on RFID systems [98].

Random number generators are classified into two classes:

1. True random number generator (TRNG)

2. Pseudo-random number generator (PRNG)

6.2 True Random Number Generator (TRNG)

TRNGs generate random numbers by leveraging the real physical systems that exhibit

unpredictable and uncontrollable behavior such as quantum effects, timing user process,

electronics noise, shot noise, thermal noise and radioactive decay. TRNGs have good

statistical properties for use in cryptographic systems and prevents attack from adversaries.

TRNGs were first developed using continuous-time chaotic systems and now they are

designed using discrete-time systems [170, 119]. However, chaotic map based TRNGs are

vulnerable to process variations that are inherent in the IC fabrication. These non-ideal

effects can severely degrade the performance of the chaotic oscillator rendering it useless.

The trajectories of the chaotic oscillator can diverge after a certain number of iterations

or may converge to stable points in the orbit. Research has shown that the most compact

hardware implementation and sufficient randomness can be obtained from piece-wise linear

1D maps. Researchers have developed ways to make the design robust and proposed ideas to

mitigate unwanted effects due to process variation by improving design techniques [179, 111].

True random bit generators can also be implemented with continuous-time mathematical

models but the challenge is the bit rate is slow. In this regard, discrete-time models are

72

preferred due to their inherent rich and complex behavior. Discrete-time chaotic maps can

be easily implemented in hardware using field-programmable gate arrays (FPGAs) [167].

The disadvantage of using TRNGs is that they are expensive, slow and susceptible

to external synchronization. They require complex designs and hardware is essential for

random number extraction. Moreover, the sequence from the TRNG is uncontrollable since

it is hugely vulnerable to environmental noise. Hence, the bitstream is not applicable for

applications where strong stable randomness quality is desired. These challenges motivated

researchers to develop and design pseudo-random number generators.

6.3 Pseudo-Random Number Generator (PRNG)

PRNGs require an initial seed value to start the random number generation. PRNGs are

deterministic state transitions f : x → x mapping between values in a finite state space

if a new seed value is not applied. The seed is usually selected randomly. The generated

sequence is called “pseudo-random” since the same sequence can be generated from the

PRNG if the same initial conditions are applied. The generated sequence of a PRNG is

periodic which means the sequence will repeat itself after a certain number of cycles. There

are many advantages of PRNGs, such as, easy and fast implementation, cheap and it does

not require any hardware. The numbers produced by the PRNG can be predicted if the

underlying function is not complex or if the seed is known [38]. Shannon’s entropy states

that the entropy of the output depends on the entropy of the seed [56]. In many cases, the

seed of the PRNG is generated using a TRNG.

Figure 6.1: 4-bit linear feedback shift register [151].

73

PRNGs can be used for key generation, initialization vectors for encryption algorithm

and produce random sequences for cryptographic challenge-response pairs [74]. Recently,

PRNGs are implemented on FPGAs but the disadvantage is that the generated sequence

need to pass all the NIST tests by utilizing few resources and at the same time achieve a

desirable throughput of random bits.

6.3.1 Linear PRNG

Linear feedback shift registers (LFSRs) have been used for producing pseudo-random

sequences for applications in stream cipher and are suitable for high speed and low power

specifications [151]. The schematic of LFSR is shown in Fig. 6.1. The design of LFSR is

based on shift registers whose input is a linear function of the previous state and input bit

is generated by XORing some bits of the overall value of the shift register. The operation of

the registers are deterministic so the sequence generated by the register is dependent on the

current or previous state. After an initial value is applied to the LFSR, it can be clocked

to produce the bitstream. LFSRs are less expensive to implement, have low complexity,

high speed and good statistical properties [66]. However, the LFSR is easily breakable by

attackers using Berlekamp-Massey algorithm [19].

6.3.2 Nonlinear PRNG

Literature review brought into light that metastable [172], jitter [121] and chaotic systems

[50, 18, 180] can be used as entropy sources in the design of TRNG. Chaotic systems are

preferred for random number generation due to characteristics such as unpredictability,

random behavior, vulnerability to initial conditions and tuning parameters. Shanon states

that chaotic systems are relatable to cryptographic systems because they provide confusion

and diffusion properties of encryption algorithms [118].

Nonlinear PRNGs can be implemented using nonlinear recurrence equations. Nonlinear

feedback shift registers (NLFSRs) have long period and high throughput [53]. Blum’s

nonlinear generator uses modulus operation and square function in order to increase

unpredictability [24]. Other methods include digitizing a chaotic map which suffers from

74

truncation error and high hardware complexity [15, 58]. There exists a trade-off between

randomness and hardware cost which depends on the desired precision in operation. If the

precision is reduced to increase the throughput of the system, the truncation would harm

the entropy of the sequence which is not desirable for security applications.

An important feature that PRNGs should possess is long cycle length, i.e. the number

of outputs after which the sequence starts to repeat itself. If the generated sequence has a

short cycle then different portions of the data might be encoded with the same key [107].

In order to alleviate this problem, researchers have proposed different techniques such as

reseeding method which masks the last 5 least significant bits at a specified time and tries to

induce noise sensitivity [90]. In [92], the period is made long by coupling linear generators

with nonlinear generators. Yang et al. introduced noise such as Gaussian and uniform

distribution to make the sequence unpredictable [181]. In [4], the period of the sequence has

been increased by utilizing nonlinear truncation.

6.4 Proposed Lightweight and Reconfigurable PRNG

Chaotic systems can be extremely useful for encryption and secure communication purposes

since it requires two properties: good statistical feature and sensitivity to initial conditions.

In encryption algorithms, the chaotic system is the main component that generates the

pseudo-random sequences. The American mathematician, Shannon who is known as the

founder of information theory stated that if a random sequence is used to generate a secret

key then a slight change in key should result in considerable change in the output value.

Nonlinear dynamical systems possess this exact quality and is thus ideal for encryption

purposes [147]. In [75], researchers have used the output of one chaotic map to control the

parameters of another chaotic map. This method improves sensitivity to initial conditions,

randomness, produces wider chaotic region and possesses more complex chaotic phenomenon.

It is important that the right kind of chaotic system is chosen for pseudo-random number

generation such as piecewise linear chaotic map [158, 159], tent map [5] and Henon map

[162]. Common chaotic maps can be used for PRNG design such as logistic map [126, 83].

Researchers have also used oscillators with frequency dependent negative resistances (FDNR)

75

element to achieve a simple and fast RNG. In [145], researchers have designed a hyperchaotic

system to design PRNG. A method to generate binary sequence from real number sequence

using logistic map has been proposed by Biance [21]. In order to achieve high speed, the

chaotic map is iterated to generate the pseudo-random sequence. Chaos-based PRNGs are

generated by sampling the trajectory of the map.

There are disadvantages to the chaos-based PRNG as well. Chaotic systems are based

on dynamical systems which require s set of real numbers as input and output. The system

designed from chaos can require considerable storage space, they are usually slow and it is

possible that the chaotic properties are disturbed during the computation procedure [60].

Theoretically, chaotic states in very close proximity to each other should never overlap with

each other, but in practice due to finite precision of the computing systems, it is possible

they might coincide with each other [125]. The finite precision issue also creates a problem

when the rounding method at the sender and receiver side are different. In cryptographic

applications, it is important that the sender and receiver side have the same set of data. In

order to avoid this problem, the generators can be integrated with fixed finite precision of

N bits. For example, in [181] the precision of the system has been chosen to be 43 bits.

However, this fix can lead to problems of its own such as short cycles and degradation of

chaotic behavior [39].

6.4.1 Chaotic Oscillator for PRNG Design

In this work, two one-dimensional chaotic maps have been connected in cascade to design the

chaotic oscillator. 1-D systems are mathematical systems which evolve in time as iteration

number increases. The analog sequence generated from the chaotic oscillator is sensitive to

small changes in the initial condition which is an essential characteristic of a good PRNG. A

conventional approach of generating random sequences is using two discrete-time maps and

comparing the obtained sequences. Common chaotic maps such as logistic map are able to

produce only 1 bit per iteration but in this design since two chaotic maps are utilized, it is

possible to extract 2 bits per iteration.

The chaotic oscillator is shown in Fig. 6.2. It can be seen that two map circuits are used,

one in the forward path and the other in the feedback path. Non-overlapping clocks (clka

76

and nclka) are used to sample-and-hold the outputs of the chaotic oscillator. The initial

input, also known as the seed, is applied when clkinit is high. The first sampled output is

out1. Out1 reaches the input of the map circuit in the feedback path when clka is high. The

feedback map circuit produces an output called out2. Out2 is the second sampled output

from the circuit and when nclka becomes high out2 becomes the input of the map circuit in

the forward path. This cycle continues until the required amount of data is generated.

There are multiple tunable voltages in the proposed system such as input seed, Vin and

two bias voltages Vc1 and Vc2. The bias voltages can be tied together or different voltages

can be applied in order to generate new sequences. The proposed system is reconfigurable

because slight change in bias voltage produces a brand new sequence. In order to ensure

that the design produces pseudo-random sequences, the bias voltage should be chosen from

the chaotic region. The chaotic region can be estimated from the bifurcation diagram and

Lyapunov exponent from Fig. 3.8 and Fig. 3.9 respectively. In this work, a single bias

voltage, Vc is used where the Lyapunov exponent has the most positive value i.e. 592.5 mV .

The proposed pseudo-random number generator is shown in Fig. 6.3. The sequence

generated from a single chaotic oscillator is not random enough to pass all the NIST tests.

In order to generate good pseudo-random sequence, two chaotic oscillators, COA and COB

are used. COA produces 2 million analog values and COB produces 1 million values. In

Fig. 6.3, clk1 has double the frequency of clk2 so that Sel pin of the analog MUX (same

frequency as clk1) can choose the output of the chaotic oscillator to transfer to the input of

the analog-to-digital converter (ADC). The proposed scheme uses a single ADC in order to

reduce area and power overhead.

Every other analog value is sampled from oscillator, COA starting at the 2nd position

until 1 million data is sampled. The first 1 million values are sampled from COB. The ADC

converts the analog voltages from the oscillators into digital values and stores only the 10th

bit in the 2-bit shift register (SR). The 10th bit from the ADC is used to create the random

sequence because it provides the highest entropy. When two values are available in the shift

register, the values are XORed to enhance the randomness of the sequence and the final

sequence from the output pin is saved.

77

Figure 6.2: Chaotic oscillator. The dotted lines represent the chaotic map [148].

Figure 6.3: Proposed pseudo-random number generator [148].

78

An analog seed is applied to the proposed PRNG where inA = inB. The seed is chosen

from the output span of the oscillators. In this case, the range is from 310 mV to 1.194

V . The same bias voltage has been used for both chaotic oscillators, i.e. Vc1 = Vc2 = 592.5

mV . The value of Vc has been chosen using the help of bifurcation diagram and Lyapunov

exponent. After the sequences are generated, correlation and NIST tests are performed on

the sequences to validate their quality and usage in security applications.

6.4.2 Correlation Coefficient

Correlation coefficient measures the statistical relationship and dependence between two or

more random sets of data [176]. If two data sets, x and y are considered, the equations for

the correlation coefficient is as follows:

cov(x, y) = E{(x− E(x))(y − E(y))} (6.1)

rxy =
cov(x, y)√
D(x)

√
(D(y)

(6.2)

E(x) =
1

M

M∑
i=1

xi (6.3)

D(x) =
1

M

M∑
i=1

(xi − E(x))2 (6.4)

In order to test the correlation coefficient of the data generated from the proposed PRNG,

10 sequences of length 10100 were generated. The first 100 data has been ignored to avoid

transient response. 10 sequences can be combined in 45 ways if sets of 2 are formed. The

seed has been changed to generate a new sequence. The seed values start from 350 mV to

800 mV with increments of 50 mV . Ideally, the correlation coefficient of two random data

sets will be zero. Fig. 6.4 shows the distribution of correlation coefficient of the generated

sequences. It can be seen from the figure that all the coefficients are either 0 or close to 0.

It indicates that the PRNG has good correlation features.

79

-0.03 -0.02 -0.01 0 0.01 0.02

Correlation Coefficient

0

5

10

15

20
F

re
q

u
e

n
c

y

Figure 6.4: Distribution of correlation coefficient.

0 5 10 15

Iteration number, n

0

0.2

0.4

0.6

0.8

1

D
ig

it
a

l
v

a
lu

e

V
in

 = 0.35 V

V
in

 = 0.350001 V

V
in

 = 0.35001 V

V
in

 = 0.3501 V

Figure 6.5: Seed sensitivity of the PRNG for slight changes in the seed.

80

6.4.3 Seed Sensitivity

Seed sensitivity is essential in the design of PRNG because a tiny difference in the seed should

cause the output to change significantly. In order to test the sensitivity, four different seeds

are applied to the PRNG with very close values, 0.35 V , 0.350001 V , 0.35001 V and 0.3501

V . Fig. 6.5 shows the seed sensitivity of the proposed PRNG for the first 15 iterations. It

can be seen that the sequences start deviating within the first few iterations.

The correlation coefficient has also been calculated comparing the slightly changed seeds

with the original seed. 10000 iterations have been considered in order to calculate the

correlation coefficient. Table 6.1 shows the correlation coefficient of the three cases and as

expected all the values are close to zero. Thus, the proposed PRNG has high seed sensitivity.

In some cases, the sequence generated from the map does not possess enough randomness

and unpredictability to be used in cryptographic applications. Post-processing of data might

be required such as bit counting redundancy reduction technique [36].

6.4.4 National Institute of Standards and Technology Tests

National Institute of Standards and Technology (NIST) tests measure the contingency of the

PRNG sequence obtained from the generator. Each test in the suite measures the statistics of

the features that the generated sequences possess. High value of statistics means an absence

of contingency in the sequence. The test result is positive when the calculated probability of

the obtained statistics is compared with the statistical significance value, α which is usually

equal to 0.01. If the value of the probability is greater than 0.01, then the sequence passes

the test. The sequence that has at least one negative test result is not random. If the

p-value of a sequence is 1, then the sequence is perfectly random and p-value of 0 indicates

that the sequence is not random. There are 15 tests in the NIST 800.22 test suite to test the

randomness of sequence for applications in cryptography. The minimum pass rate for each

test is in the tolerance range calculated by equation 6.5.

Tolerance = (1− α)± 3
√
α(1− α)/T . (6.5)

where T = number of sequences to be tested.

81

Table 6.1: Correlation coefficient between the original sequence and the three cases.

Case 1 Case 2 Case 3

Correlation coefficient 0.0043 0.0040 0.0169

The sequence of values that do not pass the tests are not suitable for security applications

since the lack of certain statistical properties might help the attacker to predict future values

of the sequence. However, algorithms that do pass the tests does not necessarily provide

enhanced security features for use in cryptographic algorithms. NIST tests help in designing

new PRNGs, identifying weak binary sequences, studying standard PRNGs, verifying that

the PRNG has been implemented properly and analyzing the degree of unpredictability of

the current PRNGs.

All the tests in the NIST suite [1] are described briefly.

1. Frequency Monobit Test: This test measures whether the proportion of ones and

zeroes is the same in the generated sequence. The test calculates if the number of ones

is close to 0.5.

2. Frequency Test within a Block: This test measures whether the frequency of

ones in an M -bit block is M/2. The default value of M is 128.

3. Cumulative Sums Test: This test calculates the partial sum of the sequence under

test and compares it to the expected cumulative sum of a random sequence.

4. Runs Test: Runs test determines the total number of runs of identical bits where

run means an uninterrupted sequence. A run of length, n means that the sequence has

n identical bit bounded by different bits before and after. Basically, this test calculates

whether the switching between zeros and ones are too slow or too fast.

5. Serial Test: The purpose of the test is to find out all possible overlapping m-bit

patterns in the overall bit stream. Random sequences are uniform in manner so every

m-bit pattern has the same chance of occurring as every other m-bit pattern.

82

6. Rank Test: Rank test looks for linear dependence among fixed length strings of the

sequence under test.

7. DFT Test: DFT test can indicate if there are periodic features i.e. repetitive patterns

in the sequence.

8. Longest Run of Ones Test: This test checks if the longest run of ones of the

generated sequence is similar to a random sequence.

9. Non-overlapping Template Matching Test: This test finds the number of

occurrences of non-periodic patterns and fails the test if the sequence has too many of

these patterns.

10. Overlapping Template Matching Test: This test fails those sequences that lack

the expected number of runs of ones of a given length.

11. Maurer’s Universal Statistical Test: This test measures whether the sequence

can be reduced in size significantly without losing valuable information.

12. Approximate Entropy Test: This test compares the number of occurrences of

overlapping blocks in two adjacent lengths with the expected result of a random

sequence. The default length of each chunk of data is 10 bits.

13. Random Excursions Test: This test calculates the number of visits to a particular

state in a random walk and checks if it exceeds the expected value.

14. Random Excursions Variant Test: This test checks if there are deviations from

the expected number of occurrences of different states in the random walk.

15. Linear Complexity Test: This test determines if the generated sequence is complex

enough to be considered random. The complexity is measured by using Berlekamp-

Massey algorithm.

In this work, the generated pseudo-random sequence passes 15 out of 15 NIST tests. 100

1 million sequences have been generated in order to validate the NIST tests. 100 different

83

sequences have been generated using 100 different initial seeds. Table 6.2 shows the results

of the NIST tests. Asterisk(*) means that average of multiple results are shown.

6.5 Overhead Analysis

PRNGs have been designed based on popular chaotic maps such as logistic map, tent map and

piecewise linear map. CMOS implementations of these maps can have huge area overhead.

In many cases, in order to reduce area consumption only one value of bifurcation parameter

is chosen in the chaotic map. The proposed design retains all the control parameters which

makes the design reconfigurable and helps to generate new sequences. Different bias voltage

combination in the chaotic oscillators can generate more sequences. The body bias voltage

of the transistors can also be used as an added control parameter.

The generated pseudo-random sequences need to pass the NIST test so that it can be

used in security applications. There are multiple post-processing schemes discussed in the

literature but they add more complexity to the design. Post-processing schemes can add to

the delay of the system on top of being area and power hungry. This work proposes a simple

post-processing technique for the generated data. After the analog data is generated from

the two chaotic oscillators, the analog MUX selects which data gets to reach the input of

the ADC for digital conversion. The least significant bit (LSB) of the digital data is stored

in a two-bit shift register and XORing is carried out on the stored bits. This technique adds

very little power and area overhead.

The PRNG has been designed in 65 nm CMOS process with a supply voltage of 1.2

V . The area of the chaotic oscillator is 0.556 µm2. A low area and power consuming SAR

ADC can be used for digital conversion [101]. The ADC only consumes 0.132 mm2 of area

and 1.6 mW of power. The overhead of the entire system including the chaotic oscillators,

analog MUX, 10-bit ADC and 2-bit shift register is approximately 0.132 mm2 and the power

consumption is 2.12 mW . Table 6.3 demonstrates that the proposed system consumes less

area and power compared to prior work.

The throughput of the chaotic oscillator is 330 MS/s but the throughput of the ADC is

only 100 MS/s. The throughput of the entire system is limited by the ADC’s throughput.

84

Table 6.2: NIST test results of the proposed PRNG [148].

NIST test P-value Pass-rate
Frequency 0.0966 0.99

Block frequency (m = 128) 0.3838 0.98
Cumulative sums* 0.4356 0.99

Runs 0.7792 1
Longest runs of ones (M = 10000) 0.8832 1

Rank 0.4190 1
DFT 0.8514 0.99

Non-overlapping template* (m = 9) 0.4994 0.98
Overlapping template (m = 9) 0.0329 1
Universal (L = 7, Q = 1280) 0.6371 0.99

Approximate entropy (m = 10) 0.2368 0.99
Random excursion* 0.2558 0.99

Random excursion variant* 0.2213 0.99
Serial* (m = 16) 0.52155 0.99

Linear complexity (M = 500) 0.3191 0.98

Table 6.3: Overhead comparison of established PRNGs with the proposed design [148].

Technology (nm) Supply Voltage (V) Area (mm2) Power (mW) Throughput (MS/s)
[124] 350 3.3 0.752 56 40
[124] 180 1.8/3.3 0.126 22 100
[91] 180 1.8 0.275 13.9 6400
[181] 180 1.8 0.767 37 120

This work 65 1.2 0.132 2.12 100

85

If 10 bits from the ADC are used, then the throughput of the system can be increased to

1000 MS/s. A more complex post-processing scheme need to be used in order to pass all

the NIST tests. If only the 10th bit of the ADC is utilized, then a Flash ADC can be used

to increase throughput but it comes at a cost of more area and power consumption.

6.6 Application Lies in Security of IoT Devices

In 1999, Keven Ashton introduced the term Internet of Things (IoT) when he was working at

MIT’s AutoID [16]. IoT devices became increasingly popular due to the rapid advancement

in technology and standardized communication protocols. These objects can communicate

amongst each other and are managed by computers. It has been anticipated that by the year

2020, there will be 20 billion connected devices in the IoT domain. One of the major concerns

of IoT devices is the security threat on all the connected devices. The security concerns can

range from threat of cyber-theft, financial transactions and personal privacy. IoT devices can

communicate with each other without human interaction and absence of human control. Such

devices typically have area and power consumption limitations so traditional cryptographic

security schemes will be expensive given the constraints. Therefore, the proposed lightweight

PRNG will be perfect for security applications in IoT devices due to its lightweight nature

and inherent dynamics.

86

Chapter 7

Physically Unclonable and

Reconfigurable Computing System

(PURCS)

**Portions of this chapter is to be published in:

[149] Aysha S. Shanta, Md Badruddoja Majumder, Md Sakib Hasan, and Garrett S. Rose.

“Physically unclonable and reconfigurable computing system (PURCS) for hardware security

applications .” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD), (accepted).

7.1 IC Counterfeiting and Logic Locking

7.1.1 IC Counterfeiting

Counterfeit ICs include remarked, recycled, tampered and overproduced ICs and the

estimated annual loss due to these ICs is over $169 billion dollars. The counterfeit ICs sold

in the market can have national security implications. Semiconductor Industry Association

(SIA) estimated that 15% of the replacement and spare semiconductors purchased by the

87

Pentagon are counterfeit chips [52]. IC and Intellectual Property (IP) designers are re-

evaluating their trust on hardware due to globalization of the supply chain. The hardware

is prone to new attacks everyday such as IP piracy and reverse engineering [10].

The are multiple entities involved in the IC design and fabrication process such as the

foundry, the designer and the end-user [184]. The designers can use third-party IP blocks

in their systems. The foundry is untrusted because it is located outside the company

and rouge people in the foundry can reverse engineer the design from the mask, steal IP

design or produce extra chips to illegally sell in the market. End-users are also untrusted

because they can try to reverse engineer the contents of the chip to gain technology or design

information. Reverse engineering can help in obtaining design details by using IC imaging

and probing. The process of reverse engineering includes multiple steps such as depackaging

the IC, delayering and imaging layers and finally analyzing the bundle of extracted images

to find design details [166].

The trend of IC piracy and reverse engineering to produce counterfeit ICs have raised

severe concerns in the industry. The counterfeiting can happen in several forms such as:

1. Design houses can sell IPs to third parties without vendor’s knowledge.

2. IPs being used without paying the appropriate fees to the IP vendor.

3. Fabrication houses can sell illegally cloned copies of the design without the designer’s

knowledge in the market.

4. Companies can perform reverse engineering of a fabricated IC to decode the contents

of GDS-II files.

5. Adversaries in the supply chain can insert malicious hardware into the design without

the designer knowing about it.

All the countries involved in the IC design flow does not have strict laws against IP theft

except USA and Japan. Hence, it becomes, IC/IP designer’s responsibility to protect their

designs. IP/IC piracy affects IP vendors, chip designers and system designers by depriving

them of the generated revenue. Several countermeasures have been introduced in order to

88

mitigate the consequence of counterfeiting, reverse engineering and insertion of malicious

content into the design such as IC metering [10], watermarking [82], split manufacturing

[76], IC camouflaging [131] and logic locking [127, 132]. Watermarking is a passive technique

that can help detect piracy but fails to protect against it. Metering utilizes a set of

protocols, either active or passive, which assigns a unique ID for each chip after fabrication.

Split manufacturing and IC camouflaging protects only against the untrusted foundry and

untrusted user respectively. Logic locking has gained the most attention amongst all the

techniques because it can lock the functionality of the IC while it is being passed through

different phases of production and the attacks such as overbuilding, IP piracy and reverse

engineering can be mitigated.

7.1.2 Background of Logic Locking

One possible method to protect the functionality of the IC is by inserting additional gates

to lock the IC such that the circuit will only produce correct outputs when a specific input

is applied at these gates. The IC will be locked when it passes through the untrusted design

flow in order to conceal its contents. The claim of logic locking concept is that if the key

and input space is large, the adversary will have to spend exponential time in figuring out

the secret key. Logic locking prevents cloning, Trojan insertion, reverse engineering and

overbuilding of ICs. The designer provides the correct key to the end-user so that the circuit

produces correct outputs on application of the valid key. The keys can be stored in a tamper

proof memory or physical unclonable functions (PUFs) can be used to generate keys so that

the attacker cannot gain direct access to the secret key value. If the key values are unavailable

to the attacker, the netlist of the design obtained by stealing or reverse engineering is useless.

In an encrypted IC, wrong key should generate wrong output for the entire space of input

patterns. In case a wrong key produces correct output, then the logic locking method is not

strong and the adversary will gain advantage. If an invalid key only changes a few of the

output bits, then the adversary can tolerate the wrong outputs. If a wrong key affects or

flips all the output bits, then the wrong output is an inverted version of the correct output.

