1,385 research outputs found

    Fingerprint Recognition in Biometric Security -A State of the Art

    Get PDF
    Today, because of the vulnerability of standard authentication system, law-breaking has accumulated within the past few years. Identity authentication that relies on biometric feature like face, iris, voice, hand pure mathematics, handwriting, retina, fingerprints will considerably decrease the fraud. so that they square measure being replaced by identity verification mechanisms. Among bioscience, fingerprint systems are one amongst most generally researched and used. it\'s fashionable due to their easy accessibility. during this paper we tend to discuss the elaborated study of various gift implementation define strategies together with their comparative measures and result analysis thus as realize a brand new constructive technique for fingerprint recognition

    A new approach to face recognition using Curvelet Transform

    Get PDF
    Multiresolution tools have been profusely employed in face recognition. Wavelet Transform is the best known among these multiresolution tools and is widely used for identification of human faces. Of late, following the success of wavelets a number of new multiresolution tools have been developed. Curvelet Transform is a recent addition to that list. It has better directional ability and effective curved edge representation capability. These two properties make curvelet transform a powerful weapon for extracting edge information from facial images. Our work aims at exploring the possibilities of curvelet transform for feature extraction from human faces in order to introduce a new alternative approach towards face recognition

    Handgrip pattern recognition

    Get PDF
    There are numerous tragic gun deaths each year. Making handguns safer by personalizing them could prevent most such tragedies. Personalized handguns, also called smart guns, are handguns that can only be fired by the authorized user. Handgrip pattern recognition holds great promise in the development of the smart gun. Two algorithms, static analysis algorithm and dynamic analysis algorithm, were developed to find the patterns of a person about how to grasp a handgun. The static analysis algorithm measured 160 subjects\u27 fingertip placements on the replica gun handle. The cluster analysis and discriminant analysis were applied to these fingertip placements, and a classification tree was built to find the fingertip pattern for each subject. The dynamic analysis algorithm collected and measured 24 subjects\u27 handgrip pressure waveforms during the trigger pulling stage. A handgrip recognition algorithm was developed to find the correct pattern. A DSP box was built to make the handgrip pattern recognition to be done in real time. A real gun was used to evaluate the handgrip recognition algorithm. The result was shown and it proves that such a handgrip recognition system works well as a prototype

    Use of Pattern Classification Algorithms to Interpret Passive and Active Data Streams from a Walking-Speed Robotic Sensor Platform

    Get PDF
    In order to perform useful tasks for us, robots must have the ability to notice, recognize, and respond to objects and events in their environment. This requires the acquisition and synthesis of information from a variety of sensors. Here we investigate the performance of a number of sensor modalities in an unstructured outdoor environment, including the Microsoft Kinect, thermal infrared camera, and coffee can radar. Special attention is given to acoustic echolocation measurements of approaching vehicles, where an acoustic parametric array propagates an audible signal to the oncoming target and the Kinect microphone array records the reflected backscattered signal. Although useful information about the target is hidden inside the noisy time domain measurements, the Dynamic Wavelet Fingerprint process (DWFP) is used to create a time-frequency representation of the data. A small-dimensional feature vector is created for each measurement using an intelligent feature selection process for use in statistical pattern classification routines. Using our experimentally measured data from real vehicles at 50 m, this process is able to correctly classify vehicles into one of five classes with 94% accuracy. Fully three-dimensional simulations allow us to study the nonlinear beam propagation and interaction with real-world targets to improve classification results

    Preprint: Using RF-DNA Fingerprints To Classify OFDM Transmitters Under Rayleigh Fading Conditions

    Full text link
    The Internet of Things (IoT) is a collection of Internet connected devices capable of interacting with the physical world and computer systems. It is estimated that the IoT will consist of approximately fifty billion devices by the year 2020. In addition to the sheer numbers, the need for IoT security is exacerbated by the fact that many of the edge devices employ weak to no encryption of the communication link. It has been estimated that almost 70% of IoT devices use no form of encryption. Previous research has suggested the use of Specific Emitter Identification (SEI), a physical layer technique, as a means of augmenting bit-level security mechanism such as encryption. The work presented here integrates a Nelder-Mead based approach for estimating the Rayleigh fading channel coefficients prior to the SEI approach known as RF-DNA fingerprinting. The performance of this estimator is assessed for degrading signal-to-noise ratio and compared with least square and minimum mean squared error channel estimators. Additionally, this work presents classification results using RF-DNA fingerprints that were extracted from received signals that have undergone Rayleigh fading channel correction using Minimum Mean Squared Error (MMSE) equalization. This work also performs radio discrimination using RF-DNA fingerprints generated from the normalized magnitude-squared and phase response of Gabor coefficients as well as two classifiers. Discrimination of four 802.11a Wi-Fi radios achieves an average percent correct classification of 90% or better for signal-to-noise ratios of 18 and 21 dB or greater using a Rayleigh fading channel comprised of two and five paths, respectively.Comment: 13 pages, 14 total figures/images, Currently under review by the IEEE Transactions on Information Forensics and Securit
    • …
    corecore