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ABSTRACT

HANDGRIP PATTERN RECOGNITION

by
Zong Chen

There are numerous tragic gun deaths each year. Making handguns safer by personalizing

them could prevent most such tragedies. Personalized handguns, also called "smart"

guns, are handguns that can only be fired by the authorized user. Handgrip pattern

recognition holds great promise in the development of the smart gun.

Two algorithms, static analysis algorithm and dynamic analysis algorithm, were

developed to find the patterns of a person about how to grasp a handgun. The static

analysis algorithm measured 160 subjects' fingertip placements on the replica gun

handle. The cluster analysis and discriminant analysis were applied to these fingertip

placements, and a classification tree was built to find the fingertip pattern for each

subject.

The dynamic analysis algorithm collected and measured 24 subjects' handgrip

pressure waveforms during the trigger pulling stage. A handgrip recognition algorithm

was developed to find the correct pattern. A DSP box was built to make the handgrip

pattern recognition to be done in real time. A real gun was used to evaluate the handgrip

recognition algorithm. The result was shown and it proves that such a handgrip

recognition system works well as a prototype.
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CHAPTER 1

INTRODUCTION

1.1 Motivation of Personalized Gun

There are numerous tragic gun deaths each year. Many of those are related to

unintentional shooting by young children. Statistically, the rate of unintentional firearm

deaths among the group aged 15-19 was nearly five times higher than the unintentional

firearm death rate for all other age groups (National Center for Health Statistics, 1998).

For each fatal unintentional shooting, there are an estimated 10 nonfatal unintentional

shootings victims treated in emergency rooms each year (Sinauer and Annest, 1996). In

most cases, accidental firearm discharges could be prevented by firearm a safety device

(US General Accounting Office, 1991).

Stolen firearms are another problem. Evidence from the National Crime

Victimization Survey (NCVS) indicates that there are nearly 350,000 incidents of firearm

theft from private citizens annually. Most of the stolen guns are handguns. Surveys

indicate that guns illegally sold to criminals on the street often have been stolen from

homes. When a personalized handgun is stolen, it cannot be used because it will function

only for the authorized user.

Police officers would also benefit from personalized guns. FBI statistics show that

during the decade 1987-1996, dozens of law enforcement officers in the United States

were killed by criminals who wrested their firearms away and then shot them or other

officers. Personalized guns would allow officers to exchange their weapons among the

team and would prevent criminals from using them.

1
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Many products in the United States have been modified to make them safer,

including drug packages and motor vehicles. Government mandated changes in drug

packaging have resulted in reductions of the number of deaths from child poisonings.

Studies show air bags have reduced the total number of driver fatalities by 20 to 25%.

Making handguns safer by personalizing them could similarly save lives. Personalized

handguns, also called "smart" guns, are handguns that can only be fired by the authorized

user.

1.2 Personalized Gun Technologies

Many devices have been designed to make the gun smarter. Basically, they can be

divided into two categories, "Electronic" and "Biometric".

1.2.1 Electronic Technologies

Electronic technology uses an electronic device that allows a gun to fire when the device

receives a correct signal. Examples are electromechanical lock, magnetic lock, and radio

lock. Electronic technology is a mature technology and its reliability has been proven.

Electromechanical Lock

A lock powered by a battery is installed into the grip and trigger system. A personalized

three or four digits preset identification number, entered into the keypad, allows an

authorized user to unlock the gun. By using the push buttons singularly or in

combinations three to six times, there are over ten thousands combinations. Repeated

entry of wrong combinations locks the gun down for hours. This lock is personalized for

user who knows the combination. This device is waterproof and can be used in extreme
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conditions. However, the disadvantage is obvious: the user might forget the PIN or do not

have time to input the PIN in some emergency cases. Smith & Wesson is engineering a

gun using this technology.

Magnetic Lock

A magnetic lock is installed inside the grip of the gun to prevent the gun from firing. The

magnet inside the grip is positioned to match the magnetic ring worn by the authorized

user. The user adjusts the location of the blocking magnet inside the grip to correspond to

their hand holding pattern. When the gun detects the correct magnetic field emitted from

the magnetic ring worn by the user, a blocking device inside the grip moves away from

its blocking position and lets the trigger be pulled. The disadvantage is the gun can

operate if an unauthorized person has the ring. Furthermore, a gun owner may keep the

ring and gun together to make it easier to find the ring when he wants to use the gun —

which reduces the safety provided by the ring. An inventor, Ken Pugh, has led the

development of this technology.

Radio Lock

An alternative uses a radio transponder. The authorized user wears a transponder bearing

a unique code. The transponder can be imbedded in a ring, wristwatch, wristband, lapel

pin or badge. The firearm transmits low power radio signals to the transponder (the grip

contains a battery and microchip), which in turn notifies the firearm of its presence. If the

transponder code is the one that has previously been entered into the firearm and is in a

specified distance from the gun, the firearm recognizes it, the trigger can be pulled and

the gun can fire. The gun can be programmed to recognize many different transponder

codes. However, signal interference is possible. If the signal can't be transmitted clearly,
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the gun operation could malfunction. This technology also has the limitations described

above for magnetic locks — that the owner might keep the wristband or ring with the gun.

FN Manufacturing, Inc. is currently developing this technology into a handgun for police

officers.

1.2.2 Biometric Technologies

Biometric technology is rapidly developing. It concerns identification and verification

based of physiological characteristics (fingerprint, voice, face, skin, DNA, hand

geometry), or behavioral characteristics (keystroke dynamics, handwritten signature,

handgrip) of individuals. These human characteristics are universal, which means every

person has such characteristics, and they are unique, which means no two persons should

be exactly the same in terms of these characteristics. Therefore, a smart gun based on

biometric technology provides better protection from unauthorized users than electronic

technology. On another hand, unlike electronic technology which is mature, and whose

reliability has been proven, biometric technology is a new, on-developing technology.

There are many problems that need to be solved, such as, which algorithm is good for a

smart gun, how to arrange the sensors, and what happens if the battery runs out of power.

The reliability of biometric technology also needs to be proven. Three biometric

technologies have been applied to smart guns. They are fingerprint identification, skin

analysis, and handgrip technology.

Fingerprint Identification

Fingerprint technology is the most well known biometric technology. It has been applied

to many security applications. Oxford Micro Devices, Inc., is developing low cost,
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miniature fingerprint capture and verification systems that can be built into the gun

handle to quickly capture and recognize a person's fingerprints. Only persons whose

fingerprints match those of authorized users would be able to fire a gun. A single gun

could be operated by more than one person if desired, and the valid fingerprints could be

changed if needed at a gun shop or police station. The system combines Oxford's high-

speed A336 image processor chip with a tiny fingerprint sensor, a small memory chip for

storing the fingerprints, the software to operate the A336 chip and an intuitive human

interface so that the gun could be used quickly and easily. However, the fingerprint

technology requires a clear scan image of the fingerprints which in some cases is not

appropriate. Guns are used in all types of weather and in many different situations. If the

user has dirty hands or wears gloves, fingerprint detection is useless. Also it is possible to

use tape to transfer fingerprint.

Skin Analysis

Lumidigm Inc. is developing a light print sensor measuring the absorption of a range of

colored light signal through the skin. Skin layer thickness, capillaries, and other

structures all affect the light, creating a distinctive pattern of changes. This system works

on any skin surface and is unaffected by cuts and burns. Smith & Wesson is working with

Lumidigm to build a smart gun using this technology. The disadvantages of skin analysis

are similar to fingerprint technology. Dirty hands or wearing gloves will make this

technology useless.

Handgrip Pattern Recognition

Handgrip pattern recognition is another biometric technology that can be used to build a

smart gun. Handgrip pattern recognition looks at the fingertip position distribution and
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the handgrip pressure variation during a short period just before the gun trigger is pulled.

The complexity of the human hand and its environment make written signatures highly

characteristic and difficult to forge precisely. The same factors that make a written

signature unique are also exhibited in a user's handgrip pattern. By comparing the

features of fingertip position and handgrip variation, an authorized user can be

recognized. This technology will be used for this research project.

1.3 Issues of Handgrip Pattern Recognition

Handgrip pattern recognition concerns about the fingertip position distribution and the

handgrip pressure variation during a short period just before the gun trigger is pulled. By

observation, the pressure variation is more consistent while the time nearer to the trigger

pulled time point. In this project, the pressure variation during 100 ms before trigger

pulled is considered as the input signal.

Pressure sensor translates pressure into voltage. The sensitivity of the pressure

sensor needs to be considered. First, the pressure sensor should be able to translate

pressure into voltage in less than 1 ms. Second, the pressure sensor should be able to tell

small pressure variations. At the same time, the size of pressure sensor also needs to be

considered. Many sensors may be put around the gun handle. The sensor size can not be

too big.

When one pressure sensor is used, it can tell the fact whether this gun is grasped

by someone or not by measuring the pressure on the sensor. When two sensors used, it

may tell the fact that whether an adult grasping the gun or a child grasping it, because the

adult has bigger hand and longer finger, therefore can touch two sensors, while the child
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has smaller hand and shorter finger, only can touch one sensor. By using more sensors,

more characteristics can be discovered. To maximize the recognition ability, more than 1

less than 100 sensors will be considered to put around the gun handle.

Noise is an issue in the handgrip pattern recognition. When pressure sensor

translates pressure into voltage, noise will be introduced too. To eliminate noise, digital

signal processing methods such as filtering need to be developed.

To identify the user, pattern recognition algorithms need to be chosen carefully.

The identifying power of a particular algorithm is measured by two terms: False

Rejection Rate (FRR), or Type I Errors, and False Acceptance Rate (FAR), or Type II

Errors. A type I error occurs when the gun does not function for an authorized user. A

type II error occurs when the gun allows an unauthorized user to fire it. The aim is to

minimize these two error rates. However, false rejection rate and false acceptance rate are

complementary. For example, if the false acceptance rate threshold is increased to make

it more difficult for impostors to gain access, it also will become harder for authorized

people to gain access. As FAR goes down, FRR rises. On the other hand, if the false

acceptance threshold is lowered as to make it very easy for authorized users to gain

access, then it will be more likely that an impostor will slip through. Hence, as FRR goes

down, FAR rises.