Therefore, an invalid key should alter half of the output bits, which is why the Hamming

distance between correct and wrong outputs should be 50%. 50% Hamming distance should

89

provide sufficient obscurity to the attacker. It is also important that fewer gates need to be

inserted in order to reach 50% Hamming distance [128].

7.1.3 Threat Model for Logic Locking

• The end-user and foundry are untrusted.

• The designer is trusted.

• The adversary knows about the logic locking algorithm and the location of the key

gates. The only unknown piece of information is the secret key.

• The adversary has access to a reverse engineered netlist and a functional IC. The

netlist is obtained from the IC design or by reverse engineering the mask, layout

or manufactured IC. The adversary uses simulation tools on the locked netlist and

generates the output patterns from the functional IC for specific input patterns.

7.1.4 IC Design Flow

The IC design flow is shown in Fig. 7.1. The designer and IP provider are trusted in logic

locking threat model. The foundry is not trusted since there might be rouge agents who can

steal or reverse engineer the design. The designer encrypts the design and after synthesizing

sends the layout masks to the foundry. The key has not been loaded into the tamper-evident

memory at this stage since it can be recovered by the adversary in the foundry. The foundry

manufactures the chip and sends it back to the design house. The designer then loads the

key into the memory to enable correct functionality of the IC. After the key is loaded, the

designer blows out the fuses in the read/write circuit in order to disable access to the memory

contents by the user. The designer performs validation tests on the functional IC and if the

ICs pass the test, the chips are packaged and sold in the market.

90

Figure 7.1: IC design flow with logic locking capabilities [132].

7.1.5 Issues Mitigated by Logic Locking

Hardware Trojans

Logic locking prevents the adversary from inserting malicious circuitry into the design

because it is harder to find a location to insert Trojans. The key gates change the propagation

of the signals in the design in a different manner which is unknown to the attacker.

Overbuilding

The foundry can produce extra chips without the knowledge of the design house. Their

intent is to sell the ICs to the market. However, the ICs cannot be unlocked without the

secret key and will be useless.

Reverse engineering and IP piracy

If the adversary steals the netlist or gains access to it by reverse engineering, the netlist will

be useless without information about the secret key.

7.1.6 Types of Logic Locking

Logic locking can be classified into two types: combinational and sequential.

Sequential Logic Locking

Sequential logic locking requires additional black states to be inserted in the state transition

graphs [10, 28]. The modified state transition graph is designed in such a way that a valid

state is reached only on application of valid key sequence. If the key is withdrawn from the

91

design, the system transitions into a black state again. Examples of sequential primitives are

obfuscated finite state machines [28]. Another sequential logic locking approach is to replace

parts of the design using programmable logic such as look-up tables (LUTs) [17]. In this way,

the IP owner hides the design from rouge agents in the fabrication stages. The concealed

design is later configured into programmable logic and the circuit will only function correctly

if these replaced elements are configured properly.

Combinational Logic Locking

In combinational logic locking, XOR/XNOR gates, AND/OR gates and multiplexers are

inserted into the design to hide the functionality of the design. One of the inputs of the key

gates act as the ‘key’ input. The user can configure these key gates as buffers or inverters

depending on the value of the key inputs. An example of unlocked and locked circuit is shown

in Fig. 7.2. The correct key input for the circuit to be functioning properly is 1, 0, 0 for K1,

K2 and K3 respectively which is loaded by the user in the chip’s memory. The locked IC

can be activated either prior or post-fabrication test. If the keys are loaded remotely into

the chip, then secure communication infrastructure is necessary.

Memory elements can also be used for logic locking in addition to combinational and

sequential elements [17]. The circuit will produce correct outputs only when the memory

element is programmed correctly. Although, usage of memory elements will lead to significant

performance overhead.

(a) (b)

Figure 7.2: (a) Unlocked circuit (b) Locked circuit with three XOR/XNOR gates [132].

92

7.1.7 Techniques of Inserting Key Gates

There are several techniques to insert key gates into the IC design such as random (RLL)

[140], strong interference based logic locking (SLL) [183] and fault analysis based (FLL)

[132]. In order to insert key gates, the position of the node inside the design needs to be

determined. When an incorrect key is applied, it should be able to alter most of the output

bits for most of the input patterns. Key gates can be inserted randomly but it does not

necessarily produce wrong output for the wrong key since the effect of wrong key might be

damped in the propagation path to the primary outputs. Fault analysis based logic locking

assumes that if an incorrect key is applied it activates a fault in one of the nodes. When

a wrong key is applied, a stuck-at-1 (s-a-1) or a stuck-at-0 (s-a-0) fault will be activated

when XOR/XNOR gates are used for logic locking. Sometimes, a wrong key can result in

generation of the correct output. Therefore, it is important that the effect of an excited fault

is propagated to primary outputs by using non-controlling inputs at the key gates. All the

inputs cannot guarantee the presence of non-controlling values on the propagation path, so

an incorrect key will not always corrupt the output. Care should also be taken when multiple

key gates are inserted or replaced in the design since the effect of one gate can nullify the

effect of the other gates.

7.1.8 Types of Key Gates

XOR/XNOR based

XOR/XNOR gates can be inserted in a design to hide the functionality of the circuit. The

gates are inserted into the design after logic synthesis and before physical synthesis. One

of the inputs of the key gate is part of the ‘secret key’ and the other one is part of the

original circuit design. If the key gate is an XOR gate, then the key value is 1 and if it

is an XNOR gate then the value is 0 for the circuit to perform correctly. Keys are stored

in tamper-evident memory by the trusted party and the circuit will not function correctly

unless a valid key is loaded in the on-chip memory.

93

If the key gates are left in the design without further improvements, then the attackers

can extract the key value by finding the XOR and XNOR gates in the design by reverse-

engineering the layout. The effort of the attackers can be increased by replacing the

XOR/XNOR gates with other gates such as AND, OR and NAND. Another method could

be to change the position of the inverters so that the polarity of the key gates are altered

[183]. However, the latter method suffers from significant area and power overhead in order

to realize De Morgan’s rules.

MUX based

Multiplexers (MUXs) are inserted in the logic paths of a system in MUX based logic locking

[132, 127, 177]. One input to the MUX is the original logic signal, the other input is an

arbitrary internal node and the select pin of the MUX is the key input. The original signal

can be connected to either the first or the second input of the MUX. This offers the flexibility

that the key bit can be 0 or 1. If the applied key is not correct, the MUX selects a random

node for determining the primary output. However, the output might not be corrupted

since the original node might have the same value as the random node. Designers should

also consider that a combinational loop is not formed between the original node and the

random node. MUX based logic locking requires more gates to be inserted to reach 50%

Hamming distance.

In [175], camouflage connectors and multiplexers are connected to design a ‘configurable

logic unit’ which can be used to replace logic gates in the design. An m-input 1-output

‘configurable logic unit’ can perform 22m functions using 2× 2m camouflage connectors and

2m-to-1 MUXs. Hence, a 4-to-1 MUX can be tuned to produce all the possible 16 Boolean

functions that a 2-input 1-output gate can perform. It is better than configurable CMOS

gates which are able to perform only 3 functionalities: NAND, NOR and XOR [131].

LUT based

An n-input look-up table requires 2n memory cells and 2n-1 2-to-1 MUXs. In [17, 96],

researchers have proposed using look-up table (LUT) based logic locking and established

methods for replacing gates in the netlist. The scheme is secure because the contents of

94

the LUTs are unknown after reverse engineering. In LUT based obfuscation, the selected

standard logic gates are replaced by LUTs. The functionality of the gates remain concealed

from the manufacturer. LUTs are then configured in a trusted facility after the fabrication

process is over.

After fabrication, the foundry can perform tests on the circuit on any mode (any logic

out of 16 possible functions) of the reconfigurable logic. The end-user will determine the

final usage or logic implementation of the reconfigurable block. Personnel in the designing

and manufacturing phase does not have to know the desired function of the LUT and cannot

tamper with the reconfigurable blocks. The reconfigurable block will act as a black-box to

the supply chain attacker. He knows the function of the LUT but does not have knowledge

about the final implementation. Therefore, he cannot perform tests, probing, and reverse

engineering because the LUT content has not been finalized [95]. Reconfigurable logic block

possesses three important qualities:

1. virtual “black-box”

2. polynomial slowdown

3. preserves the functionality

LUTs are better as key gates compared to XOR/XNOR gates for several reasons. First,

when XOR gates are used as key gates, they violate the outputs for wrong key application

but they are just gates added to the design. The entire layout is sent to the foundry for

fabrication so the rouge agent in the foundry can reverse engineer the layout to learn the

entire contents of the design and learn the location of the XOR gates. The XOR gates can

simply be removed from the design or attackers can use a FIBing technique where additional

wires are added to bypass the locking scheme. LUTs lock the design and replace gates in

the design with generic memory structure. The contents of the memory are unknown to the

manufacturer. Second, each XOR gate addition to the circuit adds 1-bit key to the design

whereas LUTs provide a larger key space which increases the attacker’s work.

There are disadvantages to using LUTs. The use of RAMs will increase the performance

overhead since additional mask layers are required. Utilizing LUTs for obfuscation purposes

95

can result in huge area and delay overhead. The area overhead of the LUTs exponentially

increases with the increase in input size. The area overhead constraint limits the number of

gates that can be replaced with LUTs. Moreover, the timing or delay requirements limit the

placement of LUTs in critical paths.

7.2 Authentication and Physical Unclonable Functions

(PUFs)

7.2.1 Authentication of Devices

Nowadays, the emergence of smart devices along with embedded memories is affecting our

daily lives. It has opened opportunities for great applications such as smart city and home

automation. The security of the devices is a huge challenge and opened a field for security

researchers to dive into. An illegitimate or unauthenticated device will be able to share false

information to disturb the functions of cyber-physical systems. If the security of these devices

are not handled or taken care of, then these devices can potentially distribute confidential

information to untrusted parties. Since these systems are mobile, the threat model should

include special cases where the devices will be operating in untrusted environment and the

attacker has physical access to the device. As a result, authentication is important for data

protection and to prevent man-in-the-middle attacks.

The solution is to install a secret key unique to each device in order to secure the

communication. Previously, the norm was to save the secret key in a non-volatile memory

such as electrically erasable programmable read-only memory (EEPROM) or battery-backed

static random access memory (SRAM) and perform cryptographic algorithms such as

encryption or digital signature to authenticate a device to ensure protection of confidential

information. New techniques were necessary to be developed because of shortcomings in the

previous methods such as huge amount of area and power consumption. Moreover, battery-

backed RAMs can be read after storing keys for a long time and non-volatile memories are

prone to invasive attacks since the keys are stored in digital format [13, 14, 26]. In order

96

to secure the key, expensive tamper-proof circuits need to be installed which needs to be

battery powered continuously.

7.2.2 Types of Authentication Architectures

Two-types of authentication architectures exist and these can be classified as: hardware and

software-aided architectures.

Software-aided Architectures

Software security methods are more flexible and easier to implement, update and manage

but they are built on the assumption that the underlying hardware is secure which

is not guaranteed in most cases. The software architectures utilize the conventional

cryptographic algorithms but the strength of the algorithm can be adjusted to fit the

operating requirements.

The disadvantage of software based architecture is that they require huge amount of

computation and consumes a lot of space in the memory. Moreover, they are susceptible

to hardware cloning attacks. Software implementations require less resources to reverse-

engineer and the source codes stored in the memory of the system can be easily accessed

and tampered by attackers. When the codes with timing and power traces are compiled

into assembly language instructions, they become susceptible to power and delay analysis

based side channel attacks. The aim of the researchers in sensor networks is to build a

lightweight and feasible but computationally less intensive cryptographic algorithms. It is

also mandatory to ensure that key distribution overhead is within a tolerable limit and

solutions have been proposed by reducing the key size [94, 120]. From a security perspective,

the dilemma between computation overhead and security level will always persist.

Hardware-aided Architectures

Hardware based cybersecurity utilizes secure hardware to protect the system while managing

to keep the performance overhead minimum. The problem arises because the security of the

system relies on the assumption that a “safe” key exists. The secret keys are stored in the

97

non-volatile memories in order to use in cryptographic primitives. Cryptographic keys are

long digital bit strings of data with truly random and entropy features. The vulnerabilities

arise because of insecure storage and transmission of personal identifiable information and

the lack of strong encryption and authentication schemes. A system that does not require

the key to be stored in a memory and generates a signature due to the physical disorder of

the system and provides tamper-resistance as an innate property is required for the security

of systems. This is why hardware-based architectures utilize Physical Unlconable Functions.

7.2.3 Process variation

The inevitable random fluctuations in silicon fabrication process results in random deviations

in interconnect and device properties. This random fluctuations lead to deviation of circuit

parameters from nominal values. The process variation can be divided into types: die-to-die

and within-die [186]. The radius of die-to-die variation is larger than the die size and includes

wafer-to-wafer, within-wafer, lot-to-lot and fab-to-fab. All the circuits in the die are affected

equally. The variation that exists between circuits of the same die is known as within-die

variation. The variations can occur due to reasons such as, manufacturing instrument or

layout technique of the designer. Random variations can also occur due to changes in device

length, doping concentration variation and fluctuations in oxide thickness.

Let the varied process parameter be denoted by X and this can represent the threshold

voltage or the channel length. The sources of variation can be represented by an equation:

X = X0 + ∆X = X0 +Xg +Xs +Xr. (7.1)

where X0 represents the mean value of X, Xg represents the global variation, Xs represents

the intra-chip variation and Xr represents random fluctuations.

7.2.4 Background of Physical Unlconable Functions (PUFs)

PUFs use process variation in the fabrication procedure to generate unique signature for

each chip [161]. The input to a PUF is called a “challenge” and the output is called a

“response”. The PUF can be modeled if all the challenge-response pairs (CRPs) are known.

98

The response of the PUF is dependent on its physical structure and is difficult to clone. Even

the original manufacturer with the same photolithography masks cannot create an identical

device because of the unpredictable and uncontrollable nature of process variation. A PUF

circuit is inherently noisy due to the time dependent variations of the physical characteristics

of the system. While using PUFs, the noise is eliminated by applying the same challenge

multiple times and using only those response bits that remained stable.

Modern cryptographic implementations in hardware is facing increasing number of

attacks [173]. Side-channel attacks (SCAs) are able to retrieve secret information from

memories where the cryptographic keys are stored [157, 165]. There is continuous challenge

to keep the memory safe from adversaries. There is an increasing demand for cryptography

in resource-constrained devices such as IoT, implantable medical devices and wearables.

Researchers are putting in more effort into building PUFs for developing secure electronics

because PUFs provide keys without the need of a storage element (memory) for secret keys.

One of the earliest works related to PUFs was proposed by Lofstrom et al. in the year

2000 where mismatch in silicon devices were used for identification of ICs [99]. The process

variation in PUFs can lead to intrinsic and random alterations in the characteristics of CMOS

circuits such as changes in threshold voltage of the MOSFETs, metal resistivity and effective

channel length of the transistors. The PUF outputs are not only dependent on the applied

inputs but also on the internal characteristics of the circuit. The secret key generated by

PUF is only available for usage when the chip is turned on and running. Since the IC probes

into the random variations caused by the manufacturing process, the secret is difficult to

clone [161]. The adversary has to put in more work since they have to mount an attack

while the IC is running, making sure that they don’t disturb the internal characteristics of

the chip, otherwise, the secret key will be changed or lost. Tapping into the device might

cause a capacitance change which in turn causes the output of the PUF to change. Another

advantage of PUF is that extra steps in the fabrication process, or testing or programming

is not required. PUF technology uses simple digital circuits which are easy to manufacture

and consume less area compared to EEPROMs or RAMs that require anti-tamper circuits to

protect the hardware. The fabrication cost of EEPROM is expensive since it needs additional

mask layers and RAMs require an always-on power source.

99

In addition to studying silicon PUFs which rely on delay and timing information,

researchers have also dived into PUFs that exploit physical characteristics of devices to

generate unique responses. For example, acoustic PUFs measure the acoustic reflections of

an item and coating PUFs measure the capacitance of the coating layer that covers the chip

[156, 169]. Pappu et al. developed an optical PUF that uses speckle patterns of medium for

laser light [122].

As technology is scaling, it is becoming increasingly difficult to control power and

performance dependent parameters. Variability is now an unavoidable characteristic of

CMOS processes [25]. The unique responses generated by PUFs finds its applications in

device authentication, encrypted storage, active metering of ICs to prevent overproduction,

trusted configuration of FPGAs and secure software execution on processors [130]. Guajardo

et al. used the PUF for remote service authentication, protection of intellectual property

(IP) and secret key storage [59].

7.2.5 Classification of PUFs

PUFs can be classified into two types: weak PUF and strong PUF [68]. The weak PUF has

limited number of CRPs and portrays a linear relationship with the number of components

whose behavior depends on process variation whereas strong PUFs have a huge number

of CRPs and displays an exponential relationship with the components that exhibit PUF

characteristics. PUFs provide a hardware aided architecture for authentication of devices

which makes the computation efficient and reduces the usage of memory. Weak PUFs

are usually used for key storage and strong PUFs are used for authentication purposes.

A disadvantage is that the PUF characteristics are susceptible to external environmental

conditions such as temperature and supply voltage variation.

Weak PUF

Weak PUFs, also known as Physically Obfuscated Keys (POKs), can directly digitize

the unique fingerprint of the circuit and then the digital value is used for cryptographic

applications. The PUF will replace the secure non-volatile memory that would contain the

100

secret key. Once the key is extracted from the weak PUF, it is stored in a volatile memory

during operation. The key must be kept secret since weak PUF can generate only a small

number of responses. The responses are unpredictable and are dependent on the process

variation. If the attacker gets access to the key, then the attacker can use it to mimic the

operation of the PUF. If the physical size of the PUF is finite then all the CRPs can be

measured within polynomial time. As a result, the peripheral parts of the PUF are designed

with a fuzzy extractor (FE) which limits direct access to the original PUF response [29].

In [89], Layman et al. proposed a weak PUF called Static Random Access Memory

(SRAM PUF) which is composed of symmetric cross-coupled inverters. Once the power

of the SRAM PUF is turned on, the cells in memory will randomly be pushed towards a

logical 1 or 0 due to process variation in the manufacturing procedure. The response space

is the number of cells in the SRAM and the challenge is turning on the SRAM. SRAM

PUF generates only one CRP which can be used for key generation rather than device

authentication. Other examples of weak PUF include latch PUF [61], butterfly PUF [88], D

flipflop PUF [171] and bus keeper PUF [153].

Weak PUFs are ideal for key generation purposes because ideally they have fixed

“challenge bits”. The PUF provides secure key storage facility and the secret key is never

revealed during usage. The key generated by the PUF usually requires post-processing

through error-correction codes (ECC) for cryptographic applications. ECC is needed because

the digital bits of the PUF output might flip due to noise and other environmental factors.

Once a stable set of output bits are obtained from the PUF, they can be used for many

cryptographic applications. Weak PUFs can also be used for authentication purposes

even though they are unable to generate a huge pool of CRPs. The PUF can be used

in conjunction with HMAC/AES implementation to achieve authentication at the cost

of additional hardware required for the cryptographic protocol which in turn makes this

technique area and power hungry.

Strong PUF

Strong PUFs differ from weak PUFs because strong PUFs have a large pool of CRPs and

devices can be authenticated directly without the need of cryptographic hardware. The

101

benefit is that the adversary cannot cover the entire challenge-response space in order to

model the PUF and mimic the outputs. The output of the PUF does not reveal information

about the internal characteristics or behavior of the circuit. The output of the strong PUF

does not need to be kept secret as the weak PUF. The strong PUF should have readout

access and readout time limitations so that the attacker cannot enumerate through the

entire challenge-response space in polynomial time. Since a strong PUF does not need

cryptographic hardware to provide authentication, the system should be able to prevent

unauthorized access to the internal circuitry.

Gassend et al. proposed a strong PUF called Arbiter PUF which utilizes the delay due

to process variation between identical paths to generate responses. The schematic of Arbiter

PUF is shown in Fig. 7.3. Arbiter PUF uses multiplexers to switch between the paths

[54]. Arbiter PUF is designed in the layout level to eliminate bias in the delay paths. The

select signal of the multiplexers is the challenge to the PUF. The delay paths are fed into an

arbiter which can be a D flipflop or SR latch. When the input of the PUF changes, the signals

propagate through two different delay paths. The arrival times of the two input signals will

vary due to process variation. The response is one if the signal arrives at input D of the

flipflop first, otherwise the signal is zero. This interpretation holds true as long the setup

time of the latch is negligible compared to the delay difference. This type of PUF is known

as a strong PUF because it can generate many CRPs and can be used for authentication

purposes. Arbiter PUF is appropriate for applications in resource-constrained platforms such

as RFIDs. Ring oscillator (RO) PUF is another example of a strong PUF which is easier for

implementation in ASIC and FPGAs compared to Arbiter PUFs. However, RO PUFs are

slower, more area consuming and power hungry. RO PUF are applicable for secure processor

designs [144]. Other examples of strong PUFs are optical PUF [122], lightweight secure PUF

[106] and XOR arbiter PUF [71].

Although weak PUFs are typically used to generate secure keys due to their small number

of CRPs. Strong PUFs can also be used to generate keys but the challenge is correcting

the bit errors in the responses obtained from the PUF. Pappu et al. proposed a “pattern

matching” technique to correct the output errors of the PUFs [123].

102

Figure 7.3: Arbiter PUF [54].

Figure 7.4: Generic strong PUF based authentication protocol [161].

103

7.2.6 Chaos-based PUFs

As previously discussed, the definition of chaos applies to deterministic nonlinear systems

whose outputs are susceptible to small changes in initial conditions. If the initial conditions

stem from physical conditions in the hardware, the system can be used as a PUF.

Deterministic circuits can be very easy to design and the chaotic system produces time

series which is unpredictable due to dependence on initial conditions which in turn changes

the circuit’s state in time.

A chaotic system is vulnerable to the tolerances of different parameters of the components

in the design. The sensitivity arises from all the physical parameters affected by

manufacturing process. Any change in the circuit’s structure influences the characteristics of

the chaotic system and opens the doorway to expand the challenge space. The same reason

can be extended to explain why some circuits with same placement and routing behaves

differently. After a certain number of iterations, it is possible for chaotic systems to display

random behavior which can be used to design random number generators.

It has already been discussed that PUFs are vulnerable to attacks such as man-in-

the-middle, emulation, reconfiguration and reverse engineering. In order to prevent these

susceptibilities, the chaotic signals generated from logistic map are applied as challenges

to the RO-PUF [168] to generate random numbers for cryptographic applications. In [57],

researchers have used switchable chain ring oscillators to generate cryptographic keys. Miura

et al. introduced a chaos PUF for mitigating counterfeit attacks where inductive coupling

introduces wireless electromagnetic interactions between the package or board and chip into

a PUF [110]. Chen demonstrated a way to mitigate machine learning based modeling attacks

on PUFs by integrating an arbiter PUF with a converter and chaotic circuit [30]. In [97],

modeling attack of CRPs are alleviated by using a CNT PUF with Lorenz chaotic circuit

which enhances the difference in responses for similar challenges.

7.2.7 Authentication Protocol

Since the PUF acts as a “black-box”, the verifier only has access to a set of CRPs and cannot

determine the response to a brand new challenge. A typical authentication protocol is shown

104

in Fig. 7.4. The client side has a strong PUF that can generate many CRPs. The verifier

has a database of the CRPs generated from the same strong PUF. The process of creation

of the database is known as enrollment which is typically done by a trusted third party.

The second phase is called verification where the client requests to be authenticated and the

verifier chooses a random CRP from the database. The verifier sends the selected challenge

to the client and keeps the corresponding response to be verified later. The client generates a

response from the PUF by using the challenge it received from the verifier. The client sends

back the generated response to the verifier and the verifier now matches the two responses,

one received from the client and the other stored in the database. If the two responses match

(i.e. the response bits are close enough), the device is authenticated. PUF authentication

allows an error threshold which decreases the stringency on the stability requirement and

eliminates the need for error correction. In low-cost authentication schemes, the verifier

allows an error tolerance threshold or multiple attempts to authenticate the device before

rejecting it as a fake. Error tolerance is a much preferred technique. As an example, the

authentication method can set a threshold of 32 bits for verification of 128 bit response [40].

A strong PUF contains an exponential number of CRPs with respect to components

whose characteristics depend on process variation. The verifier cannot allocate enough

memory to save the entire CRP space of the strong PUF. A CRP cannot be used twice in

an authentication protocol, since the attacker can send a previously authenticated response

to decipher the CRP model. Periodic refreshing of the CRP database is mandatory. It is

also necessary to ensure that the PUF produces the same response for a given challenge and

is not affected by environmental conditions. It is important to keep in mind that each client

will have a unique PUF so they can be authenticated individually. The verifier can store

CRP tables for each client that connects to the system or network.

It is assumed that the attacker will only have read-only access to the data being

transported between the client and the verifier. In order to prevent the adversary from

impersonating the valid client, acknowledgments of the transported information through the

public channel must be verified in a time bounded private channel before the information

can be used for further authentication steps.

105

7.2.8 PUF Metrics

There are several metrics in order to evaluate the PUF design. Some of the most commonly

used metrics are described below.

Uniqueness

Uniqueness is the ability of the PUF to generate unique signatures on different ICs for the

same design. In order to measure uniqueness, the inter-chip Hamming distance is calculated

between two responses generated from the same PUF on different chips while the applied

challenge is fixed. Ideally, the uniqueness should be 50% which means each PUF generates

a unique response. It is not an estimation of the actual probability of inter-chip process

variation. The equation is given below for k chips:

Uniqueness =
2

k(k − 1)

k−1∑
i=1

k∑
j=i+1

HD(Ri, Rj)

n
× 100%. (7.2)

where Ri and Rj are n-bit responses of chips i and j for a given challenge.

