460 research outputs found

    State of the Art in Biometric Key Binding and Key Generation Schemes

    Get PDF
    Direct storage of biometric templates in databases exposes the authentication system and legitimate users to numerous security and privacy challenges. Biometric cryptosystems or template protection schemes are used to overcome the security and privacy challenges associated with the use of biometrics as a means of authentication. This paper presents a review of previous works in biometric key binding and key generation schemes. The review focuses on key binding techniques such as biometric encryption, fuzzy commitment scheme, fuzzy vault and shielding function. Two categories of key generation schemes considered are private template and quantization schemes. The paper also discusses the modes of operations, strengths and weaknesses of various kinds of key-based template protection schemes. The goal is to provide the reader with a clear understanding of the current and emerging trends in key-based biometric cryptosystems

    Biometric iris templates security based on secret image sharing and chaotic maps

    Get PDF
    Biometric technique includes of uniquely identifying person based on their physical or behavioural characteristics. It is mainly used for authentication. Storing the template in the database is not a safe approach, because it can be stolen or be tampered with. Due to its importance the template needs to be protected. To treat this safety issue, the suggested system employed a method for securely storing the iris template in the database which is a merging approach for secret image sharing and hiding to enhance security and protect the privacy by decomposing the template into two independent host (public) iris images. The original template can be reconstructed only when both host images are available. Either host image does not expose the identity of the original biometric image. The security and privacy in biometrics-based authentication system is augmented by storing the data in the form of shadows at separated places instead of whole data at one. The proposed biometric recognition system includes iris segmentation algorithms, feature extraction algorithms, a (2, 2) secret sharing and hiding. The experimental results are conducted on standard colour UBIRIS v1 data set. The results indicate that the biometric template protection methods are capable of offering a solution for vulnerability that threatens the biometric template

    Chaotic-Based Encryption Algorithm using Henon and Logistic Maps for Fingerprint Template Protection

    Get PDF
    Fingerprint is a reliable user authentication method as it is unique to individual users that makes it efficient for authenticating users. In a fingerprint authentication system, user fingerprint information is stored in databases in an image format known as a fingerprint template. Although fingerprint is reliable, the templates stored in the database are exposed to security threats either during the data transmission process over the network or in storage. Therefore, there is a need to protect the fingerprint template, especially in unsecured networks to maintain data privacy and confidentiality. Many past studies proposed fingerprint template protection (FTP) using chaotic-based encryption algorithms that are more suitable to secure images than conventional encryption such as DES, AES, and RSA. The chaotic-based encryption algorithms have been improved a lot in terms of their robustness. However, the robustness of the algorithm caused a trade-off to encryption speed where it remains an issue in FTP.  Hence, this study aims to improve the limitations found in the existing chaotic-based encryption algorithms for FTP by improving its encryption speed using Henon and Logistic map. A series of simulations were conducted using MATLAB to evaluate the performance of the proposed chaotic-based encryption algorithm for FTP through different analyses covering key sensitivity, histogram, correlations, differential, information entropy, and encryption/decryption speed. The performance proposed encryption algorithm was promising which could be a starting point for detailed analysis and implementation in real application domains

    An improved chaotic image encryption algorithm

    Get PDF
    Chaotic-based image encryption algorithms are countless in number. Encryption techniques based on Chaos are among the most effectual algorithms for encryption of data image. In past works, chaos-based cryptosystems applied the chaotic dynamical system with the linkage to the harmonization of two chaotic systems and controls. Good performances have resulted but there were several downsides pertaining to the single rule usage by each, impacting security, privacy and dependability of the techniques mentioned. Serious problems were also documented in their usage in satellite imagery. As a possible solution, a novel chaos-based symmetric method of key cryptosystem is proposed in this paper. This method employs external secret key that Logistic, Henon and Gauss iterated maps have previously expanded. For creating the secret key matrix for image encryption, these maps are merged. Here, simple logical XOR and multiple key generation processes were applied. Assessment to the method is performed on the satellite images dataset, and security is evaluated through the experimental analysis. As evidenced, the chaos-based satellite image cryptosystem demonstrates appropriateness for satellite image encryption and decryption in the preservation of security and dependability of the storage and transmission process

    Application of Stochastic Diffusion for Hiding High Fidelity Encrypted Images

    Get PDF
    Cryptography coupled with information hiding has received increased attention in recent years and has become a major research theme because of the importance of protecting encrypted information in any Electronic Data Interchange system in a way that is both discrete and covert. One of the essential limitations in any cryptography system is that the encrypted data provides an indication on its importance which arouses suspicion and makes it vulnerable to attack. Information hiding of Steganography provides a potential solution to this issue by making the data imperceptible, the security of the hidden information being a threat only if its existence is detected through Steganalysis. This paper focuses on a study methods for hiding encrypted information, specifically, methods that encrypt data before embedding in host data where the ‘data’ is in the form of a full colour digital image. Such methods provide a greater level of data security especially when the information is to be submitted over the Internet, for example, since a potential attacker needs to first detect, then extract and then decrypt the embedded data in order to recover the original information. After providing an extensive survey of the current methods available, we present a new method of encrypting and then hiding full colour images in three full colour host images with out loss of fidelity following data extraction and decryption. The application of this technique, which is based on a technique called ‘Stochastic Diffusion’ are wide ranging and include covert image information interchange, digital image authentication, video authentication, copyright protection and digital rights management of image data in general

    INFORMATION SECURITY: A STUDY ON BIOMETRIC SECURITY SOLUTIONS FOR TELECARE MEDICAL INFORMATION SYSTEMS

    Get PDF
    This exploratory study provides a means for evaluating and rating Telecare medical information systems in order to provide a more effective security solution. This analysis of existing solutions was conducted via an in-depth study of Telecare security. This is a proposition for current biometric technologies as a new means for secure communication of private information over public channels. Specifically, this research was done in order to provide a means for businesses to evaluate prospective technologies from a 3 dimensional view in order to make am accurate decision on any given biometric security technology. Through identifying key aspects of what makes a security solution the most effective in minimizing risk of a patient’s confidential data being exposed we were then able to create a 3 dimensional rubric to see not only from a business view but also the users such as the patients and doctors that use Telecare medical information systems every day. Finally, we also need to understand the implications of biometric solutions from a technological standpoint

    COMPARATIVE STUDY OF CHAOTIC SYSTEM FOR ENCRYPTION

    Get PDF
    Chaotic systems leverage their inherent complexity and unpredictability to generate cryptographic keys, enhancing the security of encryption algorithms. This paper presents a comparative study of 13 chaotic keymaps. Several evaluation metrics, including keyspace size, dimensions, entropy, statistical properties, sensitivity to initial conditions, security level, practical implementation, and adaptability to cloud computing, are utilized to compare the keymaps. Keymaps such as Logistic, Lorenz, and Henon demonstrate robustness and high-security levels, offering large key space sizes and resistance to attacks. Their efficient implementation in a cloud computing environment further validates their suitability for real-world encryption scenarios. The context of the study focuses on the role of the key in encryption and provides a brief specification of each map to assess the effectiveness, security, and suitability of the popular chaotic keymaps for encryption applications. The study also discusses the security assessment of resistance to the popular cryptographic attacks: brute force, known plaintext, chosen plaintext, and side channel. The findings of this comparison reveal the Lorenz Map is the best for the cloud environment based on a specific scenario
    corecore