The perfect smart gun is such a gun that it only let the authorized user to fire it

and the authorized user can operate the gun in all situations. However, this ideal is

impossible right now. The experiments described here are preliminary research. The

present goal is to keep the false rejection rate below 1/20,000 which is the average

mechanical failure rate, and keep the false acceptance rate at about 1%.
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1.4 Overview of the Thesis Presentation

In this chapter, the research motivations for smart guns are introduced. Some existing gun

safety technologies are discussed. Some of the smart gun issues are presented too.

Biometric identification technologies have been used for many decades. Most

biometric identification techniques use either the physiological characteristics or

behavioral characteristics to do the recognition. Some biometric recognition techniques

will be presented in Chapter 2.

In Chapter 3, some related topics in signal processing will be presented. Fourier

transforms and wavelet analysis techniques also will be discussed. These techniques are

used in the experiments described in later chapters.

Chapter 4 is devoted to the discussion of some of the pattern recognition

algorithms used in this research. Emphasize is placed on non-parametric pattern

recognition algorithms because there is no existing model for handgrip pressure variation,

and the parameters for handgrip recognition are difficult to estimate.

Fingertip positions of 160 subjects were collected and stored in the computer. The

analysis of these fingertip locations is called static analysis. Static analysis is described in

Chapter 5. A density search algorithm is used to partition the fingertip data set into four

natural groups. Canonical coefficients are calculated to indicate the importance of each

variable. Classification trees are calculated and shown for each finger.

The analysis of handgrip pressure variation is called dynamic analysis and it is

described in Chapter 6. Handgrip pattern recognition algorithms are given in time domain
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and frequency domain. Evaluation results are presented, and subjects are divided into

groups to improve the recognition performance.

In Chapter 7, a real handgun, Beretta 92FS, and a simulator were used to evaluate

grip recognition in a realistic environment. A DSP box was built and programmed to do

the pattern recognition in real time.

Finally, the conclusion with the main contributions of this research and

possibilities for future work in this area are given in Chapter 8.



CHAPTER 2

BIOMETRIC IDENTIFICATIONS

Biometrics is the development of statistical and mathematical methods applicable to data

analysis problems in the biological sciences. Biometrics measures and analyzes a person's

physiological or behavioral characteristics for identification and verification purposes. It

associates an individual with a previously determined identity/identities based on how

one is or what one does (Jain, Hong, and Pankanti, 2000). Since many physiological or

behavioral characteristics are distinctive to each person, biometric identifiers are

inherently more reliable and more capable than password based techniques in

differentiating between an authorized person and an impostor.

A biometric system is essentially a pattern recognition system that makes a

personal identification by establishing the authenticity of a specific physiological or

behavioral characteristic possessed by the user. Logically, a biometric system can be

divided into the enrollment module and the identification module (Jain, Hong, and

Pankanti, 2000). During the enrollment phase, the biometric characteristic of an

individual is scanned by a biometric sensor to acquire a digital representation of this

characteristic. In order to facilitate matching and to reduce the storage requirements, the

digital representation is further processed by a feature extractor to generate a compact but

expressive representation, called a "template." During the recognition phase, the

biometric reader captures the characteristic of the individual to be identified and converts

it to a digital format, which is further processed by the feature extractor to produce the

10
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same representation as the template. The resulting representation is fed to the feature

matcher that compares it against the template(s) to establish the identity of the individual.

There are a number of biometric techniques widely used or under investigation.

These techniques use either the physiological characteristics, like fingerprint, face

imaging, hand and finger geometry, or behavioral characteristics, like handwritten

signature and dynamic keystrokes.

2.1 Fingerprint Identification

Among all the biometric techniques, fingerprint based identification is the oldest method.

Humans have used fingerprint for personal identification for centuries and the validity of

fingerprint identification has been well established. A fingerprint is made of a series of

ridges and valleys on the surface of the finger. The uniqueness of a fingerprint can be

determined by the pattern of ridges and valleys as well as the minutia points. Minutia

points are discontinuities in the ridge-valley pattern, which can be described as a

combination of ridge endings and bifurcations. The types, positions and orientations of

the minutiae are reliable features for fingerprint matching. Figure 2.1(a) shows the ridge-

valley structure, where the ridges are represented by black lines, and the valleys are

white. The minutia points are shown in Figure 2.1(b).

Most fingerprint recognition systems make use of minutiae. Before the minutiae

being extracted and coded, the fingerprint image should be preprocessed. Initially, the

original gray scale fingerprint is converted to binary format. A skeleton image is produced by

thinning the lines within the binary image until the lines are one pixel wide (Lam, Lee, and
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Suen, 1992). The advantage derived from using a skeleton image is that extraction of ridge

features becomes a relatively straightforward procedure based on tracing line segments.

(a) Original fingerprint image. 	 (b) Minutia points detected on a preprocessed image.

Figure 2.1 Fingerprint images.

Minutiae detection over the thinned image is a simple process. The ridge endings and

bifurcations on the thinned image can be found by calculating the neighborhood of each

pixel. An end point is a pixel with either one or no neighbors, and a bifurcation has exactly

three neighbors. All other skeleton components have exactly two neighbors and are referred

to as connecting points. Figure 2.1(b) shows some minutia points detected on the thinned

image of Figure 2.1(a).

All available minutiae based fingerprint matching algorithms rely heavily on the

quality of the input fingerprint images. However, a fingerprint image is one of the noisiest of

image types. Dry skin tends to cause inconsistent contact of the finger ridges with the

scanner's plate surface, causing broken ridges. For oily or wet skin, the valleys tend to fill up
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with moisture, causing them to appear dark in the image similar to ridge structure. Wrinkles,

scars, and excessively worn prints result in images containing many " false minutia"

structures. Therefore, minutiae reduction needs to be performed (Xiao and Raafat, 1991).

False minutiae can be eliminated using some distance criteria, e.g., minutiae which are too

close to each other, or minutiae which are too close to the regions corresponding to the

background or bad areas in the fingerprint, are discarded. Also, connectivity may be used for

minutiae elimination. Minutiae that are connected by a short line segment are discarded.

The reduced minutiae list provides a matching module. In the matching stage, two

sets of minutiae code using their locations are aligned (Jain and Minut, 2002) and the sum of

similarity between the overlapping minutiae is calculated. Figure 2.2 shows the alignment

and the matching of two sets of fingerprint images.

Figure 2.2 The alignment and matching of two sets of fingerprint images.

A match is made if the type and orientation of the two set minutiae are in the correct

locations (Roddy and Stosz, 1999). Type matching is a binary decision (end point or
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bifurcation), whereas location and orientation allow for some variation. The constraint on

location is that a minutia point from the test fingerprint must be located within the image area

corresponding to the template minutia point. The orientation constraint is that the detected

minutia angle of rotation must be within 45° of the corresponding template minutia

orientation value. The minutia matching score is the ratio of correctly matched minutia points

to the total number store in the template file.

2.2 Dynamic Keystroke Recognition

As early as the turn of this century, psychology demonstrated that the mechanics of

human actions are predictable in the performance of repetitive, routine tasks (Umphress

and Williams, 1985). In 1895, observation of telegraph operators showed that each

operator had a distinctive pattern of keying messages over telegraph lines (Bryan and

Harter, 1973). The keystroke dynamics analyzes the way a user typing at a terminal by

monitoring the keyboard inputs, and aims to identify users based on certain habitual

typing rhythm patterns. When a person types, the latencies between successive

keystrokes, keystroke duration, finger placement and applied pressure on the keys can be

used to construct a unique signature for that individual (Monrose and Rubin, 1997). For

regularly typed strings, such as username can be quite consistent.

A latency signature can be visualized by plotting characters typed versus latency

times between successive keystrokes (Joyce and Gupta, 1990). A sample is shown in

Figure 2.3. The latency time is the elapsed time from the keystroke of the previous letter

to the next.



The identity verifier compares a test keystroke signature with the reference

keystroke signature. To carry out the comparison, a mean reference signature is first

computed by calculating the mean and standard deviation. Then the Manhattan distance

function or the Euclidean distance function can be used to calculate the similarity

between the test signature with the reference signature. Once the distance has been

computed, a suitable threshold should be decided. The threshold for each user should be

set based on a measure of the variation of his/her signatures. A user that has little

variation in his/her signatures would have a small threshold while another user with large

variation should have larger threshold for accepting his/her test signatures. The standard

deviation of the reference signatures can be used to decide such a threshold. Assuming

the latency in normal distribution, success login rate would be about 84% if the threshold

being set as mean plus one standard deviation. A threshold value based on two standard

deviations should provide a false alarm rate of less than 3% although the imposter pass

rate with a larger threshold would obviously be expect to be larger.
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2.3 Handwritten Signature Verification

There is considerable interest in authentication based on handwritten signature

verification. A lot of security and financial reasons justify the research in this field, like

the verification of checks, transactions with credit cards and public documents.

Researches have shown that a unique signature template can be built for an individual.

Each time he signs, he traces out his template, not exactly identical but with small

stochastic variations (Hastie, Kishon, Clark and Fan., 1991). These variations include the

speed of writing, rotation, scale, and shear.

The signature data can be obtained from a digitizer, instrumented pen or similar

device. Typically, the output of such a device gives the position in (X, Y) coordinates at

equal spaced time intervals. Along with each location measurement, the digitizer also can

record the downward pressure on the pen, or the force exerted on the tip of the pen.

Given a new signature claiming to belong to subject s, the system compares it to the

template signature for subject s. If the variations in the factors are beyond the threshold

established for subject s, the verification fails.

Handwriting, much like speech, is time dependent. No two signatures will have

exactly the same timing pattern, and these timing differences will not be linear. Dynamic

Time Warping (Sankoff and Kruskal, 1983) allows one to get a point-to-point

correspondence between two signals which is relatively insensitive to small difference in

their timing patterns. In the work of Yasuara and Oka (1977), Dynamic Time Warping

was used to match the (Xt Br) coordinates of two signatures. In doing so, it introduces

nonlinear distortions in the time domain to compensate for rotation, scaling and shear
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which are linear transformation in the X, Y domain. The speed signal, on the other hand,

is effectively invariant under these transformations.