Uniformity

Uniform distribution of the number of ones and zeros is required in a PUF response. Ideally,

the value of uniformity should be 50%. The equation for uniformity is defined as the

percentage Hamming Weight (HW) of the response:

Uniformity =
1

n

n∑
l=1

ri,l × 100%. (7.3)

where i represents the PUF instance and ri,l represents the lth bit of an n-bit response.

Hamming Weight is the Hamming distance from an all-zero string of the same length.

Bit-aliasing

Bit-aliasing occurs when different PUFs produce nearly identical responses which is an

unwanted phenomena. Ideally, the value of bit-aliasing should be 50%. The equation for

bit-aliasing is as follows:

106

Bit− aliasing =
1

k

k∑
i=1

ri,l × 100%. (7.4)

where bit-aliasing of the lth bit of an n-bit PUF response is measured by calculating the

Hamming Weight (HW) across k devices and ri,l is the lth bit of a response from chip i.

7.3 Proposed Computing System (PURCS)

In this work, a physically unclonable and reconfigurable computing system is proposed which

provides both device authentication and mitigates IC counterfeiting via logic locking. The

main component of the system is a three transistor chaotic map. In order to generate chaotic

signals, a chaotic oscillator has been designed which has a map circuit in the forward path as

well as the feedback path. The oscillator can be used to produce logic functions by altering

four tuning parameters called the iteration number, control bit, bifurcation parameter and

threshold voltage. The computing system is not built entirely with reconfigurable chaos-

based logic gates but is a hybrid of standard CMOS logic gates and chaos-based logic gates.

The purpose of using reconfigurable logic gate is that a single system can implement multiple

functions. Replacing some of the logic gates in a system will allow the system to observe

logic locking and the tuning parameters in the oscillator can act as the secret key. Each

chaos-based logic gate has a 10-bit key. The key size increases with the number of replaced

chaos-based gates in the system. The key space is large if sufficient gates are replaced and

the attacker will have to spend exponential time in figuring out the secret key.

The computing system is called physically unclonable since process variation can be used

to generate unique keys for each chip. The same system can be used to generate challenge-

response pairs to authenticate devices. The obtained responses needs post-processing to

achieve ideal PUF metrics such as uniformity, uniqueness and bit-aliasing. The computing

system can be used for authentication where the key and primary input bits make up the

challenges and primary outputs are the responses. Process variation in the manufacturing

process ensures that different ICs will have different CRPs.

107

In this work, ISCAS’85 benchmark circuits are used to demonstrate that logic obfuscation

and authentication can be performed using the same system. Hamming distance is calculated

between the correct output and wrong outputs to ensure that 50% of the bits are corrupted

on application of wrong key. The proposed design has low overhead compared to conventional

circuits that contains both logic locking and authentication circuits.

7.3.1 Design of Chaotic Oscillator for PURCS System

In this work, the same chaotic map as shown in Fig. 3.1 has been used to produce chaotic

signals. The reconfigurable 2-input chaos-based logic gate is designed using chaotic oscillator,

DAC and comparators as shown in Fig. 7.5. Digital inputs made up of 2-bit data and 1-bit

control are converted to analog voltage using a 3-bit DAC in order to apply to the input of

chaotic map in the forward path. The map circuit produces two analog voltages as outputs

from the two map circuits. Therefore, two comparators are used to convert the analog output

to digital voltage so that the system can be used to generate Boolean functions. The system

produces two outputs per iteration since two chaotic maps are used.

Fig. 7.6 shows the transient response of the chaotic oscillator where the applied bias

voltage, Vc is 564 mV . An input, Vin of 750 mV is applied to the map when φ1 is high.

When φ1 is low, φ2 and φ3 starts oscillating producing outputs On+1 and On+2. A total of 10

output values of On+1 and On+2 can be obtained since φ2 and φ3 have five iterations each.

7.3.2 Bifurcation Diagram

The bifurcation diagram of the chaotic oscillator represents the periodic and chaotic regions

as shown in Fig. 3.8. The x − axis is the bifurcation parameter, Vc and y − axis is the

output voltage Vout of the chaotic oscillator which is the combination of On+1 and On+2. The

bifurcation diagram is obtained by applying an input voltage of 750 mV . The bifurcation

parameter, Vc is swept from 0 V to 1.2 V with 2 mV increments. The bifurcation diagram

has been plotted for 900 iterations.

The circuit has a period of two for initial values of Vc. The circuit can implement two

functions in this region if all other tuning parameters are unchanged. The chaotic oscillator

108

Figure 7.5: Reconfigurable 2-input chaos-based logic gate designed using chaotic oscillator,
comparators and DAC [149].

Figure 7.6: Transient response of the chaotic oscillator [149].

109

enters into the chaotic region after period-doubling cascade. The first chaotic region occurs

when the value of Vc is between 470 mV and 566 mV . The second chaotic region occurs

between 906 mV and 948 mV . In this work, the values of Vc has been chosen from the first

chaotic region because the delay of the oscillator increases as Vc increases. Sixteen values of

Vc has been chosen and the values are 486 mV , 488 mV , 490 mV , 506 mV , 510 mV , 512

mV , 518 mV , 520 mV , 524 mV , 526 mV , 528 mV , 538 mV , 540 mV , 546 mV , 556 mV

and 564 mV . The 16 values represent 4 bits in the secret key of the chaos-based gate.

7.3.3 Chaos-Based Logic Gate Implementation

It has been discussed already that a chaos-based system can be implemented to design logic

gates in section 3.3. The chaos-based logic gate is reconfigurable because of the multiple

tuning parameters available in the circuit topology. Nonlinear system can be used to build

logic gates that can implement multiple Boolean functions using the same building block.

In this work, the chaos-based system is used as 2-input reconfigurable digital block which is

capable of implementing all the possible 16 Boolean functions. The different functions can be

achieved by changing the tuning parameters: bifurcation parameter, control bit, threshold

voltage and iteration number.

The digital inputs are converted to analog values by using a DAC for applying to the

chaotic oscillator. The oscillator in turn produces analog outputs and they are converted

to digital values using comparators which utilizes a thresholding mechanism. The threshold

voltage, Vth is chosen to be 625 mV by taking the median of the values obtained from 65

different ICs. The logic gate has a digital value of “1” if the analog voltage is greater than

Vth and “0” otherwise.

Chaotic systems are sensitive to small changes in the initial conditions. The digital input

to the chaos-based logic gate is represented by Ib and the control bit by Cb. The control bit

perturbs the analog voltage going into the map, called Vin, to a slightly different value. The

range of the output voltage is between 193.2 mV and 1.2 V . When Cb is equal to 0, the

values of Vin are 193.2 mV (00), 480.9 mV (01), 768.5 mV (10) and 1.056 V (11). When

the value of Cb is 1, the values of Vin changes to 337 mV (00), 624.7 mV (01), 912.3 mV

(10) and 1.2 V (11).

110

Table 7.1: Evolution of chaotic oscillator output with number of iterations. (Vc= 552 mV ,
Cb = 1, Vth = 625 mV) [149].

xn (V) xn+1 (V)
n = 1 n = 2 n = 3 n = 4 n = 5

0.337(00) 1.11(1) 0.58(0) 0.54(0) 0.72(1) 0.34(0)
0.625(01) 0.35(0) 1.18(1) 0.62(0) 0.42(0) 1.13(1)
0.912(10) 0.49(0) 0.91(1) 0.44(0) 1.08(1) 0.55(0)
1.2(11) 0.63(1) 0.39(0) 1.16(1) 0.62(0) 0.41(0)

Function (dec) 9 (XNOR) 6 (XOR) 1 (AND) 10 4

Table 7.2: Characterization table of the 2-input reconfigurable chaos-based logic gate for Vth
= 625 mV [149].

Key (dec) Control inputs Function (dec)
Vc(mV) n Cb

1 486 19 1 7 (OR)
17 524 19 0 6 (XOR)
55 538 20 0 15 (1111)
91 546 21 0 1 (AND)
141 518 23 0 10 (1010)
478 556 33 1 0 (0000)
625 524 38 0 12 (1100)

111

In a chaos-based system, the system evolves in time with increasing number of iterations.

The functions obtained from one iteration can be different from the next iteration. As

a result, iteration number is another tuning parameter that can be used to change the

functionality of the logic gate. In this work, a total of 50 analog voltages were generated

from 25 iterations. The first 18 values are not used since they represent values in the

transient period. The last 32 iterations are used to make digital gates. Two-bit chaos-based

reconfigurable logic gate can implement 222 = 16 different functions. The generated functions

are numbered in decimal starting from 0 (0000) to 15 (1111).

Table 7.1 shows the evolution of the chaotic oscillator for different iterations. All the

other parameters are fixed such as Vc = 552 mV , Vth = 625 mV and Cb = 1. In the first

iteration, an XNOR (9) gate is generated and in the second iteration an XOR (6) gate is

produced. Five different iterations produce five different functionalities.

7.3.4 Characterization of the Chaos-based Logic Gate

The different tuning parameters are converted to digital values in order to use the chaotic

oscillator as a digital system. 16 values of Vc were chosen in section 7.3.2 using the bifurcation

diagram. The threshold voltage of the comparator was chosen to be 625 mV by taking the

median value of all the analog voltages across the different chips. The chaos-based logic gate

has one control bit which changes the initial condition of the chaotic oscillator to generate a

new pattern of voltages. The output of a chaotic oscillator evolves in time with increasing

number of iterations. The last 32 out of 50 iterations are considered to design the logic gate.

The digital configuration key of the chaos-based logic gate is made up of 10 bits where Vth

has 0 bits, Cb has 1 bit, Vc has 4 bits and iterations number has 5 bits. The key has the

following configuration:

key(10) = Vc(4), n(5), Vth(0), Cb(1). (7.5)

Table 7.2 shows a part of the characterization table for the 2-input reconfigurable chaos-

based logic gate in a single chip. It can be seen that changes in tuning parameters changes

112

the functions implemented by the logic gate. The first column in the table represents the 10-

bit key in decimal value. There are 1024 possible combinations of key for each chaos-based

logic gate. The table shows that when key = 1, the generated function is an OR gate.

7.3.5 Functions Generated by the Logic Gate in Different ICs

Process variation in deep sub-micron technologies like 65 nm is a major concern. It is

possible that characteristics of a transistor will vary significantly in different ICs due to

process variation. Monte Carlo simulations have been performed across 65 chips to study

the effect of process variation on the functionality generated by the chaos-based logic gate.

Chaotic oscillators are susceptible to minute changes in the initial condition because of

which the functions produced in different chips vary significantly. Table 7.3 demonstrates

how the functions vary in different chips for the same tuning parameters. When key =

20, the functions generated in three different ICs are 9, 2 and 8. It means that different

chips will have different key to execute the same functionality. Therefore, each chip must

be characterized individually to configure the correct key. Monte Carlo simulations showed

that mismatch variation in each IC is negligible. Therefore, characterizing one chaos-based

logic gate from one chip should be sufficient to obtain the characterization table.

The reconfigurable chaos-based logic gates are built for use in logic locking. It is essential

that each chaos-based logic gate can implement the necessary functions such as AND, XOR

and OR. Fig. 7.7 shows the number of AND, OR and XOR functions for 10 different ICs.

The number of obtained functions vary in each chip but it is possible to implement all the

necessary Boolean functions using chaos-based logic gate.

7.3.6 Reliability of the Functions Generated from Logic Gate

The most important feature of chaotic systems are that they are sensitive to small

perturbations in initial conditions. It has been evaluated that a mere 3 ◦C increase in

temperature results in different functionality from the same chip. The effect of temperature

variation is shown in Fig. 7.8. The key combinations become unreliable and implementing

logic functions utilizing the chaotic system becomes a challenge. Logic functions are realized

113

Table 7.3: Characterization table of the reconfigurable chaos-based logic gate in different
chips for Vth = 625 mV [149].

Key (dec) Control inputs Function (dec)
Vc(mV) n Cb IC 1 IC 2 IC 3

20 528 19 1 9 2 8
73 510 21 0 10 6 0
112 520 22 1 9 3 11
151 538 23 0 8 0 13
259 488 27 0 2 4 0
412 546 31 1 11 2 10

1 2 3 4 5 6 7 8 9 10

Chip number

0

20

40

60

80

100

N
u

m
b

e
r

o
f

fu
n

c
ti

o
n

s AND

OR

XOR

Figure 7.7: Number of AND, OR and XOR functions in 10 chips [149].

114

from the oscillator by applying a digital value at the input of DAC which converts it to an

analog voltage. The analog voltage acts as the seed to the oscillator. As discussed earlier

in section 3.3.2, a comparator with threshold voltage Vth is required to convert the analog

output of the oscillator to digital value. The analog voltages that are in close proximity

to the threshold voltage can lead to potential unreliable functions. Outputs that have high

noise margin from Vth generate reliable functions.

A study has been performed on the reliability performance of the proposed chaos-based

logic gate due to changes in supply voltage and temperature. Ideally, the functions should

be the same for the same key for varying environmental conditions. The temperature has

been altered from 0 ◦C to 100 ◦C and the supply voltage (1.2 V) has been changed by 4%.

The effect of slight supply voltage variation is shown in Fig. 7.9. The characterization table

in Table 7.2 has been re-simulated for random temperature and supply voltage variations

in the chosen range. 50 new characterization tables are generated and compared against

the original table to check the number of functions that remain stable for the same key

configuration. The reliability test shows that 211 out of 1024 functions are stable for 4%

supply voltage fluctuation and 10% voltage variation leads to 206 stable functions. The

reliable key size for each chaos-based logic gate is almost 8 bits. When the chaos-based logic

gate is characterized, only the reliable key configurations should be chosen to generate the

desired function.

7.3.7 Creating the Characterization Table

In order to create the characterization table, a separate chaos-based logic gate will be placed

in the manufactured chip. The characterization will be performed by a trusted manufacturer

or designer. Each chaos-based logic gate has 12-bit input in total including the 10-bit key

and 2-bit digital input. The 2-bit input has 4 combinations and the 10-bit key has 1024

input combinations. A total of 4096 (4 ∗ 1024) combinations need to be explored to make

one characterization table for a specific supply voltage and temperature pair. Standard scan

chain based mechanism can be used to apply the inputs serially to the logic gate.

The same number of input vectors should be applied for a separate voltage and

temperature pair in order to create a new characterization table. After generating at least

115

0 10 20 30 40 50

Iteration Number, n

0

0.5

1

V
o

u
t (

V
)

Temp = 27 (
o
C)

Temp = 30 (
o
C)

Figure 7.8: Effect of temperature variation on the oscillator output (Vin = 193.2 mV and Vc
= 490 mV).

0 10 20 30 40 50

Iteration Number, n

0

0.2

0.4

0.6

0.8

1

1.2

V
o

u
t (

V
)

V
dd

 = 1.2 V

V
dd

 = 1.152 V

V
dd

 = 1.248 V

Figure 7.9: Effect of supply voltage variation on the oscillator output (Vin = 193.2 mV and
Vc = 520 mV).

116

50 different characterization tables for 50 different voltage and temperature pairs, the tables

will be compared to find the functions which remained stable. These stable functions are

the reliable functions for that particular chip. Monte Carlo simulations revealed that the

intra-chip variation is insignificant and does not affect the functions of the logic gate so one

block needs to be characterized in each chip. Each chip must be characterized separately due

to the effects of process variation. After characterization of each chip is complete, access to

the chaotic block is disabled ending further characterization attempts. This can be achieved

by burning supporting fuses or laser burning the access wires [67].

7.3.8 Replacement Algorithm

In a computing system, if all the logic gates were replaced by chaos-based logic gates, then

the overhead will be significantly large. The aim of this work is to design a system which is

a mixture of standard CMOS logic gates and 2-input reconfigurable chaos-based logic gates.

There are two types of key gate inclusion method: insertion and replacement. It is desirable

to use an efficient algorithm to insert/add the chaos-based logic gates. Conventional logic

obfuscation techniques uses different insertion techniques such as fault-analysis based (FLL),

random (RLL) and strong interference based (SLL). The fraction of gates that needs to be

inserted is determined by calculating the Hamming distance between correct and wrong

outputs. The most popular technique for replacement based logic locking is by calculating

the controllability and observability of the nodes. Controllability and observability are two

important characteristics of a logic design.

Controllability: Controllability measures how easily the inputs of a logic gate can

be controlled. The input patterns that are never produced at the input of the node are

determined and if the number is high, it means that the gate is less controllable. If the node

only has primary inputs connected to it, it means that the gate is very controllable and all

the input pattern combinations can be applied to the gate. However, if a node is buried

inside the logic network, it is possible that the node might not encounter all the possible

input patterns even though all the input patterns have been applied to the primary inputs.

117

Controllability is measured by calculating the probability of different input combinations

occurring at the inputs of the gate. Each of the input combinations should occur with equal

probability for a gate to be controllable. The equation for controllability is given below:

C = log4
1

p20 + p21 + p22 + p23
. (7.6)

where p0, p1, p2 and p3 is the probability of occurrence of (0,0), (0,1), (1,0) and (1,1) at the

inputs of the selected gate and if the probability is equal for all possible input combinations,

then the gate has a controllability of 1.

NOT gates can be replaced in a circuit in two ways. They can be implemented using

XOR gates where one of the inputs is tied to the supply voltage or ‘HI’. If a buffer needs

to be replaced, then one of the inputs of the XOR gate is connected to the ground node or

‘LO’. Another way to implement a NOT gate is to tie the inputs of NAND/NOR gates. In

the latter case where the inputs are tied, the equation for controllability will be changed to

the following:

C = log2
1

p20 + p21
. (7.7)

where p0 and p1 is the probability of (0,0) and (1,1) at the input of the selected gate.

Observability: Observability measures how easy it is to propagate the values of

inaccessible gates to the primary outputs. Gates that are near the primary outputs are

highly observable but they are less controllable. Similarly, gates near the primary inputs are

more controllable rather than observable. Observability is also defined by values where the

certain output values do not occur. If the node is connected to primary outputs, then the

node is very observable since every output value can be observed at the primary outputs. If

the output of a gate does not alter other nodes, then the node is not observable.

Observability ensures that the output value of internal nodes are propagated to the

primary outputs without being blocked by outputs of other gates. For example, an

AND/NAND blocks the propagation of the other signal if one of the inputs is 0. Similarly,

OR/NOR should have a value of 0 in order to propagate the value of the other input to the

118

primary output. Observability is measured independently for each primary output and the

average value is calculated at the end.

Testability: In replacement based algorithm, each node is ranked based on the

controllability of the input nodes and observability of the output nodes. Controllability

and observability is measured by applying 1000 random input patterns to the system under

consideration. Each gate in the system is sorted from high to low based on the testability of

the gates which is the product of controllability and observability. The most testable gates

are replaced by chaos-based logic gates in order to create the hybrid system. The algorithm

for replacement is shown in Fig. 7.10.

Example of Replacement Algorithm on C17 Benchmark Circuit

Fig. 7.11 shows a circuit from the ISCAS’85 benchmark suite. This circuit is used as an

example to demonstrate replacement based algorithm using testability. Gate 3 from Fig.

7.11a is chosen for testability calculation. The circuit has 5 inputs so there are 32 possible

input combinations. Probability of input combinations are evaluated for nodes, d and n3.

The probability of occurrence of (0,0), (0,1), (1,0) and (1,1) are calculated to be 1
8
, 3

8
, 1

8
,

3
8
, respectively. The value of controllability is calculated to be 0.84 using equation 7.6.

Observability is calculated by measuring the probability of propagation of the value of node,

n2 to the primary outputs. The output of n2 will propagate to primary output, out1 if

node, n1 is 1. Probability of n1 being 1 is the observability of gate 3 to out1 which is 3
4
.

Similarly, the probability of node, n4 being 1 is the observability of gate 3 to out2 which is 7
8
.

Observability is calculated by averaging the observability of the individual primary outputs.

7.3.9 Configuration Key of the Hybrid Circuit

The functionality of the reconfigurable chaos-based logic gate depends on the application of

a valid key. Due to process variation, the correct key will be different for different chips.

Post-manufacturing characterization is required to find the correct key for a particular chip.

The keys for AND, OR, XOR, NAND, NOR and XNOR gates are represented by Kand,

Kor, Kxor, Knand, Knor and Kxnor. The secret key for each chip will be a combination of the

119

Figure 7.10: Algorithm for replacing gates using testability method [149].

(a) (b)

Figure 7.11: (a) Unobfuscated circuit from ISCAS’85 benchmark suite (b) Obfuscated circuit
where two NAND gates are replaced with reconfigurable chaos-based logic gates and the
secret key is 20 bits long [149].

120

keys of individual gates that are replaced. Fig. 7.11b shows the logic locked circuit where two

NAND gates have been replaced by 2-input reconfigurable chaos-based logic gates. Knand

is the key for each gate which is made of Vc, Vth, Cb and n. The secret key of the entire

circuit is 20 bits. The circuit will produce incorrect functionality if wrong key is applied.

The correct key is made up of two Knand and can be written as:

Kcorrect = {K1, K2} : K1, K2 ∈ Knand. (7.8)

7.4 Simulation and Results

Eight circuits have been chosen from ISCAS’85 combinational benchmark suite. The circuits

are C17 (6 gates), C432 (231 gates), C880 (462 gates), C1355 (590 gates), C1908 (1087 gates),

C3540 (2050 gates), C5315 (2981 gates) and C7552 (4056 gates). All the gates have been

converted to 2-input and 1-output since the reconfigurable chaos-based logic gates have the

same configuration.

7.4.1 Logic Locking Results

Application of wrong key should produce incorrect output for all input patterns in a

logic locked circuit. An invalid key should change half of the output bits so that the

calculated Hamming distance between the correct output and the wrong output is 50%. The

reconfigurable chaos-based logic gates have been replaced using two methods: calculating

the testability of all the nodes in the circuit and random replacement. Random replacement

might not alter the output bits when wrong key is applied. When testability based

replacement algorithm is used, fewer gates are required to achieve 50% Hamming distance.

The testability of all the nodes are calculated and sorted from high to low. The gates with

the highest testability values are replaced with chaos-based logic gates.

Fig. 7.12 shows the plot of Hamming distance with 5% increments in the replacement

percentage of the gates. Correct and random keys were applied to the logic locked circuit

in order to measure the Hamming distance. The two replacement methods, random and

testability based techniques are compared. The slope of the lines indicate the performance

121

0 20 40 60 80 100

Percentage of gates replaced (%)

0

10

20

30

40

50

H
a

m
m

in
g

 d
is

ta
n

c
e

 (
%

)

C17

C432

C880

C1355

C1908

C3540

C5315

C7552

(a)

0 20 40 60 80 100

Percentage of gates replaced (%)

0

10

20

30

40

50

H
a

m
m

in
g

 d
is

ta
n

c
e

 (
%

)

C17

C432

C880

C1355

C1908

C3540

C5315

C7552

(b)

Figure 7.12: Hamming distance vs. percentage of gates replaced in ISCAS’85 benchmark
circuits (a) Gates replaced randomly (b) Gates replaced by measuring testability [149].

Table 7.4: Percentage of gates replaced to reach almost 50% Hamming distance in ISCAS’85
benchmark circuits [149].

Benchmark Random Replacement (%) Testability Based Replacement (%)
C17 70 55
C432 80 20
C880 85 55
C1355 55 25
C1908 70 30
C3540 95 30
C5315 95 25
C7552 100 30

122

difference of the techniques. If the line is steep, 50% Hamming distance is reached with fewer

amount of replaced gates and the performance overhead will be smaller as seen in Fig. 7.12b.

Once a circuit reaches, 50% mark, the Hamming distance value does not deviate much even

though more gates are inserted in testability based replacement method. The advantage is

that the key size can be increased without ruining the 50% Hamming distance.

Table 7.4 compares the percentage of gates that need to be replaced to reach 50%

Hamming distance. The second column displays the percentage of total gates that need

to be replaced by using random replacement technique whereas the third column displays

the percentage required for testability based replacement technique. It can be clearly seen

that random replacement technique requires more percentage of gates than testability based

technique. The results in the table also indicate that the percentage of gates that need to

be replaced to achieve 50% Hamming distance depends on the circuit topology.

7.4.2 Authentication Results

This work demonstrates that any system that has reconfigurable chaos-based logic gates can

be used for authentication purposes. The benchmark circuits display PUF characteristics as

there are significant changes to the outputs of the system due to process variation. Different

key and input combinations are considered as challenges and the outputs are responses. Fig.

7.13 represents the post-processing scheme required for a benchmark circuit to reach ideal

PUF metrics. The response is calculated for 10 random input patterns applied to the circuit.

When clk1 is high, the initially generated output bits are XORed with 0. When clk1 stops,

clk2 starts and the result of the first iteration are XORed with the newly generated output

by applying a second set of inputs. This process continues until 10 outputs are XORed and

the result is stored in a register. The output stored in the register has the same number of

output bits as the original circuit. After completion of 9 cycles, clk2 stops and clk3 starts in

order to calculate the final response. The final response bits are half in number compared to

original number of bits due to XORing amongst each other. For example, if the immediate

result stored in the register has 4 bits, then bit 1 is XORed with bit 3 and bit 2 is XORed

with bit 4. The final response will be 2 bits.

123

Figure 7.13: Post-processing scheme for authentication [149].

Table 7.5: Results of standard PUF metrics for the benchmark circuits using testability
based replacement method [149].

Benchmark Uniqueness (%) Uniformity (%) Bit-Aliasing (%)
C17 50.01 49.93 50.13
C432 49.99 50.03 50.03
C880 50.01 49.99 49.87
C1355 50.01 50.05 50.05
C1908 49.99 49.82 49.82
C3540 50.03 50.01 50.01
C5315 49.85 49.52 48.71
C7552 49.99 50.04 49.07

124

The post-processing scheme is required to ensure that the outputs of the benchmark

circuits meet the ideal PUF metrics described in section 7.2.8. The three PUF metrics

uniqueness, bit-aliasing and uniformity are calculated after the final response is generated

from the post-processing scheme. Table 7.5 displays the results of the PUF metrics after the

circuit gates have been replaced using testability based replacement algorithm. Percentage

of gates replaced in the circuits is the same as the third column of Table 7.4. The results are

obtained after post-processing scheme in Fig. 7.13 has been applied. All the metrics have

the ideal value of 50% which means that the circuits can also be used for authentication of

devices. The circuits with large number of outputs can be considered a strong PUF since

they will have a large CRP space.

7.5 Security Performance

7.5.1 Security of Logic Locked Circuits

The main aim of using logic locking is to hamper the adversary’s ability to change the

contents or reverse engineer the functionality of an IC. The foundry can attempt to produce

extra ICs without the owner’s permission, but the chip will not function properly without

the knowledge of the correct key. The adversary can make an educated guess about the key

but the key space is extremely large and it would take exponential time and resources to

decipher the valid key. Moreover, when standard gates are replaced with chaos-based logic

gates, each IC will have a different valid key due to the effect of process variation. The

innate complexity of a chaos-based system can be leveraged to suppress information leakage

to the attackers.

Reconfigurable chaos-based logic gates look similar to the attacker in the layout-level

geometry. It will be difficult for the adversary to learn the functionality of each block. If

XOR/XNOR gates are used, the attacker can easily learn the entire netlist using reverse

engineering techniques. XOR/XNOR gates provide only 1-bit key after insertion whereas

each chaos-based logic gate provides 10-bit key. Chaos-based logic gates are able to generate

all the possible functions which poses a huge burden on the attacker. If 10 gates are replaced

125

with chaos-based logic gate, then the secret key will be 100 bits long. In practice, the chip

will have billions of transistors and a considerable amount of gates will be replaced by the

chaos-based logic gates. The key size increases with increase in number of gates replaced.

The key can be stored in a tamper-proof memory. After characterizing each IC, the designer

can blow out the fuses of read/write circuitry which provides access to the memory.

Some of the common attacks against logic locked circuits are discussed below.

Side Channel Attack (SCA)

This procedure utilizes side channel information such as timing and power in order to break

security primitives. When gates are replaced in an obfuscated netlist, the attackers look for

power signatures when the replaced gate tries to perform a different functionality. Chaos-

based reconfigurable gates can successfully mitigate power analysis based side channel attack.

The attacker is not able to distinguish between different functionalities by applying popular

machine learning algorithms [105, 104].

Brute Force Attack (BFA)

The attacker can directly try all the possible combinations of functionality that an obfuscated

gate can perform [129]. The attacker iterates through each possible combination and

simulates the locked IC to generate the output and compares the generated output with

a functional IC bought from the market. If the generated output matches the output of the

functional IC, then the secret key is revealed.

The functionality of each chaos-based reconfigurable logic gate appears as 16 different

functionalities for the attacker. The brute force effort of the attacker will be 16N = 24N

where N is the number of gates replaced in the design except the gates that are directly

connected to the primary output. Such an attack poses an exponential effort on the part of

the attacker especially if the value of N is large.

126

Figure 7.14: Circuit to determine distinguishing input patterns (DIPs) [182].

(a) (b)

Figure 7.15: Logic locking example (a) Original circuit (b) Locked circuit [160].

127

Boolean SAT Attack

It is essential that the proposed computing system is resistant against Boolean SAT attack

for the logic locking scheme to be successful [160]. The SAT attack model assumes two

things:

1. The attacker has access to the mask information and layout. The gate-level netlist can

be reverse-engineered from the available information [165].

2. Random input patterns can be applied to the IC and there is a golden IC (bought from

the open market) from which the outputs can be compared to the outputs obtained

from the locked IC.

The attacker can only apply a certain number of input patterns to the activated chip

and determine the correct key based on these results. If a set of input-output patterns are

given, a SAT solver will be able to find a key that satisfies the applied patterns only. The

key might generate correct output for the observations made but the problem is that the key

needs to fulfill all the possible input-output pairs. Moreover, verifying that the correct key is

extracted might require application of all possible input patterns. For example, if there are

M input patterns in a system then 2M input patterns must be applied in order to verify the

correctness of the key. This method seems impractical since the number of input patterns

can be significantly high depending on the size of the system.

SAT attack finds distinguishing input patterns (DIPs) by comparing two outputs

generated from two different keys. The generated outputs are matched with the output

from a golden IC. If the output is wrong, the key is eliminated [160]. A single DIP is

capable of eliminating multiple incorrect keys [182]. The algorithm continues until all the

DIPs are evaluated. After the program converges, the keys that are not eliminated are the

probable correct keys for the locked chip being considered. The correct key satisfies all the

possible input-output patterns of the locked IC. SAT attack needs only a small amount of

observations from the golden IC in order to extract the secret key.

The DIPs are found by utilizing a circuit shown in Fig. 7.14. The same primary inputs

are applied to the two copies of the locked circuit for different set of keys. The outputs

from the two locked circuits are XORed and then Ored to generate the diff signal. The

128

Conjunctive Normal Form (CNF) of the resulting system is created and passed to the SAT

solver. The SAT solver then finds an input (DIP) that outputs diff = 1 where the outputs

of the two circuits are different. The DIP is then applied to the activated IC to find the

correct output. The correct output is used to eliminate the incorrect keys. In this manner,

more DIPs are generated in order to eliminate more key values. A new value is passed on to

the SAT solver in every iteration and the formula is updated. The SAT attack stops when

new DIPs are not found and all the incorrect keys have been discarded [182].

An example of original circuit and locked circuit is shown in Fig. 7.15. Suppose the SAT

solver generates a DIP of (a, b, c) = (1, 0, 1) in the first iteration for which the output, y is

evaluated to be 1 from the original circuit. Initially, the key used is (k1, k2) = (0, 1) which

yields an output, y = 0 from the locked chip. The key pair (0, 1) does not represent the

correct key pair. In the second iteration, the DIP is equal to (a, b, c) = (0, 0, 0) for which

y is equal to 0. The SAT solver terminates because the only key pair that satisfies the

original output value is (k1, k2) = (1, 1). The fault-analysis attack cannot be carried out on

the locked circuit in Fig. 7.15b because the key values cannot be propagated to the primary

output. In earlier days, the only way to retrieve the secret key from the given locked circuit

was brute-force attack by searching the entire key space. Now, it can be seen that Boolean

SAT attack is able to extract the secret key.

Another example of SAT attack on a logic locked circuit is shown in Fig. 7.16. Table

7.6 represents the output of the original circuit, y shown in Fig. 7.16a. The output of the

locked circuit for different key values are also shown in the following columns. There are 3

key inputs so there are 8 possible combinations of the key. The key values are represented as

k0, k1, k2...k7. The SAT solver takes four iterations to decipher the correct key. In iteration

1, (a, b, c) = (0, 1, 1) which helps in eliminating key, k4 since the output is wrong. In the

second and third iteration, key values, k1 and k7 are also eliminated for DIPs with values

(a, b, c) = (1, 1, 1) and (a, b, c) = (1, 0, 1) respectively. The DIP, (a, b, c) = (1, 0, 0) used in the

fourth iteration eliminates all the incorrect keys and identifies the correct key, k6 = 110. The

attack would been much faster if the first DIP chosen was (a, b, c) = (1, 0, 0). The execution

time is dependent on the order of the DIPs applied to the SAT solver. The DIPs are chosen

129

(a) (b)

Figure 7.16: Logic locking second example (a) Original circuit (b) Locked circuit [182].

Table 7.6: SAT attack on a logic locked circuit shown in Fig. 7.16b. [182].

No. a b c y
Output y for different key values

Eliminated keys
k0 k1 k2 k3 k4 k5 k6 k7

0 0 0 0 0 1 1 1 1 1 1 0 1
1 0 0 1 0 1 1 1 1 1 1 0 1
2 0 1 0 0 1 1 1 1 1 1 0 1
3 0 1 1 1 1 1 1 1 0 1 1 1 iteration 1: k4
4 1 0 0 0 1 1 1 1 1 1 0 1 iteration 4: all correct
5 1 0 1 1 1 1 1 1 1 1 1 0 iteration 3: k7
6 1 0 1 1 1 1 0 1 1 1 1 1
7 1 1 1 1 1 0 1 1 1 1 1 1 iteration 2: k1

Figure 7.17: SAT attack implemented on C432 benchmark circuit for varying percentage of
gates and key sizes [149].

130

randomly. If the selected DIP can eliminate more incorrect key values per iteration, then

the attack time will be much faster.

Researchers have proposed multiple solutions in literature to make the locked chip

resistant against SAT attack. SARLock proposed a lightweight technique to increase

the number of DIPs required to extract the secret key which increases the attack time

exponentially [182]. Anti-SAT is another lightweight circuit block that aims to mitigate the

SAT attack by increasing the total number of iterations required to obtain the correct key

[178]. In Anti-SAT, the execution time of the attack is an exponential function of the key size

in the circuit. Unfortunately, SAT attack mitigation techniques are vulnerable to ”removal”

attacks. Therefore, researchers have proposed a solution that creates densely populated cyclic

circuits that are obfuscated. Cyclic obfuscation is achieved by adding dummy gates and wires

to the original circuit and creating logical loops that cannot be solved by the SAT solver

since a directed acyclic graph (DAG) does not exist [146]. Double DIP is another technique

that eliminates two wrong keys per iteration ensuring that it does not take exponential time

to retrieve the correct key by using SAT attack [152].

In traditional logic locking schemes, insertion based method is utilized and each key gate

adds only a single key bit. This poses a restriction on the number of key size that is required

to make the attack computationally infeasible for an adversary. Even the look-up-table

(LUT) based logic locking scheme fails to provide the desired flexibility in terms of key size

since the memory required increases exponentially with the increase in number of key bits.

Chaos-based logic gates provide the flexibility of increasing the key size without adding a

substantial hardware cost.

The complexity of the logic locking scheme, discussed in section 7.3.8, has been analyzed

by implementing SAT attack. The attack tool is available online at [2]. The machine used

for carrying out the attack on the proposed computing system is Intel Xeon E5-2660 CPU

with 2.6 GHz clock frequency and 125 GB memory. The attack complexity is measured

by the time it takes to recover the secret key for different percentage of chaos-based logic

gates replaced in the system. Chaos-based logic gates are capable of generating multiple

functionality for varying input key bits. The key space of the chaos-based logic gates can

be increased by replacing more gates. SAT attack has been performed on C432 benchmark

131

circuit for varying percentage of chaos-based gates present in the system and varying key

sizes. The results are displayed in Fig. 7.17.

It is seen from the results that the attack complexity increases by increasing the number

of chaos-based gates used in the system for a given key size. Attack complexity can also be

enhanced when the number of key gates replaced is fixed but the key size of each chaos-based

logic gate is increased. The proposed computing system is vulnerable to process variation so

the secret key is different for each chip. If an adversary is able to extract the secret key by

utilizing SAT attack, the key is only valid for that particular chip. The attacker will have

to perform the time intensive procedure of deciphering the key for each individual chip.

Reconfigurable chaos-based logic gates have a non-uniform functionality space which adds

to the SAT attack complexity. Most of the generated functions from each chaos-based logic

gates are either ones or zeros. The desired functions such as OR, NOR, AND, NAND, XOR

and XNOR have less probability of existing in the entire functionality space. For example,

if a 2-input chaos-based logic gate with 10-bit key has uniform functionality space, each

logic function will occur 64 times and will have a distribution of 1/16. In reality, the average

probability of finding a desired function is much less than 1/16 as can be seen in Fig. 7.7. As

a result, discovering the correct key by eliminating all the wrong keys might take additional

effort from the attacker’s side.

Chaos-based logic gates also have unreliable functions in the functionality space which

are affected by change in temperature and supply voltage. This undesired feature can be

utilized to prevent SAT attack from extracting the right key. It is significantly important

that the generated functions from the chaos-based logic gates remain stable under varying

environmental conditions. Reliable functions should only be considered while characterizing

the proposed computing system. While executing the SAT attack on the system, it is highly

probable that the SAT attack will converge to an unreliable key. A similar work is found in

literature where researchers have used functions that have morphing feature and the SAT tool

converges to the wrong key [133]. SAT solvers need to be modified in order to accommodate

the morphing/unreliable functions that is an inherent quality of dynamic circuits.

132

7.5.2 Security of PUFs

The large benchmark circuits can be used for authentication purposes in the PURCS system

when appropriate amount of gates are replaced by chaos-based logic gates. The generation

of responses depends on the intrinsic characteristic of the chaotic oscillator. Physical attacks

by the adversary will be difficult to execute without hindering the operation of the system. It

has already been shown in literature that chaos-based logic gates can mitigate power analysis

based side channel attacks [105]. Common machine learning attacks have been executed on

the PURCS system to test its immunity against modeling attacks.

Classification Algorithm

Classification algorithms are used to classify test data based on the training data that is built

from the data sets. The training data set in supervised learning usually has a x, y format.

Here, x represents an instance and y represents its class. A class is determined by the

classifier based on the training data for a random instance of x. Several classifiers are used

in machine learning algorithms and their performance is judged based on implementation

cost, speed, accuracy and the nature of the problem. Some of the classification algorithms

are described briefly.

Logistic Regression (LR): Logistic Regression is a statistical method for analyzing

the data set and it helps in predicting a double branched outcome [22]. It performs the job

of a binary classifier but is closely related to a regression model. It analyzes the data set

and assigns a probability to each data point so that it belongs to one of the two classes. LR

utilizes signum or logit function to perform the classification. LR is a powerful algorithm

since it has a small feature set and is used widely due to its easy-to-implement algorithm

and fast convergence.

K-Nearest Neighbor (K-NN): K-NN is a non-parametric lazy supervised algorithm

and one of the fundamental tools used for classification [51]. The algorithm is called non-

parametric because data generalization is not needed and it does not make any assumptions

about the data. The entire training data set needs to be stored for the classification algorithm

to work. This feature makes the algorithm computationally expensive. A sample is identified

133

based on its distance from each of the training sets. The test samples are assigned to the

most common class among the K closest training samples. Different values of K can be

chosen based on the application. It is also possible to choose different distance measurement

methods for multi-dimensional data sets. Some of the algorithms used for calculating the

distances in K-NN are Correlation, Euclidean and Cosine distance functions [174, 112, 41].

In this work, Euclidean distance has been used and it is measured as the distance between

two instances x1 and x2. The equation for calculating the distance is as follows:

deuc(x
1,x2) =

√√√√ L∑
i=1

(x1i − x2i)2, (7.9)

where x1 and x2 have L features and x1i and x2i are the i-th sample points.

Decision Tree (DT): A decision/classification tree is a simple representation for

classifying data sets. Each internal node of the tree is labeled with an input feature. The arcs

coming from a node labeled with an input feature are labeled with each of the possible values

of the output feature. Otherwise, the arc leads to a subordinate decision node on a different

input feature. Each leaf of the tree is labeled with a class or a probability distribution over

the classes. In order to predict a response, the decisions in the tree must be followed from

the root node down to a leaf node which contains the result of the classification [143].

Support Vector Machine (SVM): SVM is a very commonly used classification

algorithm [77]. It performs binary classification by using two classes to categorize training

sets. One category belongs to a specific class and the other category combines all the other

classes. It is a non-probabilistic classifier where the test sample falls into one of the two

classes. The SVM classifier works by drawing a line into the 2D space which contains the

training samples and makes a clean partition between them. New samples are classified

based on the side of the line it falls into. SVM is also capable of classifying multi-class

data sets by utilizing kernel functions such as Gaussian radial basis function [73]. There

are multiple binary classifiers in SVM such as ’onevsall’, ’onevsone’, ’denser random’ and

’binary complete’. For a K-way multiclass problem, ‘onevsall’ and ‘onevsone’ train k and

k(k−1)
2

binary classifiers, respectively.

134

Naive Bayes (NB): Naive Bayes is a conditional probability model based on Bayes’

theorem with additional simplifying assumptions. Given a problem instance to be classified,

represented by a vector x = (x1, . . . , xn) representing some n features (independent

variables), it assigns probabilities to the instance, p(Ck|x1, . . . , xn) for each of k possible

outcomes. It labels the data as belonging to the class with the highest probability. The

combination of Bayes’ theorem and very simplistic conditional independence assumptions

leads to the problem boiling down to calculating the value of p(Ck)
∏n

i=1 p(xi|Ck) for each

class. Finally, the class with maximum value is chosen [135].

AdaBoostM2 Ensemble: AdaBoost is short for Adaptive Boosting and is a machine

learning meta-algorithm. It can be used in combination with various types of learning

algorithms in order to enhance performance. The output of other learning algorithms (weak

learner) is converted into a weighted sum and this value is the final output of the classifier.

AdaBoost is an adaptive algorithm because weak learners can be altered for those instances

which were wrongly classified by previous classifiers. The disadvantage is that the algorithm

is susceptible to outliers and noisy data sets. Although, the individual learners can be weak,

if the performance of each one is better than a random guess, then the final model will be

forced to converge to a strong learner [49].

Machine Learning Based Modeling Attack on the PURCS System

Attacks on PUFs depends on many factors such as skills of the attacker, cost, speed, accuracy

of the tolls and instruments used, knowledge about the PUF behavior and information

leakage of the devices. Due to increased speed, precision and affordability of advanced tools,

side channel analysis is becoming more executable in order to decipher the secret key of the

PUF. The security of PUFs lies in the assumption that the PUF cannot be modeled and

that the attacker does not have access to the entire challenge-response space. Researchers are

able to model PUFs using machine learning techniques [141]. If the PUF circuit is simple,

attackers can construct an accurate timing model and learn the behavior of the PUF after

collecting many CRPs [93]. In Arbiter PUF, delay of the two paths could be linearly added

to determine the response bit [55]. These limitations led to the discovery of more “nonlinear”

effects to make the modeling attacks non-executable. Studies have shown that previously

135

resilient strong PUFs were susceptible to a combination of side-channel attacks and machine

learning attacks [103, 142]. Post-processing the PUF responses might be required to scramble

the output bits in order to mitigate the attacks but it comes at a cost of reduced effectiveness

in an authentication protocol. The post-processing scheme helps in reducing the accuracy

of the machine learning attacks but it also increases the intrinsic PUF error resulting in

reduced stability.

The immunity of the proposed hybrid system has been tested against common machine

learning attacks such as Logistic Regression, AdaBoostM2 Ensemble, K-Nearest Neighbor,

Decision Tree and Support Vector Machine. The machine learning toolbox from MATLAB

has been used [3]. The modeling attack has been implemented on all the combinational

benchmark circuits and the results are shown in Table 7.7. 5000 challenge-response pairs are

collected from the PURCS system. 80% of the data has been used for training the classifiers

and remaining data has been used for testing. If the PUF is robust against modeling attacks,

then a new response from an unknown challenge should be close to a random guess. The

testing accuracy of a new data point should be 50% ideally. The results demonstrate that

the testing accuracy is close to 50% for the eight benchmark circuits which proves that the

system is immune to ML attacks.

7.6 Overhead Analysis

Reconfigurable chaos-based logic gates are comparable to reconfigurable barrier based or

look-up table based logic locking. Look-up tables require SRAMs and MUXs which

significantly add to the area and power consumption. The size of LUTs increase if the

input size increases. Each reconfigurable chaos-based logic gate performs multiple functions

similar to LUTs. The advantage of using chaos-based logic gates is that they can be easily

transformed into multi-input gates with a slight increase in the overhead.

Table 7.8 gives an estimation of the number of transistors with the increase in key size.

When XOR/XNOR based logic locking is performed, XOR/XNOR gates are added to the

system in addition to the existing circuitry whereas LUTs or chaos-based logic gates are

replaced into the original design. It is approximated that XOR gates require 8 transistors

136

and provides a 1-bit key for each additional XOR gate inserted in the design. In order to

obtain a 50 bit key, 400 additional transistors are inserted into the original design. For the

purpose of comparison, we are assuming that chaos-based logic gates and LUTs are actual

overheads to the design. The overhead for a single 10-input LUT which uses 2 : 1 MUXs (4

transistors), SRAM cells (6 transistors) and inverters (2 transistors) is 10256 transistors. The

chaos-based logic gate has 10-bit key and uses 68 transistors which includes the 3-bit DAC (3

transistors), comparators (9 transistors in each comparator), clocking circuit (35 transistors)

and the chaotic oscillator (12 transistors including the pass gates in the sample-and-hold

circuit). It can seen from the table that XOR based and LUT based systems require more

transistors compared to chaos-based logic gate in order to achieve the same key size.

The core of the system is an analog circuit which portrays different characteristics in

different chips due to process variation. The functionality of LUTs does not vary in different

chips unless different values are configured post-fabrication by the trusted designer. The

chaotic oscillator provides ideal PUF characteristics which allows the same system to be

used for device authentication. The proposed circuit is area and power efficient since

EEPROM/RAMs are not required to store the key bits for authenticating connecting devices.

Table 7.9 shows the transistor count for the C17 benchmark circuit for a 30-bit

key/challenge. The table shows a comparison of transistor count if both logic locking and

authentication circuits are present in a system. Table 7.4 states that 55% of gates need to

be replaced in C17 benchmark circuit which means three gates. Three NAND gates in the

circuit are replaced and the key/challenge size is 30 bits. The circuit produces 1 response bit

after post-processing. The results in the table shows that the proposed chaos-based system

utilizes significantly less number of transistors compared to a system which incorporates

traditional logic locking and PUFs in the same system.

7.7 Modes of Operation

There are two modes of operation of the proposed computing system: logic locking mode

and authentication mode.

137

Table 7.7: Result of machine learning based modeling attacks on PURCS system using
testability based replacement method [149].

Benchmark LR KNN (k=1) DT SVM NB AdaB. Ensem.
Train Test Train Test Train Test Train Test Train Test Train Test

C17 54.57 49.7 84.97 50.4 79.27 50.3 60.45 50.3 58.95 49.5 79.3 51
C432 63.01 49.5 84.75 50.67 81.57 50.3 85.11 49.63 78.18 50.33 93.03 51.07
C880 64.51 50.11 85.1 50.33 82.76 50.12 85.08 50.07 84.88 49.8 96.83 50.02
C1355 58.28 50.49 85.04 49.4 82.46 49.58 84.86 50.02 84.2 50.18 96.04 50.45
C1908 61.21 49.69 84.85 49.88 82.86 49.9 84.98 48.53 84.99 48.83 97.38 50.53
C3540 64.19 50.02 85.07 50.45 83.14 50.57 84.8 49.63 84.74 49.85 98.11 50.76
C5315 51.79 50 85.14 50.5 83.93 50.44 85.02 50 83.9 49.91 88.49 49.96
C7552 51.63 50.07 85.05 49.79 84.05 49.94 84.85 49.94 84.77 49.98 90.05 49.66

Table 7.8: An estimate of transistor count in different logic locking schemes [149].

Key Size Transistor count
XOR based 10-input LUT based 10-bit Chaos-based

50 400 51280 340
100 800 102560 680
200 1600 205120 1360

Table 7.9: Estimation of transistor count for both PUF and logic locking in a system with
30-bit key/challenge [149].

Transistor count
Arb + XOR Arb + LUT Ring + XOR Ring + LUT Chaos-based

518 31022 1452 31956 240

138

7.7.1 Logic Locking Mode

In logic locking mode, the main goal is to obfuscate the design to avoid IC counterfeiting. Fig.

7.18a shows the schematic of logic locking mode. The secret key of the system is stored in

tamper-proof memory and it is the combination of the configuration key of the reconfigurable

chaos-based logic gates. Each chaos-based gate has 10-bit key and the key space increases

with increase in number of chaos-based gates in the system. Hamming distance has been

calculated between correct and wrong outputs in order to ensure that half of the bits are

flipped. After post-fabrication characterization, the correct keys are stored in a tamper-proof

memory for correct operation of the system.

7.7.2 Authentication Mode

In authentication mode, the design exploits the fact that chaos-based gates are susceptible

to small changes in the initial condition. Process variation in the manufacturing process

changes the internal characteristics of the gates slightly which in turn changes how the

inputs are mapped to outputs in the chaos-based gates. This feature ensures that the key

is unique to each IC. The input is kept fixed and the challenges are applied based on the

authentication protocol discussed in section 7.2.7. After post-processing, the responses from

the systems demonstrates almost ideal PUF characteristics. Fig. 7.18b shows the schematic

of the system in authentication mode.

(a) (b)

Figure 7.18: (a) Logic locking mode (b) Authentication mode.

139

Chapter 8

Contribution and Future Work

8.1 Original Contribution

The goal of this work is to utilize discrete-time chaos-based systems for various hardware

security applications. The following points demonstrate the contributions of this dissertation.

• The three transistor chaotic map has been redesigned and simulated in 65 nm

process to optimize the power and area consumption. Multi-input and multi-output

reconfigurable chaos-based logic gates have been designed. It has been demonstrated

that simple as well as complex functions can be generated from a single chaos-based

system which aids in reducing the number of transistors used in a chip.

• The functionality space of chaos-based system using three transistor map has been

increased by varying the bias voltage in each iteration. Three different bias voltages

has been chosen from the chaotic region and four different threshold voltage levels

has been chosen to obtain different Boolean functions. Results show that the entire

functionality space increases exponentially with iteration number. The number of

individual functions such as AND, OR and XOR seem to portray an upward rise with

increase in design space. This huge functionality space helps to mitigate power analysis

based side channel attack.