Figure 2.4 Signature segmentation based on the signal speed.

The basic idea of the handwritten signature recognition is to align and segment

each signature into a series of corresponding sub-curves or letters, and then compare

these letters with the template to find the whether the variations bigger than the threshold

(Hastie, Kishon, Clark and Fan., 1991). This is achieved in several steps. The speed

signal of the signature is first time-warped against a reference signature. By observation,

handwriting speed is slow around points of high curvature, which are the areas of interest
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for segmentation. Therefore, the speed signal of the signature can be used to segment it

into distinct letters.

Figure 2.4 shows how a signature is segmented based on the speed signal. Each

letter is then rotated and shifted to match the template letter as well as possible. At last,

the distance between the input signature and the template is calculated at the letter level.

The distance is compared to a threshold to verify whether this user is the authorized user.

2.4 Summary

Some commonly used biometric technologies are discussed in this chapter. Each

biometric technology has its strengths and limitations. Fingerprint identification is the

most well known biometric technology. It is easy to use, accurate and reliable.

Fingerprint identification has been used in numerous applications. It also has been

proposed for the smart gun. However, fingerprint identification requires a clearly scanned

fingerprint image which is not always possible. User might have dirty hand or wear

gloves. In such cases, fingerprint identification is not appropriate.

The behavioral biometric technology is based on the fact that human actions are

predictable in the performance of repetitive, routine tasks. Keystroke dynamics and

handwritten signature, discussed in this chapter, are two examples of behavioral

biometric techniques. For an experienced firearm user, firing a gun is such a repetitive

action. Like keystroke dynamics and handwritten signature, it is also possible to identify

a subject by analyzing his handgrip dynamics. The analysis of how a person grasping the

gun, and how the handgrip pressure varying during the firing process will be discussed in

later chapters.



CHAPTER 3

HANDGRIP SIGNAL PROCESSING

Signal processing is used widely in many areas. Thousands of algorithms have been

developed for different signal processing tasks. This chapter briefly discusses some of the

signal processing algorithms related to sensor data processing. Initially, a general model

for digital signal processing system is given. Then, stochastic signal processing

algorithms in time domain and frequency domain are discussed. Wavelet analysis

algorithms are also presented in this chapter. Wavelet analysis is widely used for feature

extraction from noisy signals and is especially suitable for non-stationary signal

processing.

A signal can be considered to be a function of independent variables (Mitra,

1998) such as time, distance, position, temperature, pressure, and etc. A signal may be

continuous or discrete. Analog signals usually are continuous both in time and amplitude.

Most signals that are acquired from the physical world are analog signals, like

temperature, speed, acceleration, etc. Analog signals can be processed using analog

circuits such as amplifiers and filters. These devices take analog signals as inputs and

give analog signals as outputs.

Digital signals are discrete both in time and amplitude. Usually, they are the

results of sampling and quantization from the corresponding analog signals. Due to the

wide use of digital computers, it is natural that much of current signal processing is

performed digitally.

19
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In practice, sampling as well as quantization is done by electronic analogue-to-

digital (AID) converter circuits. Based on Shannon's sampling theorem (Shannon, 2948),

if the input signal is bandwidth limited and the its maxim frequency component is f, then

the signal can be restored without losing any information after the sampling if the sample

rate is above 2f.

The signal collected from the pressure sensors, which are put on the handgun

handle, is the signal needs to be recognized in this research project. Each pressure sensor

translates the pressure signals into voltage signals. The dynamic range of the pressure

sensor needs to be selected carefully so that it can pick up the details of the pressure

variation and does not get saturated for the big signal at the same time.

How many sensors need to be put on the gun handle is another issue. More

sensors will give more accurate signal. However, more sensors require more computation

time and make signal recognized slower. To achieve the goal that recognizing a user

correctly in real time, a trade-off must be properly selected. The size of the pressure

sensor is the issue related the number of sensors. If more sensors need to be put on the

gun handle, the size of these sensors must be smaller.

Time constraint of the pressure signal needs to be considered because not every

squeeze on the gun handle is the valid signal. Only the pressure variation during a short

period before trigger pulled is the valid signal. Generally, people can click a button in

200ms or remove his/her hand from a button in 200ms when this person receives a "go"

or "stop" signal. Therefore, 100ms is considered as the psychological moment. It means

that if an action is done in 200ms, people will think this action is done instantaneously.
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Therefore, the handgrip signal during the period of 200ms before the trigger pulled is the

signal needs to be studied.

An AID converter converts the analog voltage signals into digital signals by

sampling and quantization. Since 200ms is considered as the psychological moment, each

muscle probably moves in 200ms. If the sample rate is set to 1 ms each sample, it will be

fast enough to catch every muscle movement. Therefore, the sample rate is set to 2000

samples/second.

3.1 Digital Signal Processing System

A signal carries information, and the objective of signal processing is to extract the

information carried by the signal (Mitra, 2998). The study of signals, their properties,

their fundamental mathematical and physical limitations, belongs to signal analysis. A

signal processing system is a device that processes input signals and produces output

signals. Numerical or logical values can be considered as output signals too. In such case,

various signals may be input to the system, and the system classifies them as they arrive

as belonging to a particular class. By this view, handgrip pattern recognition system can

be considered as such a DSP system that when a test handgrip signal is input into the

system, several logic signals are output. The TRUE logic output signal indicates that an

authorized user using this gun so that the gun should be operational, while the FALSE

logic signal indicates that an unauthorized user is trying to use the gun, therefore the

trigger should be blocked. The figure below shows a simplest model of digital signal

processing system.
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Figure 3.1 A general DSP system.

A simplest signal processing system is an amplifier, where the output signal is

amplification can only be approximated in analog circuits but can be performed easily by

digital processing system using a multiplication unit.

For more complex system, digital signal processing is more attractive because it

reduces the system complexity significantly. In many situations, the output signal need to

be considered as a function of present inputs, previous inputs and previous outputs, i.e.,

A small analog delay can be implemented

by delay lines, which are appropriately chosen lengths of cable that allow the electric

signal take a specific time to travel. By contrast, digital delays can be simply

implemented by a FIFO buffer.

From the above examples, people have seen a lot of advantages using digital

signal processing units instead of using analog circuits. To simplify the circuit design for

the handgrip signal processing, a DSP unit (TMS320C31 DSP processor) is used to

perform most of the signal processing.

In most cases, the desired signal z(n) can not be directly observed. Only the signal

x(n) =z(n) +v(n) can be acquired, where v(n) is an additive noise, with an average of zero.
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Since the noise average is zero, the average of x(n) should equal to z(n). The method of

how to reduce noise sufficiently and keep tracking of z(n) at the same time is moving

and y(n) is the approximation to the original z(n). Using this equation will indeed remove

the noise; however, it will also harm the signal. Notice in the above equation, all x(n-m)

are given equal weights. A more general MA filter will be like

where the coefficients a(m) need to be chosen to maximize the noise

reduction and minimizing the signal distortion.

instead. This manipulation has converted the MA model into a recursion

which is called autoregression (AR) model. More generally, AR

model can be represented by

In MA model, the output signal is only related to current and previous input

signals. In AR model, the output signal is only related to current input and previous

output signals. More general model combines AR and MA model is called ARMA

model, where the output signal depends on both previous input and previous output

signals.

For a system, if the relationship of its input signal and output signal can be

represented by the ARMA model, then this system is a linear time-invariant system.
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Time-invariant means the model parameters do not change over time. Linear means that

a constant.

Most real systems have complex properties and no simply characterization is

possible. However, it is usually convenient to restrict the study of systems to some

limited conditions where the system may be linear. Therefore, ARMA model is widely

used in signal analysis.

The handgrip recognition system is a complicated digital signal processing

system. It is time-invariant, but not linear. If x(t) -+ TRUE and x '(t) ----> FALSE,

can not make the output as TRUE+FALSE. However, it is convenient to

assume the handgrip pattern recognition system as a linear time-invariant system in some

stages such as denoising, data reduction and feature extraction. Therefore, an ARMA

model can be applied to the task.

A consequence of the linear time-invariant property is that a LTI discrete-time

system is completely specified by its impulse response h(n).

This equation is also called convolution sum of x(n) and h(n), and represented

where the notation denoted the convolution sum.

Knowing the impulse response, the output sequence for any given input sequence can be

computed by using the convolution sum of above equation. Therefore, a DSP system can

be represented as a figure as below.



Figure 3.2 A linear time-invariant DSP system model.

If a LTI system is constructed by two cascaded LTI subsystem with impulse

response function h1(n) and h1(n), then the whole system impulse response function is

If a LTI system is constructed by two paralleled LTI subsystem with

impulse response function h1(n) and h2(n), then the whole system impulse response

A realizable system should satisfy two conditions: h(n)=0, when n<0; and

If the impulse response sequence of a system is finite length, then

this system is called finite impulse response (FIR) system. If the impulse response

sequence of a system is infinite length, then this system is called infinite impulse

response (IIR) system. Usually, FIR system uses an MA model, and AIR system uses an

AR or ARMA model. The finite impulse response implies Elh(n)1<00, therefore, FIR

system design does not need to consider the system stability problem, which is the most

important issue of an AIR system design. To simplify the algorithm design, an FIR is

chosen for denoising task.
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3.2 Frequency Domain Analysis

The Fourier transform is the most important tool in the signal analysis theory. There are a

lot of advantages to Fourier transforms. First, in the analysis and design of systems, it is

often useful to characterize signals in terms of frequency domain parameters such as

bandwidth or spectral content. Second, the response of a linear time-invariant system to a

sinusoid of a given frequency is itself a sinusoid of the same frequency, providing a

means of solving for the response of such systems (Ziemer, Tranter, and Fannin, 1993).

The Discrete Fourier transform (DFT) can be represented by

where T is the sampling interval. For a finite length N signal, its DFT can be simplified to

Applying the DFT to the impulse response function, y(n) =h(n)®x(n) turns to

B(f=H(fX(fi, where BO, HO and X(/), are the Fourier transforms of y(n), h(n) and x(n),

respectively. Here H(f) is also called transfer function, which represents the system

frequency properties. Another importance of this equation is that the convolution can be

simplified to multiplication by using the Fourier transform.

One of the most widely used signal processing operations is filtering. Filtering is

used to pass certain frequency components in a signal through the system without any
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distortion and to block other frequency components. The system implementing this

operation is called a filter (Mitra, 1998). The range of frequencies that is allowed to pass

through the filter is called the pass-band, and the range of frequencies that is blocked by

the filter is called the stop-band.

The key to the filtering process is the inverse discrete Fourier transform. By

appropriately choosing the values of magnitude function of the LTI filter at frequencies

corresponding to the input signal frequency components, some of these frequency

components can be selectively heavily attenuated or filtered with respect to the others.

A low-pass filter passes all low frequency components below a certain specified

frequency f. A high-pass filter passes all high frequency components above a certain

frequency f and blocks all low frequency components belowf. A band-pass filter passes

all frequency components between two frequencies fib and f2, and blocks all frequency

components below the frequency f, and above the frequency fc2 . A band-stop filter blocks

all frequency components between two frequencies f, and f2, and passes all frequency

components below the frequency f, and above the frequencyf2.

In many applications, the input signal may get corrupted by noises, where the

desired signal occupies a frequency band from f, to f,,, and the noise occupies another

frequency band from f, to fm . In such cases, filters can be used to recover the desired

signal from the noise-corrupted signal.

The handgrip signals collected through the pressure sensors inevitably contain

noise. This noise effects the recognition tasks and therefore needs to be eliminated. Since

noise is distributed evenly across all frequency components, and most of the pressure

signal usually is in the low frequencies, a low-pass filter can be used here to delete the
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noise. Another source of noise is power line 60Hz sinusoidal signal corrupting the desired

handgrip signal. A band-stop filter with center frequency at 60Hz can remove such noise.

3.3 Stochastic Signal Processing

The most significant characteristic of a signal is whether it is deterministic or stochastic.

Deterministic signals are those that are generated by some none-probabilistic generator

They are reproducible, predictable and mathematically well behaved. Stochastic signals

are generated by systems that contain randomness. At any particular time, the stochastic

signal is less than mathematically predictable. In fact, all signals collected from real

world are stochastic signals because signals inevitably contain noise. Except noise, some

signals are inherently stochastic. Many physiological signals do not have obvious

regularity and are stochastic signals (Devasahayam, 2000). The handgrip signal is an

example of a stochastic signal. Each person has his/her own handgrip pattern. Each

handgrip sample has some random variations from its pattern. Therefore, the study of

handgrip signal belongs to stochastic signal processing. The theory of stochastic process

has been extensively developed and is discussed in many books (Parzen, 1962; Yaglom,

1962; Papoulis, 1965; Cox and Miller, 1968; Grimmett and Stirzaker, 1982).

It is often convenient to describe a random process in terms of its statistical

behavior. A fundamental statistical description of a random process is the probability

distribution function. The probability distribution function P(A9, of a random signal x(n)

may be defined as the probability that x(n) has a value less than X, which can be written

arithmetically as P019 =Probability(x< A 9. For example, if a random variable x whose

maximum value is 20 and minimum value is 0, then P(10)=1, and P(0)=0.



29

The more often used probability function is probability density function, which is

the probability that the random variable have a particular value, p(xd=probability(x=xd.

For discrete random process,

And for continuous random process,

Average or mean (expected value) and variance are two most important

parameters of a stochastic signal. The mean of N observations of a process x at time t is

defined as

And the variance is defined as

Another important parameter of a stochastic signal is its autocorrelation function,

which is defined as

If the essential properties (the probability distribution function) of a process are

unchanging over time, then it is said to be a stationary process. In other words, if the

statistical properties of the system are same for all points in time then the process is

stationary. However, in many cases the properties may change very little or very slowly
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over time, in such case it may be regarded as wide-sense stationary process. A process is

considered as wide sense stationary or weakly stationary if its mean value and variation

are constants as u(t)=u, cr(t)=a, and its autocorrelation function is a function only of the

The handgrip signal is found as a non-stationary signal by studying its u(t), aft)

and Rxx(r). Non-stationary signals are much more difficult to analyze than stationary

signals. Some methods discussed below can be used to transform original handgrip signal

to a wide-sense stationary signal and do signal processing based on the transformed

signal.

A non-stationary process, which usually contains either a trend or some cyclic

changes, can be transformed to a stationary process by remove the trend or cyclic

changes. A method proposed by Box and Jenkins (1970), which is particularly useful for

removing a trend, is simply to difference a given process until it becomes stationary

First-order differencing is now widely used in economics. Occasionally second-order

differencing is required

A cyclic effect can also be eliminated by differencing. For example, if there is a

cyclic effect with period of T, it can be removed by letting y(t)=x(t+T)-x(t). Another way

is to let the non-stationary process through a high-pass filter to eliminate the trend and a

band-stop filter to eliminate the cyclic effects.
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Consider a wide sense stationary process x(n) passing through a linear time

invariant system having impulse response h(n). Similar to a deterministic signal passing

The Fourier transform of autocorrelation is called power spectral density function.

Therefore, in frequency domain for a LTI system,

3.4 Wavelet Analysis

Fourier analysis breaks down a signal into constituent sinusoids of different frequencies.

It also can be considered as a mathematical technique for transforming the signal from

time-based to frequency-based. For many signals, Fourier analysis is extremely useful

because the signal's frequency content is of great importance. However, Fourier analysis
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has a serious drawback. In transforming to the frequency domain, time information is

lost. When looking at a Fourier transform of a signal, it is impossible to tell when a

particular event took place.

If the signal properties do not change much over time --- that is, if it is a

stationary signal --- this drawback isn't very important. However, most biometric signals

are generally non-stationary with significant events characterized by both their time

location and frequency content, and Fourier analysis is not suited to detecting them.

This situation can be improved by using Fourier analysis to analyze only a small

section of the signal at a time --- a technique called windowing the signal. Using such

windowing technique produces the short time Fourier transform (STFT). The result of the

windowing process is that STFT is better able to locate events in time, but as an

unavoidable trade-off, has poorer frequency resolution. Another drawback of STFT is

that once a particular size time window is chosen, that window is the same for all

frequencies. Many signals require a more flexible approach so that the window size can

be changed to determine more accurately either time or frequency.

Wavelet analysis represents the next logical step: a windowing technique with

variable sized regions. Fourier analysis breaks up a signal into sine waves of various

frequencies. Similarly, wavelet analysis breaks up a signal into shifted and scaled

versions of the original (or mother) wavelet. A long, low scale wavelet gives poorer time

location but better frequency location. While a short, high scale wavelet gives better time

location but poorer frequency location. In this view, wavelet analysis is a transform

whose coefficients detail the magnitude of the basis wavelets required to reconstruct the

original signal.
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A wavelet is defined as a waveform of effectively limited duration that has an

average value of zero. Compare wavelets with sine waves, which are the basis of Fourier

analysis. Sinusoids do not have limited duration --- they extend from minus to plus

infinity. While sinusoids are smooth and predictable, wavelets tend to be irregular and

asymmetric. Signals with sharp changes might be better analyzed with an irregular

wavelet than with a smooth sinusoid. It also makes sense that local features can be

described better with wavelets that have local extent.

The continuous wavelet transform (CWT) is defined as

Here, vat) is the transforming function, called the mother wavelet, and the asterisk

stands for complex conjugate. Figure 3.3 shows some examples for ip(t).
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In Figure 3.3, the first wavelet is called Haar wavelet, which is the simplest

wavelet. The second one is a member of Daubechies wavelet family (Daubechies, 1988).

The third one is a symmetric wavelet, called Mexican Hat wavelet.

As seen in the above equation, the transformed signal is a function of two

variables, time variable r and scale parameter s, both varying continuously. The scale

parameter in the wavelet analysis is similar to the scale used in maps. In maps, a high

scale corresponds to a global view, and a low scale corresponds to a detailed view. In

wavelet, high scales correspond to low frequency components which indicate the trends

of signals, and low scales corresponds to high frequency components which indicate the

local details of signals. Figures 3.4 and 3.5 show a base wavelet after different s and r

applied.
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The wavelet transform CWT(r, ․) gives the information of x(t) at different levels of

resolution and also measures the similarity between the signal x(t) and each son wavelet

yid( r,․)by convolution. This implies that a wavelet can be used for feature discovery if the

wavelet used is similar to the feature components hidden in the signal. That is why the

wavelet analysis is used to extract features from handgrip signals.

Calculating wavelet coefficients at every possible scale needs an amount of

computation, and produces a lot of data, which are highly redundant to reconstruct the

original data. To overcome this problem, Mallat (1989) developed a pyramidal algorithm

that only do computation on scales and positions of powers of two, so-called dyadic

scales and positions. This algorithm is same accurate with CWT while much more

efficient. This is also called discrete wavelet transform (DWT).

The main idea is the same as it is in the CWT. The difference is that DWT

analyzes the signal at different frequency bands with different resolutions by

decomposing the signal into approximations (high scale, low frequency information) and

details (low scale, high frequency information). The procedure starts with passing the

signal (sequence) through a half-band digital low-pass filter. After passing the signal

through a half band low-pass filter, half of the samples can be eliminated according to the
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Nyquist rule. Simply discarding every other sample will downsample (subsample) the

signal by two, and double the scale of the signal. The decomposition process can be

iterated, with successive approximations being decomposed in turn, so that one signal is

broken down into many lower resolution components. This is called wavelet

decomposition tree as shown in Figure 3.6.

Handgrip signal processing have benefited from wavelet transforms for denoising

and data reduction (compression). Most important data is in low frequency area,

therefore, noise can be eliminated by discarding high frequency (low scale) coefficients.

Usually, the information that is most prominent in the original signal will appear as high

amplitudes in that region of the DWT. By setting a threshold, and discarding all values in

the DWT that are less than this threshold, can extremely reduce the data size and delete

the noise.
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3.5 Summary

In this chapter, a general DSP model is introduced. Some stochastic signal processing

methods are also presented in both time domain and frequency domain. To overcome the

disadvantage of losing time information in Fourier transform, wavelet analysis is

developed and discussed. Signals with sharp changes can be better analyzed with an

irregular wavelet than with a smooth sinusoid. It also makes sense that local features can

be described better with wavelets that have local extent.