• A novel G4NDR based discrete-time chaotic map has been developed. The map

has three independent bifurcation parameters which can be biased separately. The

140

bifurcation diagram and Lyapunov exponent demonstrates excellent chaotic property

and wider chaotic regions. The functionality space of the G4NDR based logic gate is

significantly large compared to the three transistor map based gate. This limitation is

mainly due to the presence of only one bifurcation parameter in three transistor chaotic

map. Reconfigurable chaos-based logic gates has been designed using the novel map

circuit and different configurations are demonstrated for implementing the standard

logic gates.

• A lightweight and reconfigurable pseudo-random generator has been designed using the

three transistor based chaotic oscillator. The analog output of the chaotic oscillator

is converted to a digital value by using a 10-bit ADC where the 10th bit is used for

random number generation. The output generated from a single chaotic oscillator is

not random enough to pass all the NIST tests. The output from two chaotic oscillators

are XORed and the final output passes all the tests. This proves that the sequence is

random and can be used for cryptographic applications.

• A physically unclonable and reconfigurable computing system has been designed which

can mitigate IC counterfeiting by replacing original CMOS gates in the circuit with

chaos-based logic gates. The gates are replaced using testability based method in order

to ensure that fewer gates needs to be replaced to achieve 50% Hamming distance. Each

chaos-based logic gate has 10-bit key. The same system can be used for authentication

of devices since chaos-based logic gates are vulnerable to process variation which can

be utilized to generate a unique signature in each chip. The challenges are made up of

the key and primary inputs and the responses are the primary outputs of the system.

The system has to be large enough so that the CRP space is large in order to be used

for authentication. After post-processing of the responses, the system demonstrates

near ideal PUF characteristics. It has also been shown that the system is resistant

against Boolean SAT attack and common machine learning based modeling attacks.

141

8.2 Future Work

Chaos-based system can be a huge asset for mitigating hardware security issues. There is a

lot of scope for expanding this work for future research purposes. Some of the future research

directions are:

• A new PRNG design can be explored where two different chaotic maps will be coupled.

The output of one map can be used as a bifurcation parameter for the other map.

This technique should help in increasing the entropy of the generated sequence. The

chaotic region in the bifurcation diagram is expected to be larger than the current three

transistor chaotic oscillator which makes the PRNG more tunable. The final chaotic

oscillator will be more sensitive to initial conditions and have more complex behaviour.

• The PURCS system must be resistant against SAT attack for the logic locking scheme

to be successful. This work has shown that the system is resistant against SAT attack

using only one benchmark circuit. The SAT attack tool needs to be modified so that it

can work for reconfigurable/morphing logic. The SAT tool is not equipped to handle

systems which might have unreliable functionality space.

• Extensive analysis should be performed on the chaos-based systems to improve the

reliability of the generated output voltages from the chaotic oscillator. In this work,

some preliminary simulations have been performed to determine the stability of the

functions due to temperature and supply voltage variations.

• The entire PURCS system can be fabricated and an exhaustive testing methodology

can be developed in order to characterize the functionality of the entire system. It is

important to know the effects of surrounding environment on the chaotic system and

calculate the reliability of the functions under different conditions.

142

Bibliography

143

[1] (2010). Nist sp 800-22: Download documentation and software. https://csrc.nist.

gov/projects/random-bit-generation/documentation-and-software.

82

[2] (2015). Decryption tool binaries and benchmark circuits. https://bitbucket.org/

spramod/host15-logic-encryption. 131

[3] (2020). Matlab machine learning toolbox. https://www.mathworks.com/help/

stats/index.html. 136

[4] Addabbo, T., Alioto, M., Fort, A., Pasini, A., Rocchi, S., and Vignoli, V. (2007). A class

of maximum-period nonlinear congruential generators derived from the rényi chaotic map.

IEEE Transactions on Circuits and Systems I: Regular Papers, 54(4):816–828. 75

[5] Addabbo, T., Alioto, M., Fort, A., Rocchi, S., and Vignoli, V. (2006). The digital

tent map: Performance analysis and optimized design as a low-complexity source

of pseudorandom bits. IEEE Transactions on Instrumentation and Measurement,

55(5):1451–1458. 75

[6] Aihara, K., Takabe, T., and Toyoda, M. (1990). Chaotic neural networks. Physics letters

A, 144(6-7):333–340. 27

[7] Akarvardar, K., Blalock, B., Chen, S., Cristoloveanu, S., Gentil, P., and Mojarradi,

M. (2006a). Digital circuits using soi four-gate transistor. In 2006 8th International

Conference on Solid-State and Integrated Circuit Technology Proceedings, pages 1867–

1869. IEEE. xv, 55

[8] Akarvardar, K., Chen, S., Blalock, B., Cristoloveanu, S., Gentil, P., and Mojarradi, M.

(2005). A novel four-quadrant analog multiplier using soi four-gate transistors (g/sup 4/-

fets). In Proceedings of the 31st European Solid-State Circuits Conference, 2005. ESSCIRC

2005., pages 499–502. IEEE. 53, 54

144

https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://csrc.nist.gov/projects/random-bit-generation/documentation-and-software
https://bitbucket.org/spramod/host15-logic-encryption
https://bitbucket.org/spramod/host15-logic-encryption
https://www.mathworks.com/help/stats/index.html
https://www.mathworks.com/help/stats/index.html

[9] Akarvardar, K., Chen, S., Vandersand, J., Blalock, B., Schrimpf, R., Prothro, B., Britton,

C., Cristoloveanu, S., Gentil, P., and Mojarradi, M. (2006b). Four-gate transistor voltage-

controlled negative differential resistance device and related circuit applications. In 2006

IEEE international SOI Conferencee Proceedings, pages 71–72. IEEE. xv, 54, 58, 61

[10] Alkabani, Y. and Koushanfar, F. (2007). Active hardware metering for intellectual

property protection and security. In USENIX security symposium, pages 291–306. 88, 89,

91

[11] Alvarez, G. and Li, S. (2006). Some basic cryptographic requirements for chaos-based

cryptosystems. International journal of bifurcation and chaos, 16(08):2129–2151. 8

[12] Amigo, J., Kocarev, L., and Szczepanski, J. (2007). Theory and practice of chaotic

cryptography. Physics Letters A, 366(3):211–216. 8

[13] Anderson, R. and Kuhn, M. (1996). Tamper resistance-a cautionary note. In Proceedings

of the second Usenix workshop on electronic commerce, volume 2, pages 1–11. 96

[14] Anderson, R. and Kuhn, M. (1997). Low cost attacks on tamper resistant devices. In

International Workshop on Security Protocols, pages 125–136. Springer. 96

[15] Andrecut, M. (1998). Logistic map as a random number generator. International

Journal of Modern Physics B, 12(09):921–930. 75

[16] Ashton, K. et al. (2009). That ‘internet of things’ thing. RFID journal, 22(7):97–114.

86

[17] Baumgarten, A., Tyagi, A., and Zambreno, J. (2010). Preventing ic piracy using

reconfigurable logic barriers. IEEE Design & Test of Computers, 27(1):66–75. 92, 94

[18] Beirami, A., Nejati, H., and Massoud, Y. (2008). A performance metric for discrete-

time chaos-based truly random number generators. In 2008 51st Midwest Symposium on

Circuits and Systems, pages 133–136. IEEE. 74

[19] Berlekamp, E., Fredricksen, E., and Proto, R. (1974). Minimum conditions for uniquely

determining the generator of a linear sequence. Utilitas Math, 5:305–315. 74

145

[20] Bernstein, G. M. and Lieberman, M. A. (1990). Secure random number generation

using chaotic circuits. IEEE Transactions on Circuits and Systems, 37(9):1157–1164. 72

[21] Bianco, M. E. and Mayhew, G. L. (1994). High speed encryption system and method.

US Patent 5,365,588. 76

[22] Bishop, C. M. (2006). Pattern recognition and machine learning. springer. 133

[23] BLALOCK, B. J., CRISTOLOVEANU, S., DUFRENE, B. M., Allibert, F., and

MOJARRADI, M. M. (2002). The multiple-gate mos-jfet transistor. International journal

of high speed electronics and systems, 12(02):511–520. 54, 56

[24] Blum, L., Blum, M., and Shub, M. (1986). A simple unpredictable pseudo-random

number generator. SIAM Journal on computing, 15(2):364–383. 74

[25] Borkar, S. (2005). Designing reliable systems from unreliable components: the challenges

of transistor variability and degradation. Ieee Micro, 25(6):10–16. 100

[26] Bowman, K. A., Duvall, S. G., and Meindl, J. D. (2002). Impact of die-to-die and within-

die parameter fluctuations on the maximum clock frequency distribution for gigascale

integration. IEEE Journal of solid-state circuits, 37(2):183–190. 96

[27] Cafagna, D. and Grassi, G. (2005). Chaos-based computation via chua’s circuit: Parallel

computing with application to the sr flip-flop. In International Symposium on Signals,

Circuits and Systems, 2005. ISSCS 2005., volume 2, pages 749–752. IEEE. 12

[28] Chakraborty, R. S. and Bhunia, S. (2009). Harpoon: an obfuscation-based soc design

methodology for hardware protection. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 28(10):1493–1502. 91, 92

[29] Chang, C.-H., Zheng, Y., and Zhang, L. (2017). A retrospective and a look forward:

Fifteen years of physical unclonable function advancement. IEEE Circuits and Systems

Magazine, 17(3):32–62. 101

[30] Chen, L. (2018). A framework to enhance security of physically unclonable functions

using chaotic circuits. Physics Letters A, 382(18):1195–1201. 104

146

[31] Chua, L., Komuro, M., and Matsumoto, T. (1986). The double scroll family. IEEE

transactions on circuits and systems, 33(11):1072–1118. 8, 10

[32] Chua, L. O. (1992). The genesis of Chua’s circuit. Electronics Research Laboratory,

College of Engineering, University of 8

[33] Collet, P. and Eckmann, J.-P. (2007). Concepts and results in chaotic dynamics: a short

course. Springer Science & Business Media. 39

[34] Cristoloveanu, S., Blalock, B., Allibert, F., Dufrene, B., and Mojarradi, M. (2002). The

four-gate transistor. In 32nd European Solid-State Device Research Conference, pages

323–326. IEEE. 57

[35] Cruz, J. M. and Chua, L. O. (1993). An ic chip of chua’s circuit. IEEE Transactions

on Circuits and Systems II: Analog and Digital Signal Processing, 40(10):614–625. 22

[36] de la Fraga, L. G., Torres-Pérez, E., Tlelo-Cuautle, E., and Mancillas-López, C. (2017).

Hardware implementation of pseudo-random number generators based on chaotic maps.

Nonlinear Dynamics, 90(3):1661–1670. 81

[37] Degaldo-Restituto, M., Medeiro, F., and Rodriguez-Vazquez, A. (1993). Nonlinear

switched-current cmos ic for random signal generation. Electronics Letters, 29(25):2190–

2191. 25, 27

[38] Deng, L.-Y. and Lin, D. K. (2000). Random number generation for the new century.

The American Statistician, 54(2):145–150. 73

[39] Desnos, K., El Assad, S., Arlicot, A., Pelcat, M., and Menard, D. (2014). Efficient

multicore implementation of an advanced generator of discrete chaotic sequences. In The

9th International Conference for Internet Technology and Secured Transactions (ICITST-

2014), pages 31–36. IEEE. 76

[40] Devadas, S., Suh, E., Paral, S., Sowell, R., Ziola, T., and Khandelwal, V. (2008). Design

and implementation of puf-based” unclonable” rfid ics for anti-counterfeiting and security

applications. In 2008 IEEE international conference on RFID, pages 58–64. IEEE. 105

147

[41] Deza, M. M. and Deza, E. (2009). Encyclopedia of distances. In Encyclopedia of

distances, pages 1–583. Springer. 134

[42] Dick, S. (1992). Exploring negative resistance: the lambda diode. In Elektor Electronics,

page 54. 59

[43] Ditto, W. L., Miliotis, A., Murali, K., Sinha, S., and Spano, M. L. (2010). Chaogates:

Morphing logic gates that exploit dynamical patterns. Chaos: An Interdisciplinary Journal

of Nonlinear Science, 20(3):037107. xii, 17, 18, 19, 22

[44] Ditto, W. L., Murali, K., and Sinha, S. (2007). Chaos computing: ideas and

implementations. Philosophical Transactions of the Royal Society A: Mathematical,

Physical and Engineering Sciences, 366(1865):653–664. 16

[45] Ditto, W. L., Murali, K., and Sinha, S. (2009). Construction of a chaotic computer

chip. In Applications of Nonlinear Dynamics, pages 3–13. Springer. 11

[46] Dudek, P. and Juncu, V. (2003). Compact discrete-time chaos generator circuit.

Electronics Letters, 39(20):1431–1432. xiv, 25, 28

[47] Dufrene, B., Akarvardar, K., Cristoloveanu, S., Blalock, B., Gentil, R., Kolawa, E.,

and Mojarradi, M. (2004). Investigation of the four-gate action in g/sup 4/-fets. IEEE

transactions on electron devices, 51(11):1931–1935. 54

[48] Eguchi, K., Ueno, F., Tabata, T., Zhu, H., and Inoue, T. (2000). Simple design of

a discrete-time chaos circuit realizing a tent map. IEICE transactions on electronics,

83(5):777–778. 25

[49] Eibl, G. and Pfeiffer, K.-P. (2005). Multiclass boosting for weak classifiers. Journal of

Machine Learning Research, 6(Feb):189–210. 135

[50] Ergun, S. and Ozoguz, S. (2007). A chaos-modulated dual oscillator-based truly random

number generator. In 2007 IEEE International Symposium on Circuits and Systems, pages

2482–2485. IEEE. 74

148

[51] Fix, E. (1951). Discriminatory analysis: nonparametric discrimination, consistency

properties. USAF school of Aviation Medicine. 133

[52] Force, S. A.-C. T. (2013). Winning the battle against counterfeit semiconductor

products. White Paper, Semiconductor Industry Association, pages 4–8. 88

[53] Gammel, B. M., Gottfert, R., and Kniffler, O. (2006). An nlfsr-based stream cipher. In

2006 IEEE International Symposium on Circuits and Systems, pages 4–pp. IEEE. 74

[54] Gassend, B., Clarke, D., Van Dijk, M., and Devadas, S. (2002). Silicon physical random

functions. In Proceedings of the 9th ACM conference on Computer and communications

security, pages 148–160. ACM. xvi, 102, 103

[55] Gassend, B., Lim, D., Clarke, D., Van Dijk, M., and Devadas, S. (2004). Identification

and authentication of integrated circuits. Concurrency and Computation: Practice and

Experience, 16(11):1077–1098. 135

[56] Gentle, J. E. (2006). Random number generation and Monte Carlo methods. Springer

Science & Business Media. 73

[57] Go lofit, K. and Wieczorek, P. Z. (2019). Chaos-based physical unclonable functions.

Applied Sciences, 9(5):991. 104

[58] González, J. A. and Pino, R. (1999). A random number generator based on

unpredictable chaotic functions. Computer Physics Communications, 120(2-3):109–114.

75

[59] Guajardo, J., Kumar, S. S., Schrijen, G.-J., and Tuyls, P. (2008). Brand and ip

protection with physical unclonable functions. In 2008 IEEE International Symposium

on Circuits and Systems, pages 3186–3189. IEEE. 100

[60] Guyeux, C., Wang, Q., and Bahi, J. M. (2010). Improving random number generators

by chaotic iterations application in data hiding. In 2010 International Conference on

Computer Application and System Modeling (ICCASM 2010), volume 13, pages V13–643.

IEEE. 76

149

[61] Habib, B., Kaps, J.-P., and Gaj, K. (2015). Efficient sr-latch puf. In International

Symposium on Applied Reconfigurable Computing, pages 205–216. Springer. 101

[62] Hasan, M. S., Mahbub, I., Islam, S. K., and Rose, G. S. (2018a). A mos-jfet macromodel

of soi four-gate transistors (g 4 fet) to aid innovative circuit design. In 2018 IEEE 13th

Dallas Circuits and Systems Conference (DCAS), pages 1–4. IEEE. 56

[63] Hasan, M. S., Majumder, M. B., Shanta, A. S., Uddin, M., and Rose, G. S. (2019). A

chaos-based complex micro-instruction set for mitigating instruction reverse engineering.

Journal of Hardware and Systems Security, pages 1–17. xii, xv, 24, 40, 42, 43

[64] Hasan, M. S., Rahman, T., Islam, S. K., and Blalock, B. B. (2017). Numerical

modeling and implementation in circuit simulator of soi four-gate transistor (g4fet) using

multidimensional lagrange and bernstein polynomial. Microelectronics journal, 65:84–93.

xv, 55

[65] Hasan, M. S., Shamsir, S., Shawkat, M. S. A., Garcia, F., Islam, S. K., and Rose,

G. S. (2018b). Macromodel of g4fet enabling fast and reliable spice simulation for

innovative circuit applications. International Journal of High Speed Electronics and

Systems, 27(03n04):1840015. 53, 61

[66] Hazwani, S., Khan, S., Siddiqi, M. U., Al-Khateeb, K. A., Habaebi, M. H., and Shahid,

Z. (2014). Randomness analysis of pseudo random noise generator using 24-bits lfsr.

In 2014 5th International Conference on Intelligent Systems, Modelling and Simulation,

pages 772–774. IEEE. 74

[67] Helfmeier, C., Nedospasov, D., Tarnovsky, C., Krissler, J. S., Boit, C., and Seifert, J.-

P. (2013). Breaking and entering through the silicon. In Proceedings of the 2013 ACM

SIGSAC conference on Computer & communications security, pages 733–744. 117

[68] Herder, C., Yu, M.-D., Koushanfar, F., and Devadas, S. (2014). Physical unclonable

functions and applications: A tutorial. Proceedings of the IEEE, 102(8):1126–1141. 100

150

[69] Herrera, R., Suyama, K., Horio, Y., and Aihara, K. (1999). Ic implementation of a

switched-current chaotic neuron. IEICE Transactions on Fundamentals of Electronics,

Communications and Computer Sciences, 82(9):1776–1782. 7

[70] Hobson, P. and Lansbury, A. (1996). A simple electronic circuit to demonstrate

bifurcation and chaos. Physics Education, 31(1):39. 10

[71] Hoffman, C., Gebotys, C. H., Aranha, D. F., Cortes, M. L., and Araujo, G. (2019).

Circumventing uniqueness of xor arbiter pufs. In The Euromicro Conference on Digital

System Design (DSD) Euromicro Conference on Digital System Design. 102

[72] Horio, Y., Aihara, K., and Yamamoto, O. (2003). Neuron-synapse ic chip-set for large-

scale chaotic neural networks. IEEE Transactions on Neural Networks, 14(5):1393–1404.

7

[73] Hsu, C.-W. and Lin, C.-J. (2002). A comparison of methods for multiclass support

vector machines. IEEE transactions on Neural Networks, 13(2):415–425. 134

[74] Hu, H., Liu, L., and Ding, N. (2013). Pseudorandom sequence generator based on the

chen chaotic system. Computer Physics Communications, 184(3):765–768. 74

[75] Hua, Z. and Zhou, Y. (2015). Dynamic parameter-control chaotic system. IEEE

transactions on cybernetics, 46(12):3330–3341. 75

[76] Jagasivamani, M., Gadfort, P., Sika, M., Bajura, M., and Fritze, M. (2014). Split-

fabrication obfuscation: Metrics and techniques. In 2014 IEEE international symposium

on hardware-oriented security and trust (HOST), pages 7–12. IEEE. 89

[77] Joachims, T. (1998). Text categorization with support vector machines: Learning with

many relevant features. In European conference on machine learning, pages 137–142.

Springer. 134

[78] Jose, S. (2008). Innovation is at risk as semiconductor equipment and materials.

Semiconductor Equipment and Material Industry (SEMI). 4

151

[79] Jun, B. and Kocher, P. (1999). The intel random number generator. Cryptography

Research Inc. white paper, 27:1–8. 71

[80] Juncu, V., Rafiei-Naeini, M., and Dudek, P. (2006). Integrated circuit implementation of

a compact discrete-time chaos generator. Analog Integrated Circuits and Signal Processing,

46(3):275–280. 25, 29, 48, 68

[81] Kahng, A. B. (2013). The itrs design technology and system drivers roadmap: Process

and status. In Proceedings of the 50th Annual Design Automation Conference, page 34.

ACM. 46

[82] Kahng, A. B., Lach, J., Mangione-Smith, W. H., Mantik, S., Markov, I. L., Potkonjak,

M., Tucker, P., Wang, H., and Wolfe, G. (1998). Watermarking techniques for intellectual

property protection. In Proceedings of the 35th annual Design Automation Conference,

pages 776–781. ACM. 89

[83] Kanso, A. and Smaoui, N. (2009). Logistic chaotic maps for binary numbers generations.

Chaos, Solitons & Fractals, 40(5):2557–2568. 75

[84] Kennedy, M. P. (1993). Three steps to chaos. ii. a chua’s circuit primer.

IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,

40(10):657–674. 10

[85] Kia, B., Lindner, J. F., and Ditto, W. L. (2016). A simple nonlinear circuit contains

an infinite number of functions. IEEE Transactions on Circuits and Systems II: Express

Briefs, 63(10):944–948. xiv, 28, 46, 49, 50

[86] Kia, B., Mobley, K., and Ditto, W. L. (2017). An integrated circuit design for a

dynamics-based reconfigurable logic block. IEEE Transactions on Circuits and Systems

II: Express Briefs, 64(6):715–719. xiv, 36, 38, 53

[87] KPMG (2005). Managing the risks of counterfeiting in the information technology

industry. 4

152

[88] Kumar, S. S., Guajardo, J., Maes, R., Schrijen, G.-J., and Tuyls, P. (2008). The

butterfly puf protecting ip on every fpga. In 2008 IEEE International Workshop on

Hardware-Oriented Security and Trust, pages 67–70. IEEE. 101

[89] Layman, P. A., Chaudhry, S., Norman, J. G., and Thomson, J. R. (2004). Electronic

fingerprinting of semiconductor integrated circuits. US Patent 6,738,294. 101

[90] Li, C.-Y., Chen, J.-S., and Chang, T.-Y. (2006). A chaos-based pseudo random number

generator using timing-based reseeding method. In 2006 IEEE International Symposium

on Circuits and Systems, pages 4–pp. IEEE. 75

[91] Li, C.-Y., Chen, Y.-H., Chang, T.-Y., Deng, L.-Y., and To, K. (2011). Period

extension and randomness enhancement using high-throughput reseeding-mixing prng.

IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 20(2):385–389. 85

[92] Li, C.-Y., Chou, H.-P., Deng, L.-Y., Shiau, J.-J. H., and Lu, H. H.-S. (2012). Non-linear

pseudo-random number generators via coupling dx generators with the logistic map. In

Anti-counterfeiting, Security, and Identification, pages 1–5. IEEE. 75

[93] Lim, D., Lee, J. W., Gassend, B., Suh, G. E., Van Dijk, M., and Devadas, S. (2005).

Extracting secret keys from integrated circuits. IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, 13(10):1200–1205. 135

[94] Liu, A. and Ning, P. (2008). Tinyecc: A configurable library for elliptic curve

cryptography in wireless sensor networks. In Proceedings of the 7th international

conference on Information processing in sensor networks, pages 245–256. IEEE Computer

Society. 97

[95] Liu, B. and Wang, B. (2014). Embedded reconfigurable logic for asic design obfuscation

against supply chain attacks. In 2014 Design, Automation & Test in Europe Conference

& Exhibition (DATE), pages 1–6. IEEE. 95

[96] Liu, B. and Wang, B. (2015). Reconfiguration-based vlsi design for security. IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, 5(1):98–108. 94

153

[97] Liu, L., Huang, H., and Hu, S. (2017). Lorenz chaotic system-based carbon nanotube

physical unclonable functions. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 37(7):1408–1421. 104

[98] Liu, Z. and Peng, D. (2006). True random number generator in rfid systems against

traceability. In CCNC 2006. 2006 3rd IEEE Consumer Communications and Networking

Conference, 2006., volume 1, pages 620–624. IEEE. 72

[99] Lofstrom, K., Daasch, W. R., and Taylor, D. (2000). Ic identification circuit using

device mismatch. In 2000 IEEE International Solid-State Circuits Conference. Digest of

Technical Papers (Cat. No. 00CH37056), pages 372–373. IEEE. 99

[100] Lorenz, E. N. (1963). Deterministic nonperiodic flow. Journal of the atmospheric

sciences, 20(2):130–141. 7

[101] Ma, J., Guo, Y., Li, L., Wu, Y., Cheng, X., and Zeng, X. (2011). A low power 10-bit

100-ms/s sar adc in 65nm cmos. In 2011 9th IEEE International Conference on ASIC,

pages 484–487. IEEE. 84

[102] Mack, C. A. (2011). Fifty years of moore’s law. IEEE Transactions on semiconductor

manufacturing, 24(2):202–207. 45

[103] Mahmoud, A., Rührmair, U., Majzoobi, M., and Koushanfar, F. (2013). Combined

modeling and side channel attacks on strong pufs. IACR Cryptology ePrint Archive,

2013:632. 136

[104] Majumder, M. B., Hasan, M. S., Shanta, A., Uddin, M., and Rose, G. (2019). Design

for eliminating operation specific power signatures from digital logic. In Proceedings of

the 2019 on Great Lakes Symposium on VLSI, pages 111–116. ACM. 33, 126

[105] Majumder, M. B., Hasan, M. S., Uddin, M., and Rose, G. S. (2018). Chaos computing

for mitigating side channel attack. In 2018 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), pages 143–146. IEEE. 33, 69, 126, 133

154

[106] Majzoobi, M., Koushanfar, F., and Potkonjak, M. (2008). Lightweight secure pufs. In

Proceedings of the 2008 IEEE/ACM International Conference on Computer-Aided Design,

pages 670–673. IEEE Press. 102

[107] Masoodi, F., Alam, S., and Bokhari, M. (2012). An analysis of linear feedback shift

registers in stream ciphers. International Journal of Computer Applications, 46(17):46–49.