This chapter focuses on the general signal processing to the handgrip signal, such

as denoising and feature extraction. However, this chapter does not cover the recognition

part. How to recognize the user will be discussed in the next chapters.



CHAPTER 4

PATTERN RECOGNITION ALGORITHMS

FOR HANDGRIP IDENTIFICATION

There are a number of publications on technologies for pattern recognition. However, not

all of them are useful for the handgrip recognition. In this chapter, some algorithms

related to handgrip recognition are briefly discussed. First, the concept of pattern

recognition is introduced to help people to understand how a pattern recognition system

works. Then two parametric pattern recognition algorithms are introduced. This research

will focus on non-parametric algorithms because it is hard to estimate the parameters of

the handgrip. Several non-parametric clustering algorithms are introduced, and these

algorithms will be applied to the static analysis and dynamic analysis in the following

chapters.

4.1 Pattern Recognition System

The goal of pattern recognition is to classify objects into a number of categories or

classes (Theodoridis and Koutroumbas, 1999). A pattern is the description of an object.

Basically, a pattern recognition process can be divided into three phases: data

acquisition, data preprocessing, and classification. In the data acquisition phase, a set of

measured data is gathered from the physical world through transducers. The measured

data are then used as the input to the second phase (data preprocessing) and grouped into

a set of feature vectors. In the third phase, the classifier classifies the feature vectors into

different classes based on some statistic criteria.

38
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In the case of the handgrip pattern recognition system, the handgrip signal is

sampled at discrete time point the t2, ... an. A pattern vector can be formed by as xi=fa),

x2=f(t2), x=f(t). The pattern vectors can be denoted as X=(x1„ x2, ..., x,) ', where the

prime( ') indicates transposition. It is often useful to think of a pattern vector as a point in

an n-dimensional Euclidean space. The set of patterns belonging to the same class

corresponds to an ensemble of points scattered within some region of the measurement

space. A 2D example is shown in the figure below. However, it is not always able to

specify measurements that will result in neatly disjoint sets. In these cases, some statistic

methods are needed to find the correct boundaries.

In the above figure, the straight line is also known as decision line, which divides

the feature space into either class A or class B. If a vector x falls into region A, then it is

classified as class A. The classification may not be correct. In such a case, a

misclassification error occurs. To minimize such errors, the decision line must be

optimized.

Pattern recognition algorithms are often classified as either parametric or non-

parametric. A parametric approach is to define the discriminant function by a class of

probability densities, which are further defined by a relatively small number of
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parameters. These parameters are known or can be estimated from the training data.

Bayes classifier and linear discriminant function are two examples of parametric

methods. Non-parametric methods are for the recognition tasks where no probability

distribution are known or need to estimate. Nearest neighbor and clustering are two

examples of non-parametric methods.

4.2 Data Preprocessing

In most cases, the input data need to be preprocessed. The first step is outlier removal. An

outlier is defined as a point that lies very far from the mean of the corresponding random

variable. This distance is measured with respect to a given threshold, usually a number of

times the standard deviation. For a normally distributed random variable, a distance of

two times the standard deviation covers 95% of the points, and a distance of three times

the standard deviation covers 99% of the points. Points with values very different from

the mean value produce large errors during training and may have disastrous effects. If

the number of outliers is very small, they are usually discarded.

The second step of preprocessing is data normalization. In many practical

situations a designer is confronted with features whose values lie within different

dynamic ranges. Thus, features with large values may have a larger influence in the cost

function than features with small values. The problem is overcome by normalizing the

features so that their values lie within similar ranges. A straightforward technique is

making all features to zero means and unit variances.

The absolute amplitude of handgrip signal may have big variations in different

cases. For example, the hand pressure will be much weaker when a person is injured. If
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the absolute value is used to do pattern recognition, the gun will malfunction in these

situations. However, the relative pressure waveform will not change much in such cases.

If there is an up trend at a particular time point in a regular handgrip signal, this trend will

also appear at this time point even this person is injured, only the absolute value of the

peak turns smaller. Normalizing the handgrip signal can adapt the handgrip pattern

recognition system to overcome such problems.

The measurement space is usually of high dimensionality. These measurements

inevitably contain information either redundant or irrelevant to the classification task.

Moreover, the transducers are likely to introduce some distortion and noise. Direct use of

all measurements not only extremely increases the computation complexity, but also may

introduce some errors. The pattern recognition is usually performed based on a very few

of the most important attributes. The process of selecting these most useful attributes

from the input data is called feature selection or feature extraction.

The major task of feature selection is that: given a number of measurements, how

to select the most important aspects so as to reduce the dimensionality and at the same

time retain as much as possible of their class discriminatory information (Theodoridis and

Koutroumbas, 1999). In a more quantitative description, features leading to large inter-

class distance and small within-class distance should be selected.

There are three different methods of selecting a "best" set of m variables from n

variables (James, 1985).

(1) Complete subsets: This is the most direct method by searching every possible subset

of m variables and calculating the error rate on each to find the best one. Although
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this procedure is guaranteed to find the best m variables, it costs too much

computation.

(2) Stepwise forward: This is the most common and well-known method. First, find the

single variable that minimizes the classification error rate. Then, find the variable

which, paired with the previous selected variable, minimizes the error rate. Proceed in

the same way to find the other variables.

(3) Stepwise backward: The stepwise backward method works like the stepwise forward

method, except that it starts with all variables, and at each step, discard the variable

which results in the highest error rate.

4.3 Linear Classifier

The linear classifier assumes that the patterns can be classified to different classes based

on a linear function in the n-dimensional space

referred as the line, which discriminates the two classes in a 2D-dimension space.

Now the major concern of linear discriminant function is the estimation of the

weights. Many algorithms have been proposed to estimate the weights. Perceptron

algorithm is the most widely used algorithm to estimate these parameters.

The perception algorithm (Rosenblatt, 1958; Minsky and Papert, 1988; Gallant,

1990) uses the reward-punishment concept. Given two training sets belonging to classes
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co, and w2, and let A(1) be the initial weight vector which can be chosen randomly.

Simply stated, the algorithm makes a change in the weight vector if and only if

the pattern is misclassified. The simplest calculation of c(k) is setting it as a constant. The

gradient also can be used as the correction increment to faster the success of the above

algorithm, because the gradient gives the rate of change of the function in the direction of

Linear classifier is a simple pattern classification model. It is easy to understand,

and the parameters can be estimated quickly. The best thing is that after the model is built

completely, classification can be done very fast. Calculating a simple equation can save

much valuable time for a real time work. However, many patterns are not linearly

classifiable. Handgrip pattern is such a case. Therefore, linear classifier is not an

appropriate algorithm for handgrip pattern recognition.

4.4 Bayes Decision Theory

Bayes classifier is another parametric classification algorithm. Let co, and co, be the two

classes in which the patterns belong. If N is the total number of available training



To extend to the tasks of classifying M classes, the M conditional probabilities

P(codx) are calculated. Then the unknown pattern is assigned to the class corresponding to

the maximum conditional probability.

Bayes classifier classifies the test sample to its most likely belonged classes. The

classification error is the least in all pattern recognition algorithms. However, it requires

the posteriori possibility distribution functions to be known in advance. In practice, there

is no appropriate statistical model for the handgrip signal, and the posteriori possibility

distribution function of handgrip signal is very difficult to estimate. Bayes classification

is not suitable for handgrip pattern recognition.
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4.5 Nearest Neighbor Rule

The nearest neighbor rule measures the similarity between samples by the distance

among them. By nearest neighbor rule, sample x is considered to belong to class A if x is

nearer to class A than to class B, as shown in figure below.

The basic idea behind the nearest neighbor rule is that samples which fall close

together in features space are likely either to belong to the same class or have the same

posteriori possibility distributions of their respective classes.

Various distance functions have been proposed to measure the similarities among

patterns. In the work of Hastie and Tibshirani (1996), an effective metric is suggested

exploiting the local information at each point. Two simplest distance functions are the

Manhattan distance and the Euclidean distance. If x and y are two feature vectors with n

components, the Manhattan distance between x and y is given by



Thus the Manhattan distance corresponds to the Li norm and the Euclidean distance to

the L2 norm.

Nearest neighbor rule is the simplest non-parametric classification algorithm. The

disadvantage of nearest neighbor rule is that it needs to calculate the distances between

the test samples within all clusters to find the minimum one and this calculation costs

some time. However, nearest neighbor rule is still the best choice as a non-parametric

algorithm for the handgrip pattern classification. This rule will be applied to this research

work in the following chapters.

K-nearest neighbor rule expands nearest neighbor rule to K predefined classes. It

is described below:

Step I. Arbitrarily choose K initial cluster centers c,(1), j=1, 2, .., K

Step 2. Distribute the samples in the data set to the K clusters based on the distance to

each cluster center by nearest neighbor rule.

Step 3. From the result of Step 2, compute the new center such that the sum of the

squared distances from all points in the cluster to the new center is minimized.

The new center can be simply calculated by the mean of all samples in the cluster.



47

where II, is the number of samples in the cluster C1 .

Repeat Step 2 and Step 3 until the cluster distribution keeps same,

then the procedure can be terminated.

Figure 4.4 Sample patterns used in illustrating the K-nearest neighbor algorithm.

algorithm terminates here.

K-nearest neighbor rule does not require the posteriori possibility distribution

function, and it is simple to implement. However, there are disadvantages. First the

parameter K need to be pre-assumed. If K is not chosen properly, the algorithm will give

wrong answers. Second, the order in selecting initial centers will affect the final

classification result.
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4.6 Clustering Analysis

In the last three sections, the algorithms of how to classify a. test sample into pre-built

classes have been discussed. From this section, some algorithms of how to build these

classes will be discussed. This process is also called clustering. The objective of

clustering analysis is to partition a set of objects into disjointed groups or clusters so that

the objects in the same cluster are very similar, while objects is different clusters are

dissimilar (Anderberg, 1973).