75

[108] Matsumoto, T. (1984). A chaotic attractor from chua’s circuit. IEEE Transactions on

Circuits and Systems, 31(12):1055–1058. xiv, 8, 9

[109] Matsumoto, T., Chua, L., and Komuro, M. (1985). The double scroll. IEEE

Transactions on Circuits and Systems, 32(8):797–818. 10

[110] Miura, N., Takahashi, M., Nagatomo, K., and Nagata, M. (2017). Chaos, deterministic

non-periodic flow, for chip-package-board interactive puf. In 2017 IEEE Asian solid-state

circuits conference (A-SSCC), pages 25–28. IEEE. 104

[111] Moddemeijer, R. (1989). On estimation of entropy and mutual information of

continuous distributions. Signal processing, 16(3):233–248. 72

[112] Msgna, M., Markantonakis, K., and Mayes, K. (2014). Precise instruction-level side

channel profiling of embedded processors. In International conference on information

security practice and experience, pages 129–143. Springer. 134

[113] Munakata, T., Sinha, S., and Ditto, W. L. (2002). Chaos computing: implementation

of fundamental logical gates by chaotic elements. IEEE Transactions on Circuits and

Systems I: Fundamental Theory and Applications, 49(11):1629–1633. 12

[114] Murali, K. and Sinha, S. (2003). Experimental realization of chaos control by

thresholding. Physical Review E, 68(1):016210. 12

[115] Murali, K., Sinha, S., and Ditto, W. L. (2003a). Implementation of nor gate by a

chaotic chua’s circuit. International Journal of Bifurcation and Chaos, 13(09):2669–2672.

xiv, 12, 13, 16

155

[116] Murali, K., Sinha, S., and Ditto, W. L. (2003b). Realization of the fundamental nor

gate using a chaotic circuit. Physical Review E, 68(1):016205. 13

[117] Murali, K., Sinha, S., and Ditto, W. L. (2005). Construction of a reconfigurable

dynamic logic cell. Pramana, 64(3):433–441. 13

[118] Murillo-Escobar, M., Cruz-Hernández, C., Abundiz-Pérez, F., and López-Gutiérrez,

R. M. (2015). A robust embedded biometric authentication system based on fingerprint

and chaotic encryption. Expert Systems with Applications, 42(21):8198–8211. 74

[119] Nejati, H., Beirami, A., and Ali, W. H. (2012). Discrete-time chaotic-map truly random

number generators: design, implementation, and variability analysis of the zigzag map.

Analog Integrated Circuits and Signal Processing, 73(1):363–374. 72

[120] Oliveira, L. B., Aranha, D. F., Gouvêa, C. P., Scott, M., Câmara, D. F., López, J.,

and Dahab, R. (2011). Tinypbc: Pairings for authenticated identity-based non-interactive

key distribution in sensor networks. Computer communications, 34(3):485–493. 97

[121] Özkaynak, F. (2014). Cryptographically secure random number generator with chaotic

additional input. Nonlinear Dynamics, 78(3):2015–2020. 74

[122] Pappu, R., Recht, B., Taylor, J., and Gershenfeld, N. (2002). Physical one-way

functions. Science, 297(5589):2026–2030. 100, 102

[123] Paral, Z. and Devadas, S. (2011). Reliable and efficient puf-based key generation using

pattern matching. In 2011 IEEE International Symposium on Hardware-Oriented Security

and Trust, pages 128–133. IEEE. 102

[124] Pareschi, F., Setti, G., and Rovatti, R. (2010). Implementation and testing of high-

speed cmos true random number generators based on chaotic systems. IEEE transactions

on circuits and systems I: regular papers, 57(12):3124–3137. 85

[125] Patidar, V., Sud, K. K., and Pareek, N. K. (2009). A pseudo random bit generator

based on chaotic logistic map and its statistical testing. Informatica, 33(4). 76

156

[126] Pellicer-Lostao, C. and López-Ruiz, R. (2008). Pseudo-random bit generation based

on 2d chaotic maps of logistic type and its applications in chaotic cryptography. In

International Conference on Computational Science and Its Applications, pages 784–796.

Springer. 75

[127] Plaza, S. M. and Markov, I. L. (2015). Solving the third-shift problem in ic piracy

with test-aware logic locking. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 34(6):961–971. 89, 94

[128] Rajendran, J., Pino, Y., Sinanoglu, O., and Karri, R. (2012a). Logic encryption: A

fault analysis perspective. In 2012 Design, Automation & Test in Europe Conference &

Exhibition (DATE), pages 953–958. IEEE. 90

[129] Rajendran, J., Pino, Y., Sinanoglu, O., and Karri, R. (2012b). Security analysis of

logic obfuscation. In Proceedings of the 49th Annual Design Automation Conference, pages

83–89. ACM. 126

[130] Rajendran, J., Rose, G. S., Karri, R., and Potkonjak, M. (2012c). Nano-ppuf: A

memristor-based security primitive. In 2012 IEEE Computer Society Annual Symposium

on VLSI, pages 84–87. IEEE. 100

[131] Rajendran, J., Sam, M., Sinanoglu, O., and Karri, R. (2013a). Security analysis of

integrated circuit camouflaging. In Proceedings of the 2013 ACM SIGSAC conference on

Computer & communications security, pages 709–720. ACM. 89, 94

[132] Rajendran, J., Zhang, H., Zhang, C., Rose, G. S., Pino, Y., Sinanoglu, O., and Karri,

R. (2013b). Fault analysis-based logic encryption. IEEE Transactions on computers,

64(2):410–424. xvi, 89, 91, 92, 93, 94

[133] Rangarajan, N., Patnaik, S., Knechtel, J., Karri, R., Sinanoglu, O., and Rakheja, S.

(2018). Opening the doors to dynamic camouflaging: Harnessing the power of polymorphic

devices. arXiv preprint arXiv:1811.06012. 132

[134] Rankl, W. and Effing, W. (2004). Smart card handbook. John Wiley & Sons. 72

157

[135] Rish, I. et al. (2001). An empirical study of the naive bayes classifier. In IJCAI 2001

workshop on empirical methods in artificial intelligence, volume 3, pages 41–46. 135

[136] Rizk, M. R., Nasser, A.-M. A., El-Badawy, E.-S. A., and Abou-Bakr, E. (2012a).

A new approach for obtaining all logic gates using chua’s circuit: Advantages and

disadvantages. In 2012 International Conference on Computer and Communication

Engineering (ICCCE), pages 730–733. IEEE. 12

[137] Rizk, M. R., Nasser, A.-M. A., El-Badawy, E.-S. A., and Abou-Bakr, E. (2012b). A

new approach for obtaining all logic gates using chua’s circuit with fixed input/output

levels. In 2012 Japan-Egypt Conference on Electronics, Communications and Computers,

pages 12–17. IEEE. 13

[138] Romero, M. E., Martins, E. M., dos Santos, R. R., and Gonzalez, M. E. D. (2013).

Universal set of cmos gates for the synthesis of multiple valued logic digital circuits. IEEE

Transactions on Circuits and Systems I: Regular Papers, 61(3):736–749. 46

[139] Rose, G. S. (2014). A chaos-based arithmetic logic unit and implications for

obfuscation. In 2014 IEEE Computer Society Annual Symposium on VLSI, pages 54–

58. IEEE. xiv, 34, 35

[140] Roy, J. A., Koushanfar, F., and Markov, I. L. (2008). Epic: Ending piracy of integrated

circuits. In Proceedings of the conference on Design, automation and test in Europe, pages

1069–1074. ACM. 93

[141] Rührmair, U., Sehnke, F., Sölter, J., Dror, G., Devadas, S., and Schmidhuber, J.

(2010). Modeling attacks on physical unclonable functions. In Proceedings of the 17th

ACM conference on Computer and communications security, pages 237–249. ACM. 135

[142] Rührmair, U., Xu, X., Sölter, J., Mahmoud, A., Koushanfar, F., and Burleson, W.

(2013). Power and timing side channels for pufs and their efficient exploitation. IACR

Cryptology ePrint Archive, 2013:851. 136

[143] Safavian, S. R. and Landgrebe, D. (1991). A survey of decision tree classifier

methodology. IEEE transactions on systems, man, and cybernetics, 21(3):660–674. 134

158

[144] Sahoo, D. P., Mukhopadhyay, D., and Chakraborty, R. S. (2013). Design of low area-

overhead ring oscillator puf with large challenge space. In 2013 International Conference

on Reconfigurable Computing and FPGAs (ReConFig), pages 1–6. IEEE. 102

[145] Senouci, A., Benkhaddra, I., Boukabou, A., Bouridane, A., and Ouslimani, A. (2014).

Implementation and evaluation of a new unified hyperchaos-based prng. In 2014 26th

International Conference on Microelectronics (ICM), pages 1–4. IEEE. 76

[146] Shamsi, K., Li, M., Meade, T., Zhao, Z., Pan, D. Z., and Jin, Y. (2017). Cyclic

obfuscation for creating sat-unresolvable circuits. In Proceedings of the on Great Lakes

Symposium on VLSI 2017, pages 173–178. 131

[147] Shannon, C. E. (1949). Communication theory of secrecy systems. Bell system technical

journal, 28(4):656–715. 75

[148] Shanta, A. S., Hasan, M. S., Majumder, M. B., and Rose, G. S. (2019). Design of a

lightweight reconfigurable prng using three transistor chaotic map. In 2019 IEEE 62nd

International Midwest Symposium on Circuits and Systems (MWSCAS), pages 586–589.

IEEE. xii, xiii, xiv, xvi, 24, 34, 71, 78, 85

[149] Shanta, A. S., Majumder, M. B., Hasan, M. S., and Rose, G. S. (2020).

Physically unclonable and reconfigurable computing system (purcs) for hardware security

applications. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems (TCAD). xiii, xvi, xvii, 87, 109, 111, 114, 120, 122, 124, 130, 138

[150] Shanta, A. S., Majumder, M. B., Hasan, M. S., Uddin, M., and Rose, G. S. (2018).

Design of a reconfigurable chaos gate with enhanced functionality space in 65nm cmos. In

2018 IEEE 61st International Midwest Symposium on Circuits and Systems (MWSCAS),

pages 1016–1019. IEEE. xii, xiv, xv, 24, 25, 26, 28, 45, 47, 48, 51, 68

[151] Sharaf, M., Mansour, H. A., Zayed, H. H., and Shore, M. (2005). A complex linear

feedback shift register design for the a5 keystream generator. In Proceedings of the Twenty-

Second National Radio Science Conference, 2005. NRSC 2005., pages 395–402. IEEE. xvi,

73, 74

159

[152] Shen, Y. and Zhou, H. (2017). Double dip: Re-evaluating security of logic encryption

algorithms. In Proceedings of the on Great Lakes Symposium on VLSI 2017, pages 179–

184. 131

[153] Simons, P., van der Sluis, E., and van der Leest, V. (2012). Buskeeper pufs, a promising

alternative to d flip-flop pufs. In 2012 IEEE International Symposium on Hardware-

Oriented Security and Trust, pages 7–12. IEEE. 101

[154] Sinha, S. and Ditto, W. L. (1998). Dynamics based computation. physical review

Letters, 81(10):2156. 12

[155] Sinha, S. and Ditto, W. L. (1999). Computing with distributed chaos. Physical Review

E, 60(1):363. 12

[156] Škorić, B., Tuyls, P., and Ophey, W. (2005). Robust key extraction from physical

uncloneable functions. In International Conference on Applied Cryptography and Network

Security, pages 407–422. Springer. 100

[157] Skorobogatov, S. P. (2005). Semi-invasive attacks: a new approach to hardware security

analysis. 99

[158] Stojanovski, T. and Kocarev, L. (2001). Chaos-based random number generators-part

i: analysis [cryptography]. IEEE Transactions on Circuits and Systems I: Fundamental

Theory and Applications, 48(3):281–288. 75

[159] Stojanovski, T., Pihl, J., and Kocarev, L. (2001). Chaos-based random number

generators. part ii: practical realization. IEEE Transactions on Circuits and Systems

I: Fundamental Theory and Applications, 48(3):382–385. 75

[160] Subramanyan, P., Ray, S., and Malik, S. (2015). Evaluating the security of logic

encryption algorithms. In 2015 IEEE International Symposium on Hardware Oriented

Security and Trust (HOST), pages 137–143. IEEE. xvi, 127, 128

[161] Suh, G. E. and Devadas, S. (2007). Physical unclonable functions for device

authentication and secret key generation. In 2007 44th ACM/IEEE Design Automation

Conference, pages 9–14. IEEE. xvi, 98, 99, 103

160

[162] Suneel, M. (2009). Cryptographic pseudo-random sequences from the chaotic hénon

map. Sadhana, 34(5):689–701. 75

[163] Takagi, H. and Kano, G. (1975). Complementary jfet negative-resistance devices. IEEE

Journal of Solid-State Circuits, 10(6):509–515. xv, 55, 59

[164] Tanaka, H., Sato, S., and Nakajima, K. (2000). Integrated circuits of map chaos

generators. Analog integrated circuits and signal processing, 25(3):329–335. 25

[165] Torrance, R. and James, D. (2009). The state-of-the-art in ic reverse engineering. In

International Workshop on Cryptographic Hardware and Embedded Systems, pages 363–

381. Springer. 99, 128

[166] Torrance, R. and James, D. (2011). The state-of-the-art in semiconductor reverse

engineering. In 2011 48th ACM/EDAC/IEEE Design Automation Conference (DAC),

pages 333–338. IEEE. 88

[167] Tuncer, T. (2015). Implementation of duplicate trng on fpga by using two different

randomness source. Elektronika ir Elektrotechnika, 21(4):35–39. 73

[168] Tuncer, T. (2016). The implementation of chaos-based puf designs in field

programmable gate array. Nonlinear Dynamics, 86(2):975–986. 104

[169] Tuyls, P., Škorić, B., Stallinga, S., Akkermans, A. H., and Ophey, W. (2005).

Information-theoretic security analysis of physical uncloneable functions. In International

Conference on Financial Cryptography and Data Security, pages 141–155. Springer. 100

[170] Valtierra, J. L., Tlelo-Cuautle, E., and Rodŕıguez-Vázquez, Á. (2017). A switched-

capacitor skew-tent map implementation for random number generation. International

Journal of Circuit Theory and Applications, 45(2):305–315. 72

[171] Van der Leest, V., Schrijen, G.-J., Handschuh, H., and Tuyls, P. (2010). Hardware

intrinsic security from d flip-flops. In Proceedings of the fifth ACM workshop on Scalable

trusted computing, pages 53–62. ACM. 101

161

[172] Vasyltsov, I., Hambardzumyan, E., Kim, Y.-S., and Karpinskyy, B. (2008). Fast digital

trng based on metastable ring oscillator. In International Workshop on Cryptographic

Hardware and Embedded Systems, pages 164–180. Springer. 74

[173] Wang, A., Chen, M., Wang, Z., and Wang, X. (2013). Fault rate analysis: breaking

masked aes hardware implementations efficiently. IEEE Transactions on Circuits and

Systems II: Express Briefs, 60(8):517–521. 99

[174] Wang, L., Zhang, Y., and Feng, J. (2005). On the euclidean distance of images. IEEE

transactions on pattern analysis and machine intelligence, 27(8):1334–1339. 134

[175] Wang, X., Jia, X., Zhou, Q., Cai, Y., Yang, J., Gao, M., and Qu, G. (2016a). Secure

and low-overhead circuit obfuscation technique with multiplexers. In Proceedings of the

26th edition on Great Lakes Symposium on VLSI, pages 133–136. ACM. 94

[176] Wang, Y., Liu, Z., Ma, J., and He, H. (2016b). A pseudorandom number generator

based on piecewise logistic map. Nonlinear Dynamics, 83(4):2373–2391. 79

[177] Wendt, J. B. and Potkonjak, M. (2014). Hardware obfuscation using puf-based logic. In

2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), pages

270–271. IEEE. 94

[178] Xie, Y. and Srivastava, A. (2018). Anti-sat: Mitigating sat attack on logic locking.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

38(2):199–207. 131

[179] Yalçin, M. E. (2007). Increasing the entropy of a random number generator using

n-scroll chaotic attractors. International Journal of Bifurcation and Chaos, 17(12):4471–

4479. 72

[180] Yalcin, M. E., Suykens, J. A., and Vandewalle, J. (2004). True random bit generation

from a double-scroll attractor. IEEE Transactions on Circuits and Systems I: Regular

Papers, 51(7):1395–1404. 74

162

[181] Yang, H.-T., Huang, J.-R., and Chang, T.-Y. (2004). A chaos-based fully digital 120

mhz pseudo random number generator. In The 2004 IEEE Asia-Pacific Conference on

Circuits and Systems, 2004. Proceedings., volume 1, pages 357–360. IEEE. 75, 76, 85

[182] Yasin, M., Mazumdar, B., Rajendran, J. J., and Sinanoglu, O. (2016). Sarlock:

Sat attack resistant logic locking. In 2016 IEEE International Symposium on Hardware

Oriented Security and Trust (HOST), pages 236–241. IEEE. xiii, xvi, 127, 128, 129, 130,

131

[183] Yasin, M., Rajendran, J. J., Sinanoglu, O., and Karri, R. (2015). On improving the

security of logic locking. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 35(9):1411–1424. 93, 94

[184] Yasin, M. and Sinanoglu, O. (2015). Transforming between logic locking and ic

camouflaging. In 2015 10th International Design & Test Symposium (IDT), pages 1–4.

IEEE. 88

[185] Yeh, A. (2012). Trends in the global ic design service market. DIGITIMES research.

3

[186] Zuchowski, P. S., Habitz, P. A., Hayes, J. D., and Oppold, J. H. (2004). Process and

environmental variation impacts on asic timing. In IEEE/ACM International Conference

on Computer Aided Design, 2004. ICCAD-2004., pages 336–342. IEEE. 98

163

Appendices

164

A Random Number Generator

A.1 SKILL Code for Modeling the Chaotic Oscillator

The value of Vc has been partitioned by 2 mV in the range of 0 V to 1.2 V . Two SKILL

files are required to complete the modeling due to the limitation on the size of .csv file.

File 1

declare(Vc[241])

;For two new VCs, exploring chaotic behavior, VC=0.625, 0.65

declare(in[1201])

declare(out[1201])

for(p 0 length(in)-1

;in[p]=p*0.1;

in[p]=p*0.001;

;fprintf(myport2 "%d," RN[p])

)

for(p 0 length(Vc)-1

;in[p]=p*0.1;

Vc[p]=p*0.0025;

;fprintf(myport2 "%d," RN[p])

)

myport1=outfile("/home/ashanta1/seneca/PRNG new analysis/

Lookup_table_generation_skill/lookup_mwscas_ckt_trans_first_geo6_1.csv")

for(i 0 length(Vc)-1

simulator('spectre)

design(

"/data1/aysha/simulation/map_ckt_with_trans_gate_geo6/spectre/schematic

/netlist/netlist")

165

resultsDir("/data1/aysha/simulation/map_ckt_with_

trans_gate_geo6/spectre/schematic")

modelFile(

'("/data1/IBM_PDK_MOD/cmos10lpe/V1.5.0.0RF/Spectre/models/design.scs"

"")

)

stimulusFile(?xlate nil

"/data1/aysha/simulation/map_ckt_with_trans_

gate_geo6/spectre/schematic/netlist/_graphical_stimuli.scs")

;analysis('tran ?stop "20n" ?errpreset "moderate")

analysis('dc ?param "Vin" ?start "0" ?stop "1.2"

?step "1m")

desVar("Vin" 0)

desVar("Vc" Vc[i])

envOption(

'firstRun t

'analysisOrder list("dc" "tran")

)

temp(27)

run()

for(j 0 length(in)-1

out[j]=value(VDC("/out") in[j])

;print(xinit)

fprintf(myport1 "%e," Vc[i])

fprintf(myport1 "%e," in[j])

fprintf(myport1 "%e," out[j])

fprintf(myport1 "\n")

;plot(getData("/net10"))

)

)

close(myport1)

166

File 2

declare(Vc[240])

;For two new VCs, exploring chaotic behavior, VC=0.625, 0.65

declare(in[1201])

declare(out[1201])

for(p 0 length(in)-1

;in[p]=p*0.1;

in[p]=p*0.001;

;fprintf(myport2 "%d," RN[p])

)

for(p 0 length(Vc)-1

;in[p]=p*0.1;

Vc[p]=p*0.0025+0.6025;

;fprintf(myport2 "%d," RN[p])

)

myport1=outfile("/home/ashanta1/seneca/PRNG new analysis/

Lookup_table_generation_skill/lookup_mwscas_ckt_trans_first_geo6_2.csv")

for(i 0 length(Vc)-1

simulator('spectre)

design("/data1/aysha/simulation/map_ckt_

with_trans_gate_geo6/spectre/schematic/netlist/netlist")

resultsDir("/data1/aysha/simulation/map_ckt_

with_trans_gate_geo6/spectre/schematic")

167

modelFile(

'("/data1/IBM_PDK_MOD/cmos10lpe/V1.5.0.0RF/Spectre/models/design.scs"

"")

)

stimulusFile(?xlate nil

"/data1/aysha/simulation/map_ckt_with_trans

_gate_geo6/spectre/schematic/netlist/_graphical_stimuli.scs")

;analysis('tran ?stop "20n" ?errpreset "moderate")

analysis('dc ?param "Vin" ?start "0" ?stop "1.2"

?step "1m")

desVar("Vin" 0)

desVar("Vc" Vc[i])

envOption(

'firstRun t

'analysisOrder list("dc" "tran")

)

temp(27)

run()

for(j 0 length(in)-1

out[j]=value(VDC("/out") in[j])

;print(xinit)

fprintf(myport1 "%e," Vc[i])

fprintf(myport1 "%e," in[j])

fprintf(myport1 "%e," out[j])

fprintf(myport1 "\n")

)

)

close(myport1)

168

A.2 Matlab Code for Plotting the Bifurcation Diagram

M1=csvread('lookup_mwscas_ckt_trans_first_geo6_1.csv');

M2=csvread('lookup_mwscas_ckt_trans_first_geo6_2.csv');

count=0;

res=1201;

start=1000;

iter=4000;

Vc1=0:2.5e-3:0.6;

for i=1:length(Vc1)

Vc_ta_1{i}=M1((i-1)*res+1:(i-1)*res+res,2:3);

%Vc_ta_4{i} =round(Vc_ta_4{i},3);

end

Vc2=602.5e-3:2.5e-3:1.2;

for i=1:length(Vc2)

Vc_ta_2{i}=M2((i-1)*res+1:(i-1)*res+res,2:3);

%Vc_ta_4{i} =round(Vc_ta_4{i},3);

end

for i=1:length(Vc1)

ta=Vc_ta_1{i};

%vc=0.375;

Vin=ta(:,1);

Vout=ta(:,2);

in=0.6;

for j=1:iter

169

%vout(j)=Vout(in_ind);

vout(j)= interp1(Vin,Vout,in);

%[val in_ind]=min(abs(vout(j)-Vin));

in=vout(j);

end

vout=vout(start:end);

bi_fur{i}=vout;

%figure

%plot(vout,'ro')

vc_plot=ones(1,length(vout))*Vc1(i);

plot(vc_plot,vout,'ro','markersize',2)

hold on

end

for i=1:length(Vc2)

ta=Vc_ta_2{i};

%vc=0.375;

Vin=ta(:,1);

Vout=ta(:,2);

in=0.6;

for j=1:iter

%vout(j)=Vout(in_ind);

vout(j)= interp1(Vin,Vout,in);

%[val in_ind]=min(abs(vout(j)-Vin));

in=vout(j);

end

vout=vout(start:end);

bi_fur{i}=vout;

170

%figure

%plot(vout,'ro')

vc_plot=ones(1,length(vout))*Vc2(i);

plot(vc_plot,vout,'ro','markersize',2)

hold on

end

xlabel('Bifurcation Parameter, V_{c} (V)',

'fontweight','bold','fontsize',55)

ylabel('Output, V_{out} (V)', 'fontweight','bold','fontsize',55)

set(gca,'FontWeight','Bold','FontSize',45, 'LineWidth', 3)

ylim([0 1.2])

A.3 Matlab Code for Plotting the Lyapunov Exponent

%set up the number of data and control bits

n_data=2;

n_control=1;

n_bit=n_data+n_control;

iter=3000;

trun=300;

in=0.2;

%in2=in+0.01;

delta=0.001;

%csv files with transmission gate

M1=csvread('lookup_mwscas_ckt_trans_first_1.csv');

M2=csvread('lookup_mwscas_ckt_trans_first_2.csv');

171

%finding range

vout1=M1(:,3);

vout2=M2(:,3);

[val1 ind1]=min(vout1);

[val2 ind2]=min(vout2);

if val1<val2

ind=ind1;

Vcmin=M1(ind,1);

vin_min=M1(ind,2);

vout_min=val1;

else

ind=ind2;

Vcmin=M2(ind,1);

vin_min=M2(ind,2);

vout_min=val2;

end

Vc1=0:2.5e-3:600e-3;

for i=1:length(Vc1)

Vc_ta_1{i}=M1((i-1)*1201+1:(i-1)*1201+1201,2:3);

end

Vc2=602.5e-3:2.5e-3:1.2;

for i=1:length(Vc2)

Vc_ta_2{i}=M2((i-1)*1201+1:(i-1)*1201+1201,2:3);

end

172

%%%%%%%%%%%%% first table

vo_a=[];

Vc_plot=[];

LE_plot=[];

for i=1:length(Vc_ta_1)

ta=Vc_ta_1{i};

Vc_plot=[Vc_plot;Vc1(i)];

Vin=ta(:,1);

Vout=ta(:,2);

vi=in;

%vi2=in2;

sum=0;

for ii=1:iter

vo= interp1(Vin,Vout,vi);

vo2= interp1(Vin,Vout,vi+delta);

if ii>trun

sum=sum+log(abs((vo2-vo)/(delta)));

end

vi=vo;

%vi2=vo2;

end

if vo2˜=vo

%LE=log(abs((vo2-vo)/(in2-in)))/iter;

LE=sum/(iter-trun);

else

LE=-5;

end

%LE=log(abs((vo2-vo)/(in2-in)))/iter;

LE_plot=[LE_plot;LE];

%vo_a=[vo_a;vo];

173

end

%%%%%%%%%%%%% second table

for i=1:length(Vc_ta_2)

ta=Vc_ta_2{i};

Vc_plot=[Vc_plot;Vc2(i)];

Vin=ta(:,1);

%[val ind]=min(abs(Vin-0.1932));

Vout=ta(:,2);

vi=in;

sum=0;

for ii=1:iter

vo= interp1(Vin,Vout,vi);

vo2= interp1(Vin,Vout,vi+delta);

if ii>trun

sum=sum+log(abs((vo2-vo)/(delta)));

end

vi=vo;

%vi2=vo2;

end

if vo2˜=vo

%LE=log(abs((vo2-vo)/(in2-in)))/iter;

LE=sum/(iter-trun);

else

LE=-5;

end

LE_plot=[LE_plot;LE];

end

figure

ind=find(LE_plot>0);

174

chaotic_points=Vc_plot(ind);

stem(chaotic_points)

figure

plot(Vc_plot,LE_plot,'ro','markersize',1.2, 'Linewidth',6)

hold on

plot(Vc_plot,zeros(length(Vc_plot),1),'Linewidth',4.5)

xlabel('V_{c}(V)', 'fontweight','bold','fontsize',60)

ylabel('Lyapunov Exponent, \lambda', 'fontweight','bold','fontsize',55)

set(gca,'FontWeight','Bold','FontSize',40,'LineWidth', 6)

ylim([-5 1])

A.4 Matlab Code for Generating the Random Numbers

M1=csvread('lookup_mwscas_ckt_trans_first_1.csv');

M2=csvread('lookup_mwscas_ckt_trans_first_2.csv');

count=0;

res=1201;

seq_len = 2*10ˆ6;

%%

start=10000; %start is the number of extra sequences generated

iter=seq_len+start; %total number of binary values generated is iter +

start

%%%

seed= [0.35:0.008:1.2]; %initial seed value, Vin

seed = seed(1:100);

%%

num_Vc=1; %no. of different Vc(s) to be applied to the map circuits

%%%

175

num_seq = length(seed);

bin_seq_tot_fh = zeros(1, num_seq*seq_len/2);

bin_seq_tot_alter = zeros(1, num_seq*seq_len/2);

bin_seq_tot_xor = zeros(1, num_seq*seq_len/2);

bin_seq_tot = zeros(1, num_seq*seq_len);

anal_seq_tot = zeros(1, num_seq*seq_len);

starting1 = 1;

ending = seq_len;

starting_half1 = 1;

ending_half1 = seq_len/2;

starting_half2 = 1;

ending_half2 = seq_len/2;

for p = 1:num_seq

initial = seed(p)

%%%%%%%%%%%%%%%%%% Single Vc is considered

if num_Vc==1

Vc_app=0.575; %applied Vc

%ADC set up

vmin=0.31;

vmax=1.195;

nb=10; %no. of bits in ADC

nlev=2ˆnb;

resol=(vmax-vmin)/nlev;

Vc1=0:2.5e-3:0.6;

for i=1:length(Vc1)

Vc_ta_1{i}=M1((i-1)*res+1:(i-1)*res+res,2:3);

end

Vc2=602.5e-3:2.5e-3:1.2;

176

for i=1:length(Vc2)

Vc_ta_2{i}=M2((i-1)*res+1:(i-1)*res+res,2:3);

end

Vc_ta=[Vc_ta_1 Vc_ta_2];

Vc_a=[Vc1 Vc2];

[val, ind]=min(abs(Vc_a-Vc_app));

ta=Vc_ta{ind};

Vin=ta(:,1);

Vout=ta(:,2);

in=initial;

for j=1:iter

vout(j)= interp1(Vin,Vout,in);

temp=ADC(resol,vout(j),nb,vmin);

vout_bin(j)=temp(end);

in=vout(j);

end

anal_seq=vout(start+1:end); %analog values

bin_seq=vout_bin(start+1:end); %binary sequence

end

%%%%%%%%%%%%%%%% Double Vc is considered

if num_Vc==2

Vc_app_1=0.575;

Vc_app_2=0.615;

%ADC set up

vmin=0.29; %minimum of the two values

vmax=1.2; %maximum of the two values

nb=10; %ADC bits

nlev=2ˆnb;

177

resol=(vmax-vmin)/nlev;

Vc1=0:2.5e-3:0.6;

for i=1:length(Vc1)

Vc_ta_1{i}=M1((i-1)*res+1:(i-1)*res+res,2:3);

end

Vc2=602.5e-3:2.5e-3:1.2;

for i=1:length(Vc2)

Vc_ta_2{i}=M2((i-1)*res+1:(i-1)*res+res,2:3);

end

Vc_ta=[Vc_ta_1 Vc_ta_2];

Vc_a=[Vc1 Vc2];

[val, ind_1]=min(abs(Vc_a-Vc_app_1));

ta_1=Vc_ta{ind_1};

Vin1=ta_1(:,1);

Vout1=ta_1(:,2);

[val, ind_2]=min(abs(Vc_a-Vc_app_2));

ta_2=Vc_ta{ind_2};

Vin2=ta_2(:,1);

Vout2=ta_2(:,2);

in= initial;

for j=1:iter

if mod(j,2)==1

vout(j)= interp1(Vin1,Vout1,in);

else

vout(j)= interp1(Vin2,Vout2,in);

end

178

temp=ADC(resol,vout(j),nb,vmin);

vout_bin(j)=temp(end);

in=vout(j);

end

anal_seq=vout(start+1:end); %analog values

bin_seq=vout_bin(start+1:end); %binary sequence

end

bin_seq_tot(starting1:ending) = bin_seq;

anal_seq_tot(starting1:ending) = anal_seq;

starting1 = starting1 + seq_len;

ending = ending + seq_len;

bin_seq_alter = bin_seq(2:2:seq_len);

bin_seq_tot_alter(starting_half1:ending_half1) = bin_seq_alter;

starting_half1 = starting_half1 + seq_len/2;

ending_half1 = ending_half1 + seq_len/2;

bin_seq_fh = bin_seq(1:seq_len/2);

bin_seq_tot_fh(starting_half2:ending_half2) = bin_seq_fh;

bin_seq_xor = zeros(1,seq_len/2);

a = 1;

b = 2;

for i = 1:seq_len/2

bin_seq_xor(i) = bitxor(bin_seq(a),bin_seq(b));

a = a+2;

b= b+2;

end

bin_seq_tot_xor(starting_half2:ending_half2) = bin_seq_xor;

179

starting_half2 = starting_half2 + seq_len/2;

ending_half2 = ending_half2 + seq_len/2;

end

prob_alter=(sum(bin_seq_tot_alter)/length(bin_seq_tot_alter))*100

%probability of ones in the sequence

prob_fh=(sum(bin_seq_tot_fh)/length(bin_seq_tot_fh))*100

%%%

%writing to a file

str = [' ', ' ', ' '];

filename = 'ds_fh_100mil.txt';

studID = fopen(filename,'wt');

bin_seq_tot_fh = dec2bin(bin_seq_tot_fh);

temp = bin_seq_tot_fh(1:24);

fprintf(studID, str);

fprintf(studID,'%s\n',temp);

temp = zeros(1,25);

start = 25;

ending = 49;

for i = 1:length(bin_seq_tot_fh)/25-1

temp = bin_seq_tot_fh(start:ending);

start = start + 25;

ending = ending + 25;

fprintf(studID, str);

fprintf(studID,'%s\n',temp);

end

temp = bin_seq_tot_fh(start:end);

fprintf(studID, str);

fprintf(studID,'%s\n',temp);

180

fclose(studID);

str_alter = [' ', ' ', ' '];

file_alter = 'ds_alt_100mil.txt';

studID_alter = fopen(file_alter,'wt');

bin_seq_tot_alter = dec2bin(bin_seq_tot_alter);

temp_alter = bin_seq_tot_alter(1:24);

fprintf(studID_alter, str_alter);

fprintf(studID_alter,'%s\n',temp_alter);

temp_alter = zeros(1,25);

start_alter = 25;

ending_alter = 49;

for i = 1:length(bin_seq_tot_alter)/25-1

temp_alter = bin_seq_tot_alter(start_alter:ending_alter);

start_alter = start_alter + 25;

ending_alter = ending_alter + 25;

fprintf(studID_alter, str_alter);

fprintf(studID_alter,'%s\n',temp_alter);

end

temp_alter = bin_seq_tot_alter(start_alter:end);

fprintf(studID_alter, str_alter);

fprintf(studID_alter,'%s\n',temp_alter);

fclose(studID_alter);

str_xor = [' ', ' ', ' '];

file_xor = 'ds_xor_100mil.txt';

studID_xor = fopen(file_xor,'wt');

bin_seq_tot_xor = dec2bin(bin_seq_tot_xor);

temp_xor = bin_seq_tot_xor(1:24);

fprintf(studID_xor, str_xor);

fprintf(studID_xor,'%s\n',temp_xor);

181

temp_xor = zeros(1,25);

start_xor = 25;

ending_xor = 49;

for i = 1:length(bin_seq_tot_xor)/25-1

temp_xor = bin_seq_tot_xor(start_xor:ending_xor);

start_xor = start_xor + 25;

ending_xor = ending_xor + 25;

fprintf(studID_xor, str_xor);

fprintf(studID_xor,'%s\n',temp_xor);

end

temp_xor = bin_seq_tot_xor(start_xor:end);

fprintf(studID_xor, str_xor);

fprintf(studID_xor,'%s\n',temp_xor);

fclose(studID_xor);

182

B PURCS System

B.1 SKILL Code for Modeling the Chaotic Oscillator

declare(Vc[1])

Vc[0]=520m

myport1=outfile("/home/ashanta1/seneca/Monte Carlo 2

output/Threshold/ctrl_0_Vc_520m_50_iter_threshold.csv")

cycle = 25

per_a= 1u

per=2*cycle*per_a

del=50n

ttr=100p

for(k 0 0

simulator('spectre)

design(

"/data1/aysha/simulation/chaos_gate/spectre/schematic/netlist/netlist")

resultsDir("/data1/aysha/simulation/chaos_gate/spectre/schematic")

modelFile(

'("/data1/IBM_PDK_MOD/cmos10lpe/V1.5.0.0RF/Spectre/models/design.scs"

"")

)

stimulusFile(?xlate nil

"/home/ashanta1/seneca/Monte Carlo 2

output/Threshold/stimuli_constantVc_4_input.scs")

analysis('tran ?stop "4*per+per/2" ?errpreset "conservative")

desVar("per_a" per_a)

desVar("ttr" ttr)

desVar("delay_a" del)

desVar("del" del)

desVar("per" per)

183

desVar("Vc" Vc[k])

envOption(

'analysisOrder list("tran" "dc")

)

option(?categ 'turboOpts

'proc_affinity "8"

'numThreads "32"

'mtOption "Manual"

'uniMode "APS"

)

temp(27)

run()

selectResult('tran)

;plot(getData("/clk") getData("/Vc") getData("/G0") getData("/net29")

getData("/Y") getData("/clka") getData("/clkb") getData("/IN")

getData("/OUT") getData("/nclkb"))

for(i 0 3

for(j 0 cycle-1

to1=i*per+(del+per/2)

to2=j*per_a+(0.25*per_a)

tsamp1=to1+to2

y1=value(v("/out1" ?result "tran") tsamp1)

fprintf(myport1 "%e," y1)

tsamp2=tsamp1+per_a/2

y2=value(v("/out2" ?result "tran") tsamp2)

fprintf(myport1 "%e," y2)

)

fprintf(myport1 "\n")

)

)

close(myport1)

184

B.2 Matlab Code for Creating the Characterization Table

%key structure(N-bit): Vc(p-bit)|n(q-bit)|Vth(r-bit)|Cb(s-bit)

%parameter

p=4; %Vc

q=5; %iteration

r=0; %threshold

s=1; %control bit

N=p+q+r+s;

Vc=[486,488,490,506,510,512,518,520,524,528,526,538,540,546,556,564];

Vth=0.6207; %determined by calculating the median of all the values in

32 files

Cb=[0,1];

len_Vc=2ˆp;

len_Cb=2ˆs;

len_Vth=2ˆr;

len_n=2ˆq;

nchip=1;

for chip_no=1:nchip

%for chip_no=1:nchip

temp_char=zeros(2ˆN,6); %filed for key,individual parameter,function

for i=1:len_Vc %iterating through number of Vc

for j=1:len_Cb %iterating through number of Cb

infile=csvread(strcat(".\Raw data nominal

edited\ctrl_",int2str(Cb(j)),

"_Vc_",int2str(Vc(i)),"m_50_iter_edited.csv"));

field_Vc=flip(de2bi(i-1,p));

field_Cb=flip(de2bi(j-1,s));

for k=1:len_n %iterating through n

field_n=flip(de2bi(k-1,q));

185

for l=1:len_Vth %iterating through Vth

field_Vth];

key=[field_n field_Vc field_Cb];

key_index=bi2de(flip(key))+1;

index_mat_funct=k+18:50:200;%index of 00,01,10,11 in

the raw file

funct=infile(chip_no,index_mat_funct);

%thresh=(l*(1.2)/(2ˆr));

thresh=Vth(l);

funct=(funct>thresh).*1; %convert analog output to

binary

funct=bi2de(flip(funct));

temp_char(key_index,1)=key_index;

temp_char(key_index,2)=Vc(i);

temp_char(key_index,3)=k+18;

temp_char(key_index,4)=thresh;

temp_char(key_index,5)=Cb(j);

temp_char(key_index,6)=funct;

end

end

end

end

csvwrite(strcat(".\Characterization_nominal_median

\characterization_last_32_iteration_nominal_med.csv"),temp_char;

end

B.3 SKILL Code for Generating Data for Monte Carlo Simulation

NumRuns = 25 ;number of iteration (2 output chaos gates have double

iterations)

MC = 100 ;number of chips analyzed (# Monte Carlo sims)

186

per_a=1u

per = 2*NumRuns*per_a

del=50n

ttr=100p

Vc_temp = 486m

simTime = 4*per + per/2 ;4 inputs analyzed all at once

sprintf(simTstr "%e" simTime)

;====================== Set to XL mode

===

ocnSetXLMode()

ocnxlProjectDir("/data1/aysha/mc_results")

ocnxlTargetCellView("chaos_redesigned" "chaos_gate" "adexl")

ocnxlResultsLocation("/data1/aysha/mc_results")

ocnxlSimResultsLocation("/data1/aysha/mc_results")

;====================== Tests setup

==

ocnxlBeginTest("chaos_redesigned:chaos_gate:1")

simulator('spectre)

design("chaos_redesigned" "chaos_gate" "schematic")

;resultsDir(

"/data1/aysha/mc_results/chaos_gate_single_output/spectre/schematic"

)

modelFile(

'("/data1/IBM_PDK_MOD/cmos10lpe/V1.5.0.0RF/Spectre/models/design.scs"

"")

)

stimulusFile(?xlate nil

187

"/home/ashanta1/seneca/Monte Carlo 2 output/Monte

Carlo/stimuli_constantVc_2_output_ctrl_0_mc.scs")

analysis('tran ?stop simTstr ?errpreset "conservative")

desVar("per_a" per_a)

desVar("ttr" ttr)

desVar("delay_a" del)

desVar("del" del)

desVar("per" per)

desVar("Vc" Vc_temp)

printf("\n\n\n\nhere %d\n\n\n\n" NumRuns)

envOption(

'analysisOrder list("tran" "pz" "dcmatch" "stb" "envlp" "ac" "dc"

"noise" "xf" "sp" "pss" "pac" "pstb" "pnoise" "pxf" "psp" "qpss"

"qpac" "qpnoise" "qpxf" "qpsp" "hb" "hbac" "hbnoise" "sens")

)

temp(27)

option(?categ 'turboOpts

'apsplus t

'mtOption "Auto"

'uniMode "APS"

)

run()

selectResult('tran)

188

;plot(getData("/clk") getData("/G0") getData("/net29")

getData("/clka") getData("/clkb") getData("/IN") getData("/nclkb")

getData("/out1") getData("/out2"))

for(ind1 1 4

ind3 = 0

for(ind2 1 NumRuns

to1 = (ind1-1)*per+del+per/2

to2 = (ind2-1)*per_a + per_a/4

tsamp1 = to1 + to2

sprintf(Oout "value(v(\"/out1\" ?result \"tran\") %e)" tsamp1)

sprintf(Ooutn "out%d_%d" (ind1-1) ind3)

ocnxlOutputExpr(Oout ?name Ooutn ?plot t ?save t)

ind3 = ind3 + 1

tsamp2 = tsamp1 + per_a/2

sprintf(Oout "value(v(\"/out2\" ?result \"tran\") %e)" tsamp2)

sprintf(Ooutn "out%d_%d" (ind1-1) ind3)

ocnxlOutputExpr(Oout ?name Ooutn ?plot t ?save t)

ind3 = ind3 + 1

)

)

ocnxlEndTest() ;

;====================== Model Group setup

==

;====================== Corners setup

==

189

;====================== Job setup

==

ocnxlJobSetup('(

"blockemail" "1"

"configuretimeout" "300"

"distributionmethod" "Local"

"lingertimeout" "300"

"maxjobs" "4"

"name" "ADE XL Default"

"preemptivestart" "1"

"reconfigureimmediately" "1"

"runtimeout" "-1"

"showerrorwhenretrying" "1"

"showoutputlogerror" "0"

"startmaxjobsimmed" "1"

"starttimeout" "300"

"usesameprocess" "1"

))

;====================== Disabled items

===

;====================== Run Mode Options

======================================

sprintf(num_of_MC "%d" MC)

ocnxlMonteCarloOptions(?mcMethod "all" ?mcNumPoints num_of_MC

?mcNumBins "" ?mcStopEarly "0" ?mcStopMethod "Significance Test"

?samplingMode "random" ?saveProcess "1" ?saveMismatch "0"

?useReference "0" ?donominal "1" ?saveAllPlots "0" ?monteCarloSeed

"" ?mcStartingRunNumber "" ?dumpParamMode "yes")

190

;====================== Starting Point Info

======================================

;====================== Run command

==

ocnxlRun(?mode 'monteCarlo ?nominalCornerEnabled t ?allCornersEnabled

t ?allSweepsEnabled t)

ocnxlOutputSummary(?yieldSummary t ?exprSummary nil ?specSummary nil

?detailed nil)

;====================== save data points

======================================

sprintf(strYield "/data1/aysha/mc_results/yield_chaos_gate.csv")

sprintf(strTrans "/data1/aysha/mc_results/outputs_chaos_gate.csv")

sprintf(dtTranFile

"/data1/aysha/mc_results/mc_chaos_gate_50_iter_100_chip_Vc_486m_ctrl_0.csv")

sprintf(detailFile "/data1/aysha/mc_results/chaos_gate_det_raw.csv")

ocnxlExportOutputView(strYield "Yield")

ocnxlExportOutputView(dtTranFile "Detail-Transpose")

ocnxlExportOutputView(detailFile "Detail")

axlOutputsExportToFile(ocnxlGetSession() strTrans)

;====================== End XL Mode command

===================================

ocnxlEndXLMode()

191

B.4 Python Code for Calculating the Controllability

import csv

import sys

import math

def controllability(netarray, filename):

rows = []

fields = []

with open(filename, 'r') as csvfile:

creating a csv reader object

csvreader = csv.reader(csvfile)

extracting field names through first row

fields = next(csvreader)

extracting each data row one by one

for row in csvreader:

rows.append(row)

final = []

flag = 0

nodes = []

for j in range(0,len(netarray)):

nodes.append(netarray[j][1]);

for j in range(0,len(netarray)):

inp1 = netarray[j][2];

inp2 = netarray[j][3];

192

#count1 and count2 represent the column index

count1 = 0

count2 = 0

col1 = []

col2 = []

for i in range (0,len(fields)):

if inp1 == fields[i]:

count1 = i;

if inp2 == fields[i]:

count2 = i;

#extracting the values of columns in col1 and col2

for i in range(0, len(rows)):

col1.append(rows[i][count1])

col2.append(rows[i][count2])

#a,b,c,d keeps track of how many combinations of 00, 01, 10 and

11 exists

a = 0

b = 0

c = 0

d = 0

temp = []

for i in range(0,len(col1)):

if (col1[i] == '0' and col2[i] == '0'):

a = a + 1

elif (col1[i] == '0' and col2[i] == '1'):

b = b + 1

elif (col1[i] == '1' and col2[i] == '0'):

c= c + 1

else:

d = d + 1

193

temp.append(a)

temp.append(b)

temp.append(c)

temp.append(d)

final.append(temp)

#logth contains the value of controllability

prob = []

logth = 0

for j in range(0,len(final)):

inp1 = netarray[j][2];

inp2 = netarray[j][3];

if inp1 == inp2:

flag = 1

else:

flag = 0

x = final[j]

sum = 0

for k in range(0,4):

temp = x[k]/float(len(rows))

sum = sum + temp*temp

if flag == 0:

logth = math.log((1/sum),4)

else:

logth = math.log((1/sum),2)

prob.append(logth)

index = sorted(range(len(prob)), key=lambda k: prob[k], reverse =

True)

return prob, nodes

194

B.5 Python Code for Calculating the Observability

import csv

import sys

def recurse(node,path,temp,netarray,outpname,inp1,inp2):

#global netarray,outpname,inp1,inp2

temp_copy=temp[0:]

#find children

index1 = [index for index in range(len(inp1)) if inp1[index] == node]

index2 = [index for index in range(len(inp2)) if inp2[index] == node]

index=set(index1+index2)

child=[netarray[i][1] for i in index]

for i in range(0,len(child)):

if child[i] not in outpname:

temp.append(child[i])

recurse(child[i],path,temp[0:],netarray,outpname,inp1,inp2)

temp=temp_copy[0:]

else:

temp.append(child[i])

path.append(temp)

temp=temp[0:-1]

return path

def cond_observ(node,path,netarray,outpname,outp,inp1,inp2,gate):

#global netarray,outpname,outp,inp1,inp2,gate

dict={'AND':1,'NAND':1,'OR':0,'NOR':0}

name_secinp=[]

195

val_secinp=[]

for i in range(0,len(path)):

tmp_name_secinp=[]

tmp_val_secinp=[]

for j in range(0,len(path[i][:])):

ind=outp.index(path[i][j])

tmp_gate=gate[ind]

if (j==0):

if((tmp_gate!='XOR') and (tmp_gate!='XNOR')):

if(inp1[ind]!=node):

tmp_name_secinp.append(inp1[ind])

tmp_val_secinp.append(dict[tmp_gate])

elif(inp2[ind]!=node):

tmp_name_secinp.append(inp2[ind])

tmp_val_secinp.append(dict[tmp_gate])

else:

if((tmp_gate!='XOR') and (tmp_gate!='XNOR')):

if(inp1[ind]!=path[i][j-1]):

tmp_name_secinp.append(inp1[ind])

tmp_val_secinp.append(dict[tmp_gate])

elif(inp2[ind]!=node):

tmp_name_secinp.append(inp2[ind])

tmp_val_secinp.append(dict[tmp_gate])

name_secinp.append(tmp_name_secinp)

val_secinp.append(tmp_val_secinp)

return name_secinp,val_secinp

def different_output_paths(path, outpname):

num_output = len(outpname)

lists = []

for i in range(0,num_output):

196

gatelist_temp=[]

for j in range(0, len(path)):

if path[j][-1] == outpname[i]:

gatelist_temp.append(path[j])

if (len(gatelist_temp)!=0):

lists.append(gatelist_temp)

return lists

def final_count_code(nodename,nodevalue,filename):

c = any(isinstance(e, list) for e in nodename)

rows = []

fields = []

with open(filename, 'r') as csvfile:

creating a csv reader object

csvreader = csv.reader(csvfile)

extracting field names through first row

fields = next(csvreader)

extracting each data row one by one

for row in csvreader:

rows.append(row)

if c == False:

col = []

index = []

for k in range(0,len(nodename)):

for i in range(0,len(fields)):

if nodename[k] == fields[i]:

col.append(i)

final_count = 0

197

nodevalues = []

for i in range(0,len(nodevalue)):

nodevalues.append(str(nodevalue[i]))

for i in range(0,len(rows)):

val = []

for k in range(0,len(col)):

val.append(rows[i][col[k]])

if val == nodevalues:

index.append(i)

final_count = len(index)

else:

col_final = []

index = []

for k in range(0,len(nodename)): #length of list

col = []

for p in range(0,len(nodename[k])): #length of sublist

for i in range(0,len(fields)):

if nodename[k][p] == fields[i]:

col.append(i)

col_final.append(col)

final_count = 0

nodevalues = []

for i in range(0,len(nodevalue)):

temp = []

for k in range(0,len(nodevalue[i])):

temp.append(str(nodevalue[i][k]))

nodevalues.append(temp)