Many definitions of clustering have been proposed (Johnson, 1967; Wallace and

Boulton, 1968; Everitt, 1993). Most of these definitions are based on proximity or

dissimilarity. The simplest way to measure dissimilarity is the distance function. For the

distance between two points, Manhattan distance and Euclidean distance are two mostly

widely used distance functions. For the distance between two sets, four proximity

measures, the max proximity function, the min proximity function, the mean proximity

function and the average proximity function, are widely used (Duda and Hart, 1973). The

mean value of all x in X, and my is the mean value of all y in B. The average proximity

function can be defined as
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Clustering algorithms can be divided into three main categories: sequential

algorithms, agglomerative algorithms, and divisive algorithms. The latter two also can be

called as hierarchical clustering algorithms.

The basic sequential clustering algorithm works as below (Hall, 1967):

Step 1. A cluster center c, is chosen arbitrarily.

Step 2. For the next sample x in the dataset, find Cc so that d(x,C)=min{d(x,C)}, if

d(x, C,)>threshold, then let x to be a new cluster, otherwise, merge x into Cc and

update Cc 's center.

Repeat Step 2 until all samples have been considered.

The drawback of the above algorithm is that the order of the samples presented

plays an important role in this algorithm. Different presentation orders will lead to

different results. For that reason, a modification algorithm has been proposed. This

modified sequential clustering algorithm also can be called maxmin algorithm.

In the first step of maximin-distance algorithm, a cluster center c, is chosen

arbitrarily. Then find the farthest sample from c„ and make this sample as the second

cluster center c2 . In the next step, compute the distance from each remaining sample to c,

and c2, save the minimum value for each pair of distances. If the maximum of these

minimum value is greater than a fraction of distance d(c,,c,), then choose it as the third

center c3 . Repeat this step until no new centers found.

However, maximin-distance algorithm highly depends on the choice of the

threshold, i.e., the fraction of distance d(c,,c,), and the choice of the first center c,,. If

these two parameters are not chosen properly, this algorithm may fail.
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The hierarchical algorithms work in another way. The general agglomerative

algorithm works as below: in the first step, consider every sample in the dataset as a

threshold, merge

Ca and Cb to be a new cluster, and repeat above algorithm, otherwise, stop this algorithm.

Divisive algorithm follows the reverse strategy from the agglomerative

algorithms. In the first step, it considers all samples in one cluster. Then find the

maximum distance between two points in this cluster, and divide the original cluster into

two clusters centering at these two points. In the meantime, assign all points into these

two new clusters based on nearest neighbor rule. In the second step, calculate all

distances d(x,y) where x and y belongs to one same cluster C if, i=1, 2, ...n, n is the

existing cluster number in current step. Find a and b so that d(a,b) —min{d(x,y)}, aeCc

and b e Cc. If d(a, b)>threshold, then divide Cc into two clusters centering at a and b, and

assign all points in Cc into these two new clusters based on nearest neighbor rule. Repeat

Step 2 until d(a,b)<threshold, terminate this process.

Since the divisive algorithm need calculate distances between any pair points in

all clusters, its computation is very demanding. This is the main drawback of divisive

algorithm compared with the agglomerative algorithm. Thus, some computation

simplification is required for any use in practices (Gowda and Ravi, 1995; MacNaughton-

Smith, 1964).

4.7 Density Search Techniques

If individuals are depicted as points in a metric space, a natural concept of clustering

suggests that there should be parts of the space in which the points are very dense,
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separated by parts of low density (Everitt, 1993). Each high dense region generally is

taken to signify a different group.

Carmichael (1968 and, 1969) describes a method that attempts to search for

continuous and relatively densely populated regions of the space, surrounded by

continuous and relatively empty spaces. The distance between groups is defined as that of

the closest pair of individuals, where only pairs consisting of one individual from each

group are considered.

Each point is considered as a cluster at the first step, and distances between all

clusters are calculated and given in a symmetric matrix like below.

In D I , the distance between node 1 and 2 is smallest, therefore, node 1 and 2 are

merged into one cluster as cluster A. Then, the distances between cluster A with the other

points are recalculated.



In D 2, the distance between node 4 and 5 is the minimum, therefore, node 4 and 5

are merged into cluster B. Continue the above algorithm and add one node into a cluster

in each step until cluster A containing node 1 and 2, and cluster B containing node 3, 4

and 5. Now the distance matrix is

Here, the distance between cluster A and B is much bigger than the distance

between node 3 and cluster B (containing node 4 and 5) in the last step, which indicates a

discontinuity. Therefore, it stops here and gives two natural clusters A and B. The only

parameter that needs to be preset is the stop distance.

Wishart (1969) proposed another density search algorithm called Mode analysis

algorithm. Initially, the kernel density at each observation is estimated by

where K(u) denotes a so-called kernel function, and h denotes the window size. For the

and the density function is f(x)=1/2nh {the number of

observations fall in [x-h, x-f-h]}. The Uniform kernel implies that all observations in the

neighborhood are given the same weight. It is reasonable to attribute more weights to

observations that are near to the kernel and less weight to distant observations. The
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triangle kernel density function has such property. The triangle kernel is defined as

The initial window size is the smallest radius that containing a specific number of

observations in a hyper-sphere centered at this observation. For each observation, find the

nearest neighbor with a greater estimated density. If such a neighbor exists, join the

cluster, which the observation belongs with, to the cluster, which the specified neighbor

belongs with (Gitman, 1973; Huizinga, 1978). Cascaded density estimates are obtained

by computing initial kernel density estimates and then, for each cluster, taking the

arithmetic mean of the initial density estimates of the observations within the

neighborhood. The cascaded density estimates can, in turn, be cascaded, and so on. Let fink

be the density estimate at xi cascaded k times, then at times of k+ 1,

Keep the searching and emerging process, until the cluster density achieves its maximum

value. At this time point, the whole dataset would be divided into some high dense areas,

separated by some low dense areas. Each high dense area represents a natural group.

4.8 Canonical Analysis

The objective of canonical analysis is to derive a linear transformation that will

emphasize the difference among the pattern samples belonging to different classes.

Canonical analysis also can be used to determine the importance of each variable

discriminating two or more groups of objects by comparing the magnitudes of the linear

transformation's coefficients. The canonical analysis will be used to find which finger
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variable give most contribution to the cluster classification. Then the sensor locations can

be set based on the finger variable importance.

If there are p variables and q classes, there will be

canonical discriminant functions. Each canonical discriminant function is a linear

combination of variables, i.e., a linear transformation of original variables:

where u, is the canonical coefficients. Bigger canonical

coefficient also means more importance of the corresponding variable.

The coefficients for the first canonical discriminant function are derived so as to

maximize the differences between the group means. The coefficients for the second

canonical discriminant function are derived to maximize the difference between the

group means, subject to the constraint that the values on the second canonical

discriminant function are not correlated with the values on the first canonical

discriminant function, and so on. In other words, the second canonical discriminant

function is orthogonal to the first, and the third canonical discriminant function is

orthogonal to the first and the second canonical discriminant function, and so on.
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Each solution, which yields its own A and the set of v's, corresponds to one

canonical discriminant function. The canonical discriminant function with the largest A

value is the most powerful discriminator, while the function with the smallest value is the

weakest. Usually, the first two canonical discriminant functions can explain about 99%

differences. Therefore, only the first two canonical discriminant functions are useful in

reality.

4.9 Classification Tree

Similar to discriminant analysis, classification trees are also used to predict group

membership of an object. A classification tree is an unbalanced binary tree structure that

has one root node at its top and multiple leaf nodes at its base. Each node of the tree

contains a test condition (or "split") for one of the object's variables. To classify an

object, a path is followed from the root node to a particular leaf node which contains the

predicted group of the object. The particular path through the tree is defined by the test

conditions of the internal nodes. At any one node the test condition (e.g. Thumb X >50?)
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is evaluated, if true the right child node is selected otherwise the left child is taken and so

on until a leaf reached.

Splitting rule gives how the splits are decided. A widely used technique is to

measure the impurity of the parent and its children. Consider that each sample in the

training data set has been assigned to a leaf. At ith stage, assume n, is the total sample

size for this leaf, and nice is the size of samples belonging to class k. Then, at this leaf there

is a probability distribution p,c=n,c /n,. The impurity is defined as:

The splitting strategy is to choose the attributes which minimize the above deviance.

4.10 Recognition and Verification for Smart Gun

Sometimes verification and recognition are interpreted as similar terms but they have two

distinct meanings. Recognition occurs when an individual's characteristic is being

selected from a group of stored data. Usually, it deals with clustering the data set into

several groups. Biometric devices that implement recognition techniques can be quite

time consuming. Often it requires from 5 to 15 seconds or more to identify the

appropriate individual.

In another hand, verification only deals with the comparison between the input

data and the data stored for the specific user. It does not need to search the whole data set

to find a matching. Therefore, it is much faster than recognition. The question to be

answered in verification is, "Are you who you say you are?" instead of, "Do I know who

you are?"



57

For the smart gun project, both recognition and verification are needed. In most

cases, verification is enough because only one user (the owner) is allowed to fire the gun.

However, a group of people may have authorization to use this gun in some cases. Such

as, police officers or a team of soldiers need exchange their guns among the partners. In

such cases, recognition technique is needed. All algorithms discussed in this chapter are

for recognition. However, they can be used for verification too.

4.11 Summary

This chapter covers the pattern recognition part of the handgrip recognition project. A

number of pattern recognition algorithms have been discussed. Since the parameter

pattern recognition algorithms need the posteriori possibility function about pressure

distribution, which is not provided and hard to estimate, the focus is put on non-

parameter pattern recognition techniques.

It is believed that the handgrip signal is a recognizable biometric pattern. But this

needs to be proven. To collect the accurate handgrip signal, a number of pressure sensors

need to be put on the gun handle. How many sensors are needed? Which places are the

best positions to put these sensors? These questions will be answered in the next two

chapters.



CHAPTER 5

FINGERTIP POSITIONS ANALYSIS

The physical dimensions of a human hand contain information that is capable of

authenticating the identity of an individual. In fact, each human hand is unique. Finger

length, width, thickness, shapes and relative location of these features distinguish every

human being from every other (Miller, 1971, Sidlauskas, 1988).

The fingertip placement on the gun handle is affected by human hand geometry

and human grasping behavior simultaneously. The hand geometry uniqueness does not

guarantee the fingertip placement recognizable for everybody. Therefore, an experiment

was performed to investigate the placement of a person's fingertips on the handle of a

replica gun. The experiment was conducted to answer the following questions:

1. Is the fingertip placement of one subject repeatable enough so that it can be used as a

biometrics pattern?

2. Is the difference of the fingertip placement between two subjects more than the

variation of one subject?

3. If the answer of above two questions are "Yes", where are the best places to locate

sensors on the gun handle, i.e., which points can separate most subjects?

From the preliminary statistical analysis of 160 subjects, it appears that the

fingertip placement of one subject is repeatable and there could be enough variation

between subjects. The fingertip placement can be used as a biometrics pattern.

58
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5.1 Fingertip Positions Acquisition

A digital camera was used to take the picture when a subject was asked to grasp and hold

a replica handgun. To ensure pictures for all subjects have the same scene geometry, the

camera and replica gun were both securely fixed to a flat board attached to a tripod. The

tripod could be raised or lowered so the gun was held level to the shoulder of the subject.

Three points on the gun handle were defined as reference points. These three

points can be used as coordinates to transform a distance measured by pixel number to a

distance in mm. This computation is done by comparing the pixel number and

corresponding scene distance in mm for the edges of the known triangle defined by points

G1 , G2 and G3 which are shown in Figure 5.1 and G1 is defined as the point where X=0,

B=0. The approximate image scaling for the plane of the gun handle is one pixel

corresponding to an area of about 0.31 x 0.26 mm 2 in the real scene.

In order to find the center points of fingernails, colored circular markers were

placed at the center of the fingernail for the middle, ring, pinkie and the thumb for each

subject. Figure 5.2 shows the digital image of how a subject grasped the replica gun. The

four markers as well as the detected fingertip position can be seen as shown by the

crosshairs. Every subject was asked to grasp the replica gun, hold, release and re-grasp

for a total of five times and five pictures were taken. Each picture was then sent to the

image processing routing to produce the detected fingertip locations.



Figure 5.2 The measured fingertip positions are shown by crosshairs.
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There were 160 subjects (70% male, 30% female) that participated in this

experiment. The age of these subjects range varies from 18 to 62 years, though the

majority of subjects were NJIT students between the ages of 18 and 30 years. Most

subjects (90%) were right handed. Every subject was asked if he/she had any previous

experience with firearms. About 77% subjects claimed no firearm experience, while the

remaining proportion of subjects did.

There are 16 police officers among the 160 subjects, 87.5% male versus 12.5%

female, with age varying from 23 to 58 years old. Among the tested police officers, 80%

officers are under 45 years of age. Most police officers (94%) are right handed.

The police officers in this study had between 1.5 and 30 years of firearm

experience. About 37% of them have around 15 years firearm experience, while the

remaining proportion have an approximate uniform distribution. When the police officers

were asked about their prefer grip patterns, 75% of police personnel subjects claimed to

use their both hands while firing a weapon (25% use only one). In addition, 43.8% of the

officers stated they used the "cup and saucer" grip with the gun cradled in the opposite

hand, while 25% stated they held the support hand level with the weapon.



Figure 5.4 Fingertip positions for all trials of all subjects.
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5.2 Fingertip Position Distribution

Example sets of fingertip positions for two subjects are shown in Figure 5.3. Figure

5.3(a) is the fingertip positions of an inexperienced subject drawn from the NJIT

community. Figure 5.3(b) is the fingertip positions of a police officer. By comparing

these two figures, it is obvious that an experienced user has tighter grouping of fingertip

locations across the repeated trials. The complete data set showing all trials (818 in total)

for all 160 subjects is shown in Figure 5.4. For a number of subjects with small hands,

some of the fingertips were measured as being off the gun handle. These trials were

removed from the data set to give a total of 798 different readings of fingertip positions

for 160 different subjects. Table 5.1 summarized the means and standard deviations for

all subjects.

Given that many subjects had very little previous experience with firearms, they

had large variation fingertip positions across the five trials. Table 5.2 details the

minimum and maximum standard deviations within each subject. The mean standard

deviations are also given in Table 5.2. The small standard deviation suggests that the

fingertip positions of the subject were very tightly grouped and could be easily
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recognized. Though the large maximum and reasonably large mean values seems to

highlight that the subjects did show large variations among the trials.

However, the standard deviations of the police officers, which are shown in Table

5.3, were much lower that those of the entire data set. The possible reason is that police

officers had much more experience with firearms and therefore had relatively fixed

handgun grasp patterns for themselves.
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By comparing the results reported in Tables 5.2 and 5.3, there is strong evidence

that the subjects with no handgun experience tend to change their fingertip positions

more often than those who have firearm experiences. Therefore, it is much harder to

recognize these none-experience users.

In order to make the fingertips mathematically measurable, each set of fingertip

5.3 Static Analysis

Using K nearest neighbor clustering, the 798 samples of fingertip sets from 160 subjects

could be distributed into 160 clusters. However, 74 out of the 160 subjects were not

individually separable, i.e., class A does not only contain samples from class A but also

contain samples from other classes. Therefore, the density search algorithm is used to

partition this data set into natural groups and the canonical analysis is used to find the

importance of each variable.

Four natural groups are produced when applying the Mode analysis algorithm to

the fingertip data set. Table 5.4 shows these four natural clusters.
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Table 5.5 shows the eight coefficients of the first two canonical discriminant

functions. The magnitude of the coefficients of the first canonical variables is ordered and

shown in Table 5.6.

From this analysis it would appear that the horizontal position of the ring finger is

the most important in classifying the sample subjects into the four groups. Followed by

the vertical position of the pinkie, then the vertical position of the thumb, and finally, the

vertical position of the middle finger. Informally, this result can be explained by the
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information of the grip each variable provides. The horizontal position of the ring finger

provides information about the length of the hand and (or) fingers, while the vertical

position within other fingers positions are informative about the relative dispersion of the

hand as well as variations in hand placement on the gun handle.

5.4 Classification Tree

Classification trees not only provide a very simple classification method but they also

provide information of what locations on the gun handle are important for separating

subjects. Combined with the outcome of discriminant analysis both methods provide

information of where on the handle are the best locations to place any sensors in order to

measure the crucial variables that separate the subjects. Classification trees are capable of

providing both the potential number of sensors and the locations they should be placed at

in order to discriminate between the four natural groups.

The main purpose of the classification tree including all fingers is its ability in

ranking the importance of the individual variables. A variable that splits the subjects at

the root (the top node of the tree) would be the one most responsible in explaining most

of the variation between the four groups. A classifier that splits the subjects at a lower

node would explain less variation between those four groups and is of less importance. In

other words, the best location of a sensor would be determined by the split criteria at the

root. The next best locations of sensors would be determined by split criteria at the next

lower nodes. Finally, the locations of the last sensors would be determined by the split

criteria at the terminal nodes of the tree.
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While the classification tree including all fingers helps in determining the order of

importance of sensors' locations, classification trees for each finger at a time are helpful

in determining the locations and order of importance of sensors corresponding to each

finger. Again the best location of a sensor would correspond to the split criteria at the top

node of the tree, while the next best locations of sensors would correspond to split criteria

at lower nodes of the tree.

The classification tree including the thumb, and middle, ring and pinkie fingers

(Figure 5.5) as predictors suggests that the horizontal change in the ring fingertip position

accounts for most variation between the four groups. In addition to the vertical change of

the thumb position, horizontal change in the middle fingertip position and the thumb

position seem to account for the rest of the variation. The classification trees for the

thumb, middle, ring and pinkie fingers are shown in the Appendix A.

Figure 5.5 The classification tree for all fingers.



69

Instead of showing the actual tree, classification trees can be explained by

showing the actual partitions on the gun handle for each of the clusters. The figures with

partition in Cartesian space for the thumb, middle, ring and pinkie are shown in the

Appendix A respectively.

5.5 Summary

The fingertip positions of 160 subjects were analyzed in this chapter. The static analysis

shows that the fingertip placements of the firearm-experienced subjects such as police

officers are more repeatable and have less variation than the fingertip placements of non-

firearm-experienced subjects. Density search algorithm was applied to cluster the

fingertip dataset into four natural groups. The cluster result is a best case scenario where

there are no misclassified samples within these four natural groups at all. The static

analysis also shows that the most important parameter to classify different users into four

natural groups is the horizontal position of ring finger, followed by the vertical position

of the pinkie, and the vertical position of the thumb. A classification tree was built based

on the static analysis to find the possible sensor positions.

The static analysis of 160 subjects answered the questions which were asked at

the beginning of this chapter:

1. The fingertip placement is repeatable enough to be used as a biometric pattern.

2. There is difference of the fingertip placement between two subjects more than the

variation of one subject.

3. The best positions to put the sensors are given in the classification trees.
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However, the static analysis is not enough for the handgrip recognition because it

only divides the subjects into four natural groups. The goal of the handgrip recognition is

to recognize each subject. This requires more analysis based on the dynamic pressure

variations. The dynamic analysis will be discussed in the next chapter.



CHAPTER 6

PRESSURE PATTERN RECOGNITION

Society has relied on the written signature to verify the identity of an individual for

hundreds of years. The complexity of the human hand and its environment make written

signatures highly characteristic and difficult to forge precisely. Keystroke is also

developed recently as an identity method based on the same reason. The handgrip has a

parallel on the handwritten signature and keystroke. The same neurophysiological factors

that make a written signature unique are also exhibited in a user's handgrip pattern.

Handgrip pattern recognition is a behavioral biometric rather than a physical

biometric such as fingerprint and hand geometry. It seeks to analyze the dynamics

inherent in grasping. How hard do people grasp the gun? How does the pressure vary

from the beginning to the end of the firing process? How and when does the pressure

cross a threshold? There are a number of such parameters inherent within the dynamic

process.