198

for i in range(0,len(rows)):

for k in range(0,len(col_final)):

val = []

for p in range(0,len(col_final[k])):

val.append(rows[i][col_final[k][p]])

if val == nodevalues[k]:

index.append(i)

index = set(index)

final_count = len(index)/float(len(rows))

return final_count

def observability(netarray, outpname, filename):

inp1=[]

for i in range(0,len(netarray)):

inp1.append(netarray[i][2])

inp2=[]

for i in range(0,len(netarray)):

inp2.append(netarray[i][3])

outp=[]

for i in range(0,len(netarray)):

outp.append(netarray[i][1])

gate=[]

for i in range(0,len(netarray)):

gate.append(netarray[i][0])

cand_outp = outp

obs_res=[0]*len(cand_outp)

199

for i in range(0,len(cand_outp)): #iterating over all gate output

print("operating on gate output:",i)

tarnode=cand_outp[i]

path = recurse(tarnode,[],[],netarray,outpname,inp1,inp2)

lists = different_output_paths(path, outpname)

temp_calc=[0]*(len(outpname)+1)

if tarnode in outpname:

temp_calc[0]=1

for j in range(0,len(lists)):

testlist=lists[j]

nodename,nodevalue=cond_observ(tarnode,

testlist,netarray,outpname,outp,inp1,inp2,gate)

fcount=final_count_code(nodename,nodevalue,filename)

temp_calc[1+j]=fcount

sum_temp=sum(temp_calc)/float(len(outpname))

obs_res[i]=sum_temp

return obs_res, cand_outp

B.6 Python Code for Calculating the Testability

from observability_final import observability

from controllability_final import controllability

from bench_to_spice_format import extract_from_bench

from bench_to_spice_format import write_in_scp

from logicsolver import mixed_logic_solver

import numpy as np

from random import *

import csv

import sys

import math

200

def netlist_to_netarray(fnetlist):

netarray=[] # 2D list for gate description

netname=[]

with open(fnetlist) as fnet:

for line in fnet:

'''

line=line.replace(" ","")

line=line.strip("\n")

'''

count=0

temp=[]

for word in line.split():

#print(word)

temp.append(word)

if count!=0:

if word not in netname:

netname.append(word)

count=count+1

netarray.append(temp)

return netarray

def generating_truth_table(fspice, inpname, outpname, inpval, rows):

filename = 'bool_truthtable_'+fspice+'.csv'

netarray=netlist_to_netarray(fspice)

f=open(filename,'w')

netval = mixed_logic_solver(fspice,inpname,inpval,outpname)

net_keys = list(netval.keys())

for j in range(len(net_keys)):

f.write(str(net_keys[j]))

#f.write(net_keys[j])

f.write(',')

f.write('\n')

201

linp = len(inpname)

print('generating boolean truth table')

for i in range(0,rows):

print('truth table row:',i)

cryptogen = SystemRandom()

inpval = [cryptogen.randrange(2) for i in range(linp)]

#adding HI and LO if there exists NOT gates in the schematic

for i in range (0,len(inpname)):

if inpname[-2] == 'HI' and inpname[-1] == 'LO':

del inpval[-1]

del inpval[-1]

inpval.append(1)

inpval.append(0)

break

else:

for i in range (0,len(netarray)):

if netarray[i][3] == 'LO':

del inpval[-1]

inpval.append(0)

break

for i in range (0,len(netarray)):

if netarray[i][3] == 'HI':

del inpval[-1]

inpval.append(1)

break

#print("inpval", inpval)

netval = mixed_logic_solver(fspice,inpname,inpval,outpname)

#print(netval)

for j in netval:

output = netval[j]

#print(output)

f.write(str(output))

202

f.write(',')

f.write('\n')

f.close()

return filename

def testability(fbench,bench_no,rows):

inpname,keyname,outpname,net = extract_from_bench(fbench)

print(inpname,len(inpname))

fspice = write_in_scp(fbench,bench_no)

netarray=netlist_to_netarray(fspice)

#print(netarray)

linp=len(inpname)

#print("length of input name",linp)

cryptogen = SystemRandom()

inpval = [cryptogen.randrange(2) for i in range(linp)]

#adding HI and LO if there exists NOT gates in the schematic

for i in range (0,len(netarray)):

if netarray[i][3] == 'HI':

inpname.append('HI')

inpval.append(1)

break

for i in range (0,len(netarray)):

if netarray[i][3] == 'LO':

inpname.append('LO')

inpval.append(0)

break

filename = generating_truth_table(fspice, inpname, outpname,

inpval, rows) #HI and LO is already appended in inpname

print("truthtable generation complete")

print("observability in progress.....")

obs, outp = observability(netarray, outpname, filename)

203

print("observability calculation complete")

print("controllability in progress....")

prob, nodes= controllability(netarray, filename)

print("controllability calculation complete")

test = []

for i in range(0,len(obs)):

temp = obs[i]*prob[i]

test.append(temp)

index = sorted(range(len(test)), key=lambda k: test[k], reverse =

True)

return index

B.7 Python Code for Solving a Given Netlist

def logic_func(*args):

arg=[]

for val in args:

arg.append(val)

if arg[0]=='AND':

outp=arg[1] & arg[2]

elif arg[0]=='OR':

outp=arg[1] | arg[2]

elif arg[0]=='XOR':

outp=arg[1] ˆ arg[2]

elif arg[0]=='NAND':

outp=(˜(arg[1] & arg[2]))%2

elif arg[0]=='NOR':

outp=(˜(arg[1] | arg[2]))%2

elif arg[0]=='XNOR':

outp=(˜(arg[1] ˆ arg[2]))%2

return outp

204

def mixed_logic_solver(fnetlist,inpname,inpval,outpname):

netname=[] # list of all nets in the netlist

netarray=[] # 2D list for gate description

with open(fnetlist) as fnet:

for line in fnet:

count=0

temp=[]

for word in line.split():

#print(word)

temp.append(word)

if count!=0:

if word not in netname:

netname.append(word)

count=count+1

netarray.append(temp)

inpdict={}

#creating dictionary for input net name and value

for i in range(0,len(inpname)):

inpdict[inpname[i]]=inpval[i]

netval={} #dictionary for keeping the value of each net

netstatus={} #dictionary for keeping the updated status

(valid/invalid) of each net

for i in range(0,len(netname)):

#initializing value of each net

if netname[i] in inpname:

netval[netname[i]]=inpdict[netname[i]]

205

else:

netval[netname[i]]=0

#print(netval)

#initializing status of each net

if netname[i] in inpname:

netstatus[netname[i]]=1

else:

netstatus[netname[i]]=0

#solver

#iterating each gate

i=0

while (i<len(netarray)):

gate_name=netarray[i][0]

o_p=netarray[i][1]

i_p1=netarray[i][2]

i_p2=netarray[i][3]

#if the inputs of the gate are evaluated yet

if (netstatus[i_p1]==1)&(netstatus[i_p2]==1):

netval[o_p]=logic_func(gate_name,netval[i_p1],netval[i_p2])

netstatus[o_p]=1

i=i+1

else:

#print(False)

#taking the element to the last of the list for considering

later

temp=netarray[i]

del(netarray[i])

netarray.append(temp)

206

#print(netarray)

#print("netval:", netval)

#print("netstatus:", netstatus)

outpval=[0]*len(outpname)

for i in range(0,len(outpname)):

outpval[i]=netval[outpname[i]]

#print(netval['s'])

#print(netval['co'])

return netval

B.8 Python Code for Replacing the Gates Based on Testability

from random import *

def testable_chao_netlist(fnetlist,clist):

#fnetlist='ISCAS85.scp'

netarray=[]

#read original netlist file

with open(fnetlist) as fnet:

for line in fnet:

'''

line=line.replace(" ","")

line=line.strip("\n")

'''

count=0

temp=[]

for word in line.split():

#print(word)

temp.append(word)

if count!=0:

if word not in netname:

netname.append(word)

207

count=count+1

netarray.append(temp)

#print(netarray)

n=len(netarray)

#clist=[] # gate no. to be replace

klist=[]

kname=[]

for i in range(0,len(clist)):

#print(clist)

kname.append(netarray[clist[i]][0])

#print(kname)

netarray[clist[i]][0]='CHAO'

netarray[clist[i]].append('k'+str(clist[i]+1))

klist.append('k'+str(clist[i]+1))

#print(klist)

#write modified netlist to another file

fmod=open('netlist_testable_replacement.scp','w')

for i in range(0,n):

for j in range(0,len(netarray[i])):

fmod.write(netarray[i][j])

fmod.write(' ')

if i<=n:

fmod.write('\n')

return klist,kname

close(fmod)

208

B.9 Python Code for Calculating the Hamming Distance

from testability_chaogate_replacement import testable_chao_netlist

from random_chaogate_replacement import random_chao_netlist

from testability_final import testability

from logicsolver_chao import mixed_logic_solver

from logicsolver_chao import logic_func

from bench_to_spice_format import extract_from_bench

from finding import finding_index

from random import *

import math

#netlist is in .scp format

def create_netarray(netlist):

netname = []

netarray = []

#making netarray from scp

with open(netlist_original) as fnet:

for line in fnet:

count=0

temp=[]

for word in line.split():

#print(word)

temp.append(word)

if count!=0:

if word not in netname:

netname.append(word)

count=count+1

netarray.append(temp)

return netarray

cryptogen = SystemRandom()

209

################INPUTS###################################

bench_no = [3540]

no_chip=65

replace_percentage =

[0.05,0.10,0.15,0.20,0.25,0.30,0.35,0.40,0.45,0.50,

0.55,0.60,0.65,0.70,0.75,0.80,0.85,0.90,0.95,1.00]

#replace_percentage =

[0.10,0.20,0.30,0.40,0.50,0.60,0.70,0.80,0.90,1.00]

#replace_percentage = [0.05, 0.15, 0.25]

no_of_inputs = [200] #different number of inputs where for each input

key varies to generate challenge

no_of_char_files = 1

observation=500; # no. of measurement to find the hamming distance

between responses from correct and random key

rows = [5000]

###

kb=10 #keybits

####################finding 10 random chips##############

char_file_no = []

cc = [cryptogen.randrange(1,66)]

for p in range(0,no_of_char_files):

while (cc in char_file_no):

cc = [cryptogen.randrange(1,66)]

#print("cc",cc)

char_file_no.append(cc)

print("characterization file",char_file_no)

##

for bb in range(0,len(bench_no)):

netlist_bench='./Benchmark Circuits/c'+str(bench_no[bb])+'.bench'

210

inpname,keyname,outpname,net = extract_from_bench(netlist_bench)

#extracting inpname, keyname and outpname from bench

linp=len(inpname)

loutp = len(outpname)

print('length of output ' + str(loutp))

inpsize = 2**linp

print("length of input",linp)

netlist_original = './Benchmark Circuits/c'+str(bench_no[bb])+'.scp'

netarray = create_netarray(netlist_original)

print("netarray", netarray)

#############generating different inputs to apply to the

circuit##############################

inpval = []

temp = []

for i in range (0,len(netarray)):

if netarray[i][3] == 'HI':

inpname.append('HI')

break

for i in range (0,len(netarray)):

if netarray[i][3] == 'LO':

inpname.append('LO')

break

temp = [cryptogen.randrange(2) for i in range(linp)]

for p in range(0,no_of_inputs[bb]):

while (temp in inpval):

temp = [cryptogen.randrange(2) for i in range(linp)]

#adding HI and LO if there exists NOT gates in the schematic

if inpname[-2] == 'HI' and inpname[-1] == 'LO':

temp.append(1)

211

temp.append(0)

else:

if inpname[-1] == 'HI':

temp.append(1)

if inpname[-1] == 'LO':

temp.append(1)

inpval.append(temp)

##

print("bench number", bench_no[bb])

print("input value",inpval)

print("length of input value", len(inpval))

print("input name", inpname)

print("output name", outpname)

print("input size", inpsize)

fnetlist='netlist_testable_replacement.scp'

complete_list = testability(netlist_bench,bench_no[bb],rows[bb])

print("complete_list", complete_list)

len_complete = len(complete_list)

print("length of complete list", len_complete)

for aa in range(0,len(replace_percentage)):

len_clist = int(math.ceil(replace_percentage[aa]*len_complete))

print("length of replaced list", len_clist)

clist = []

for i in range(0,len_clist):

clist.append(complete_list[i])

print("replaced gates", clist)

[keyname,keygate]=testable_chao_netlist(netlist_original,clist)

print("keyname",keyname)

print("keygate", keygate)

212

keyval=[0]*len(keyname)

lkey=len(keyname)

hd_filename='ent_hamming_distance_testability_c'

+str(bench_no[bb])+'_perc'+' '+str(replace_percentage[aa])+'.csv'

#chip_number in different columns

f_hd=open(hd_filename,'w')

for p in range(0, len(char_file_no)):

char_file='./Characterization 65 chip

new/characterization_65_chip_last

_32_iteration_'+str(char_file_no[p][0])+'.csv'

a, b, c, d, e, f = finding_index(char_file) #and, or, xor,

nand, nor, xnor

keydict={'AND':a,'OR':b,'XOR':c,'NAND':d,'NOR':e, 'XNOR':f}

print("chip number", char_file_no[p][0])

###uncomment this for netlist with key gate

keyval_correct=[0]*len(keygate)

for i in range(0,len(keygate)):

keyval_correct[i]=keydict[keygate[i]]

#print("correct keyval",keyval_correct)

keyval=[0]*len(keyval_correct)

###

cum_HD=0.0

cum_HD_ent = 0.0

cum_HD_inp_ent = []

for i in range(0,no_of_inputs[bb]):

cum_HD_inp=0.0

cum_HD_ent = 0.0

#print(i)

resp_correct=mixed_logic_solver(char_file,

fnetlist,inpname,inpval[i],keyname,keyval_correct,outpname)

#print("correct_response", resp_correct)

213

for j in range(0,observation):

#print(j)

for jj in range(0,lkey):

keyval[jj]=randint(0,(2**kb)-1)

#print("random keyval",keyval)

resp=mixed_logic_solver(char_file,

fnetlist,inpname,inpval[i],keyname,keyval,outpname)

#print("wrong_response", resp)

temp_sum=0.0

temp_sum_ent = 0.0

for k in range(0,loutp):

temp_sum=temp_sum+abs(resp[k]-resp_correct[k])

temp_sum_ent=temp_sum_ent+abs(resp[k]-resp_correct[k])

temp_sum=temp_sum/loutp

temp_sum_ent=temp_sum_ent/loutp

#print(temp_sum)

cum_HD=cum_HD+temp_sum

cum_HD_inp=cum_HD_inp+temp_sum

#print(cum_HD)

if temp_sum_ent > 0.5:

temp_sum_ent = 1-temp_sum_ent

cum_HD_ent=cum_HD_ent+temp_sum_ent

cum_HD_inp=(cum_HD_inp*100)/(observation)

print("cum_HD_input",cum_HD_inp)

if cum_HD_inp > 50:

cum_HD_inp = 100-cum_HD_inp

cum_HD_inp_ent.append(cum_HD_inp)

print("cum_HD_inp_ent",cum_HD_inp_ent)

cum_HD=(cum_HD*100)/(observation*no_of_inputs[bb])

cum_HD_ent=(cum_HD_ent*100)/(observation*no_of_inputs[bb])

sum = 0.0

for i in range(0,len(cum_HD_inp_ent)):

214

sum = sum + cum_HD_inp_ent[i]

avg = sum/len(cum_HD_inp_ent)

print(cum_HD)

print(cum_HD_ent)

print(avg)

f_hd.write(str(cum_HD)+'\n')

f_hd.write(str(cum_HD_ent)+'\n')

f_hd.write(str(avg)+'\n')

f_hd.close()

fnetlist='netlist_random_replacement.scp'

for aa in range(0,len(replace_percentage)):

replace = int(math.ceil(replace_percentage[aa]*len(netarray)))

[keyname,keygate]=random_chao_netlist(netlist_original,replace)

print("keyname",keyname)

print("keygate", keygate)

keyval=[0]*len(keyname)

lkey=len(keyname)

hd_filename='ent_hamming_distance_random_c'+str(bench_no[bb])+'_perc'+'

'+str(replace_percentage[aa])+'.csv' #chip_number in different

columns

f_hd=open(hd_filename,'w')

for p in range(0, len(char_file_no)):

char_file='./Characterization 65 chip

new/characterization_65_chip_last_

32_iteration_'+str(char_file_no[p][0])+'.csv'

a, b, c, d, e, f = finding_index(char_file) #and, or, xor,

nand, nor, xnor

215

keydict={'AND':a,'OR':b,'XOR':c,'NAND':d,'NOR':e, 'XNOR':f}

print("chip number", char_file_no[p][0])

###uncomment this for netlist with key gate

keyval_correct=[0]*len(keygate)

for i in range(0,len(keygate)):

keyval_correct[i]=keydict[keygate[i]]

#print("correct keyval",keyval_correct)

keyval=[0]*len(keyval_correct)

###

cum_HD=0.0

cum_HD_ent = 0.0

cum_HD_inp_ent = []

for i in range(0,no_of_inputs[bb]):

cum_HD_inp=0.0

cum_HD_ent = 0.0

#print(i)

resp_correct=mixed_logic_solver(char_file,

fnetlist,inpname,inpval[i],keyname,keyval_correct,outpname)

#print("correct_response", resp_correct)

for j in range(0,observation):

#print(j)

for jj in range(0,lkey):

keyval[jj]=randint(0,(2**kb)-1)

#print("random keyval",keyval)

resp=mixed_logic_solver(char_file,

fnetlist,inpname,inpval[i],keyname,keyval,outpname)

#print("wrong_response", resp)

temp_sum=0.0

temp_sum_ent = 0.0

for k in range(0,loutp):

temp_sum=temp_sum+abs(resp[k]-resp_correct[k])

temp_sum_ent=temp_sum_ent+abs(resp[k]-resp_correct[k])

216

temp_sum=temp_sum/loutp

temp_sum_ent=temp_sum_ent/loutp

#print(temp_sum)

cum_HD=cum_HD+temp_sum

cum_HD_inp=cum_HD_inp+temp_sum

#print(cum_HD)

if temp_sum_ent > 0.5:

temp_sum_ent = 1-temp_sum_ent

cum_HD_ent=cum_HD_ent+temp_sum_ent

cum_HD_inp=(cum_HD_inp*100)/(observation)

#print("cum_HD_input",cum_HD_inp)

if cum_HD_inp > 50:

cum_HD_inp = 100-cum_HD_inp

cum_HD_inp_ent.append(cum_HD_inp)

#print("cum_HD_inp_ent",cum_HD_inp_ent)

cum_HD=(cum_HD*100)/(observation*no_of_inputs[bb])

cum_HD_ent=(cum_HD_ent*100)/(observation*no_of_inputs[bb])

sum = 0.0

for i in range(0,len(cum_HD_inp_ent)):

sum = sum + cum_HD_inp_ent[i]

avg = sum/len(cum_HD_inp_ent)

print(cum_HD)

print(cum_HD_ent)

print(avg)

f_hd.write(str(cum_HD)+'\n')

f_hd.write(str(cum_HD_ent)+'\n')

f_hd.write(str(avg)+'\n')

f_hd.close()

217

Vita

Aysha S. Shanta received her B.Sc in Electrical and Electronic Engineering (EEE) from

BRAC University in 2012. She worked as a Lecturer at BRAC University for 3 years before

coming to USA for pursuing higher studies. She is currently working towards her PhD in

Electrical Engineering from University of Tennessee, Knoxville (UTK). She has worked as

a Graduate Teaching Assistant for four years at UTK and received Outstanding Graduate

Teaching Assistant award twice. Her research interests include VLSI design, carbon nano-

electrode based biosensors, hardware security and chaos-based computing systems.

218

	Design of Discrete-time Chaos-Based Systems for Hardware Security Applications
	Recommended Citation

	Front Matter
	Title
	Dedication
	Acknowledgments
	Abstract

	Table of Contents
	1 Introduction
	1.1 Motivation and Research Goals
	1.1.1 Chaos-based Logic Gates and Functionality Space
	1.1.2 Random Number Generation
	1.1.3 IC Counterfeiting
	1.1.4 Authentication
	1.1.5 Physically Unclonable and Reconfigurable System

	1.2 Dissertation Overview

	2 Background
	2.1 Introduction to Chaos Theory
	2.1.1 Classification of Chaotic Map
	2.1.2 Study of Chua's Circuit

	2.2 Introduction to Chaos Computing
	2.2.1 Continuous-time Nonlinear System
	2.2.2 Discrete-time Nonlinear System
	2.2.3 Digital Logic Obtained by Varying Iteration Number
	2.2.4 Distinguishing Between (0,1) and (1,0) Input Pairs
	2.2.5 Design of Multi-Input Multi-Output Logic Functions

	2.3 Concluding Remarks

	3 Design of Chaotic Oscillator and Chaos-Based Logic Gate Using Three Transistor Chaotic Map
	3.1 Design of Chaotic Map
	3.1.1 DC Transfer Characteristics of the Map

	3.2 Design of Chaotic Oscillator
	3.2.1 Iterating through the Map
	3.2.2 Sensitivity to Initial Condition
	3.2.3 Ergodicity of the Chaotic Map
	3.2.4 Bifurcation Diagram
	3.2.5 Lyapunov Exponent

	3.3 Reconfigurable Chaos-based Logic Gates
	3.3.1 Introduction
	3.3.2 Design of Reconfigurable Chaos-based Gates
	3.3.3 Complex Functions Obtained Using Single Chaotic Element

	4 Expansion of Functionality Space Using Three Transistor Chaotic Map
	4.1 Introduction
	4.2 Expansion of Design Space
	4.2.1 Comparison of Area and Power Overhead
	4.2.2 Design Space Enhancement

	4.3 Application

	5 Four Gate Transistor Negative Differential Resistance (NDR) Based Discrete-Time Chaotic Map
	5.1 Background
	5.2 Four Terminal Transistor (G4FET)
	5.2.1 G4FET Operation

	5.3 G4FET Based Negative Differential Resistance
	5.4 G4NDR Based Chaotic Map
	5.4.1 Design of Chaotic Oscillator Using G4NDR Based Map
	5.4.2 Bifurcation Diagram and Lyapunov Exponent

	5.5 Design of Logic Gates Using G4NDR Based Map
	5.6 Expansion of Design Space Using G4NDR Map

	6 Pseudo-Random Number Generation (PRNG) Using Three Transistor Chaotic Map
	6.1 Introduction
	6.2 True Random Number Generator (TRNG)
	6.3 Pseudo-Random Number Generator (PRNG)
	6.3.1 Linear PRNG
	6.3.2 Nonlinear PRNG

	6.4 Proposed Lightweight and Reconfigurable PRNG
	6.4.1 Chaotic Oscillator for PRNG Design
	6.4.2 Correlation Coefficient
	6.4.3 Seed Sensitivity
	6.4.4 National Institute of Standards and Technology Tests

	6.5 Overhead Analysis
	6.6 Application Lies in Security of IoT Devices

	7 Physically Unclonable and Reconfigurable Computing System (PURCS)
	7.1 IC Counterfeiting and Logic Locking
	7.1.1 IC Counterfeiting
	7.1.2 Background of Logic Locking
	7.1.3 Threat Model for Logic Locking
	7.1.4 IC Design Flow
	7.1.5 Issues Mitigated by Logic Locking
	7.1.6 Types of Logic Locking
	7.1.7 Techniques of Inserting Key Gates
	7.1.8 Types of Key Gates

	7.2 Authentication and Physical Unclonable Functions (PUFs)
	7.2.1 Authentication of Devices
	7.2.2 Types of Authentication Architectures
	7.2.3 Process variation
	7.2.4 Background of Physical Unlconable Functions (PUFs)
	7.2.5 Classification of PUFs
	7.2.6 Chaos-based PUFs
	7.2.7 Authentication Protocol
	7.2.8 PUF Metrics

	7.3 Proposed Computing System (PURCS)
	7.3.1 Design of Chaotic Oscillator for PURCS System
	7.3.2 Bifurcation Diagram
	7.3.3 Chaos-Based Logic Gate Implementation
	7.3.4 Characterization of the Chaos-based Logic Gate
	7.3.5 Functions Generated by the Logic Gate in Different ICs
	7.3.6 Reliability of the Functions Generated from Logic Gate
	7.3.7 Creating the Characterization Table
	7.3.8 Replacement Algorithm
	7.3.9 Configuration Key of the Hybrid Circuit

	7.4 Simulation and Results
	7.4.1 Logic Locking Results
	7.4.2 Authentication Results

	7.5 Security Performance
	7.5.1 Security of Logic Locked Circuits
	7.5.2 Security of PUFs

	7.6 Overhead Analysis
	7.7 Modes of Operation
	7.7.1 Logic Locking Mode
	7.7.2 Authentication Mode

	8 Contribution and Future Work
	8.1 Original Contribution
	8.2 Future Work

	Bibliography
	Appendices
	A Random Number Generator
	A.1 SKILL Code for Modeling the Chaotic Oscillator
	A.2 Matlab Code for Plotting the Bifurcation Diagram
	A.3 Matlab Code for Plotting the Lyapunov Exponent
	A.4 Matlab Code for Generating the Random Numbers

	B PURCS System
	B.1 SKILL Code for Modeling the Chaotic Oscillator
	B.2 Matlab Code for Creating the Characterization Table
	B.3 SKILL Code for Generating Data for Monte Carlo Simulation
	B.4 Python Code for Calculating the Controllability
	B.5 Python Code for Calculating the Observability
	B.6 Python Code for Calculating the Testability
	B.7 Python Code for Solving a Given Netlist
	B.8 Python Code for Replacing the Gates Based on Testability
	B.9 Python Code for Calculating the Hamming Distance

	Vita