Strictly speaking, authentication requires the person being identified to lay claim

to an identity, so that the system may decide on either accepting or rejecting the claim. As

with any security system, given that the claimant is, or is not, a true instance of the user,

there are four possible outcomes: Acceptance of Authentic (AA), Acceptance of Imposter

(IA), Rejection of Authentic (RA), and Rejection of Imposter (RI). Since the first and

fourth outcomes are the desired results, one's main goals in designing an authentication

system are to maximize the conditional probabilities of (AA) and (RI), while minimizing

the likelihood of (IA) and (RA). The likelihood of (IA) is also called as false acceptance

71
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rate, and the likelihood of (RA) is also called as false rejection rate. In practice, these

goals are not always achievable and the level of acceptance for type I and type II errors is

application specific.

The overall picture is slightly different for the case of profile recognition. The

main focus here is to examine a set of stored data, and select the one that yields the best

possible match to the unknown profile being presented. This chapter concentrates on the

problem of recognition, as it is strictly more difficult than authentication. Any success in

recognition can be directly transferable to authentication and therefore this chapter

focuses the efforts on the problem of profile recognition.

6.1 Data Acquisition

A digital circuit has been designed and implemented for the Leybold-Inficon quartz

sensor (Figure 6.1, left) that features a pressure-modulated resonance. The circuit has the

advantage of simplicity and low cost. However, it does not offer a broad dynamic range

and is now being redesigned for at least 1 MHz of coverage. As an alternative solution, a

piezoelectric ceramic PZT disk (Figure 6.1, right) has been configured as a pressure

sensor. Preliminary tests verified the feasibility of this approach. The PZT disk can also

be partitioned into different zones, thus offering multi-sensing capability. A charge

amplifier array has been developed to interface the sensors to the computer.
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There are total five sensors being put around the replica gun handle. Since most

users are using right hand to grasp the gun, three sensors are put at the front side of the
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gun handle and two are put at the other side as shown in Figure 6.2. Each sensor is

partitioned into three zones corresponding to different finger length. Longer fingers can

reach more zones and therefore, provide more channels to read signal. This is especially

useful to distinguish children from adults.

Figure 6.3 Data collected from 15 channels.

A DAQ PC-card with 15 channels (DAQ/112B from IoTech company) is used to

collect data at the sample rate 2000 samples/second. Channel 1 is used for the trigger,

therefore there are 14 channels used to collect the pressure data. Figure 6.3 shows what

happened during five seconds of data collecting process. The trigger is pulled at the time

of 1.9 seconds. The most important part is a short period just before the trigger pulled. In

this period, the hand muscle repeats its pattern for gun firing. Out of this period, the
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muscle may be affected by other factor such as user's emotion, pose, etc. The detail of

what happens during the 100ms before the trigger being pulled is shown in Figure 6.4.

Figure 6.4 Details in the 100ms before trigger pulled.

Total 24 subjects, including 19 police officers from Montclair Police Department,

participated in this experiment. Each subject was asked to grasp the gun, pull the trigger,

and then release the gun for five times. One subject did this twenty times. Therefore,

there are total 24x5+15=135 samples. Figures 6.5 and 6.6 show the data of channel 9

from five trials of two subjects. A down trend pattern for the first subject and a up trend

pattern for the second subject can be found in these two pictures. Note in the next

experiment, the data during 128ms before the trigger being pulled instead of 200ms will
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be used because 128 is the nearest integer of 2" to 200, and it is more convenient to use 2"

to do FFT or other transform in the future.

Figure 6.6 Pressure signal on channel 9 from subject 2.
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6.2 Matching in Time Domain

In order to depict the similarity between two time series, it needs to define a similarity

measurement during the matching process. Given two time series

a standard approach is to compute the distance D(x, y) between time

series x(t) and y(t).

Two distance measurements are widely used. One is the Manhattan distance

function.

In this case, Euclidean distance costs more computation than Manhattan distance.

Remember the recognition needs to be completed in real time. Therefore, Manhattan

distance is selected to measure the similarity.

represents the total distance between x and y, over all channels. If )40 belongs to class Bad,

then x(t) belongs to Ba. The smallest five distances over 14 channels between a test

sample from subject 1 and the data in template are shown in Figure 6.7. The vertical axis

in the figure indicates the distance. The horizontal axis in the figure shows the channel

number. It shows that the total distance between the test sample and the template data

from subject 1 is the smallest. Therefore, this test sample can be classified as belonging

to subject 1. Figure 6.8 shows another example for subject 2.



Figure 6.8 Distance distributions over 14 channels against subject 2.
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The drawback to direct use of the Manhattan distance is the tendency of the

largest-scaled distance from one channel will dominate the others. A vote algorithm is

used to overcome this disadvantage.

The vote algorithm works as follows: First, the distances of the input data to the

stored samples on each channel are calculated. If on channel 1, D(x, yid) is the minimum

and y„ E Y„ then Y., gets one vote. If Yb finally gets more votes than the others, then x may

belong to Yb.

Both the Ya from total distance measurement algorithm and the Yb from vote

algorithm are possible classes that x may belong to. Usually, Ba and Yb are same. But this

is not always true. Sometimes, Bad and Yb may be different, and the vote algorithm may

result in more than one possible class.

The first three samples from each subject were selected as the template and the

other samples were used as test to evaluate this algorithm. Among all 24x2+1x15-63 test

data, the above algorithm can directly find the correct pattern for 33 samples. There are

six samples can not be recognized correctly. For the other 24 samples, this algorithm

gives more than one possible patterns and the correct pattern is among these possible

patterns. In such cases, further recognition is required.

At the same time, using distance measure technique in each channel, it will show

how many patterns can be recognized if the distance is measured for only one channel.

Table 6.1 shows the result of that. Table 6.2 shows how important each channel is based

on the Table 6.1. The most important channel is shown first.

From these two tables, it is clear that channel 3 is the most important which can

discriminate 26 correct patterns. Channel 11 is the second most important which can
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discriminate 20 correct patterns. Channel 2 is as important as channel 4 because they both

can discriminate 12 patterns. Channel 9 is the least important among all 14 channels.
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By studying the importance of each channel, it is obvious that giving more weight

to more important channel would produce better recognition result. For example, channel

3 can discriminate 26 correct patterns. Thus, channel 3 would be assigned a weight as 26.

The weights for the other channel would be assigned in the same way. The final weights

would be normalized so that the sum of all weights would be one.

Relative distance is another method to measure the similarity. To find the relative

distance, the average waveform and average intra-group distance on each channel for

each subject need to be calculated. On every time point for each channel, the average

The average intra-class distance is defined as

then B, is considered as the possible class that x(t)

belongs to.

However, there is a big problem of directly using relative distance algorithm to do

the pattern recognition. For example, if subject a has big average variation (big average

distance da) and subject b has less variation db . For the input signal x(t) and the average

waveform from subject a and b, there are d(x, a) = D(x, a)/d  and d(x, b) = D(x, b)/db.

Even if D(x, a) is larger than D(x, b), it is possible that d(x, a) is smaller than d(x, b),

because da is larger than db . As a result, the relative distance algorithm will mistakenly

classify the test data x belong to subject a.
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In summary, directly using the relative distance algorithm does not give good

result. It can be used to improve the answer of total distance and vote algorithm. This

algorithm will be discussed in Section 6.4.

6.3 Matching in Frequency Domain

Linear transforms, especially Fourier transform, are widely used in solving problems in

science and engineering. The Fourier transform, in essence, decomposes or separates a

waveform or function into sinusoids of different frequency which sum to the original

waveform. It identifies or distinguishes the different frequency components and their

respective amplitudes. As stated in Chapter 3, the discrete Fourier transform is defined as

If X(J) is the Fourier transform of x (n) and r is a real constant, then

This time shifting property states that the Fourier transform of a shifted function

is just the transform of the unshifted function multiplied by an exponential factor having

a linear phase, and that the amplitude ofXW does not change.

Figures 6.9 and 6.10 show the amplitude of the frequency coefficients of channel

9 from five trials of two same subjects shown in Figures 6.5 and 6.6.



Figure 6.10 Data from Figure 6.6 represented in frequency domain.

R3

Now, it is time to evaluate the algorithms discussed in the previous section in

frequency domain. First, transform the original data to frequency coefficients. Then, use
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the same distance measure function defined in the previous section to measure the

distance between the coefficients in frequency domain. The first three samples from each

subject are used as the template and the other samples are used as test to evaluate this

algorithm. Among all 24x2+1 x 15=63 test data, the recognition algorithm can give the

correct pattern for 43 test data, and for 15 test data, can find more than one possible

patterns that contain the correct one. There are five recognition failed.

It is interesting that the failures of time domain matching and the failures of

frequency domain matching are not same. By getting the union of the results from time

domain matching and frequency domain matching, 28 test data can be recognized

directly, and for 33 test data, it can find more than one possible patterns that contain the

correct one. Only two recognition failed. It shows that getting union of time domain

matching and frequency domain matching can produce more accurate candidates for the

next step finer recognition.

6.4 Handgrip Pattern Recognition Algorithm

The distances in time domain and in frequency domain have been calculated. Neither one

can give a perfect result. However, if they are combined together, the union of the results

from total distance algorithm, vote algorithm and relative distance algorithm will cover

most possible answers. The handgrip pattern recognition algorithm is presented as

following:

1. Calculate the distances between the test data x(t) and the data stored for each channel

in time domain. Then use vote algorithm to find the possible pattern Yb.
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2. Calculate the total distance between the test data x(t) and the data stored. Then find

the minimum total distance to identify the possible pattern Ya.

3. Apply the total distance algorithm and the vote algorithm in frequency domain to find

4. Use Y as the candidates and apply the weight relative distance matching algorithm in

time domain to choose one as the final answer. The weights are designed in the same

way as defined in Section 6.2.

To evaluate this handgrip pattern recognition algorithm, three samples were

randomly picked from each subject to create the data templates, and the others were used

as the tests. Repeat this process 30 times, so that there are 1890 tests totally. Among these

1890 tests, 1688 tests give the correct answers, that produces 1688/1890=89.3% success

rate. The mistakes done by the handgrip recognition algorithm are shown in Table 6.3.

In the first row of Table 6.3, it shows that there are eight test samples from subject

#1 mistakenly classified as subject #2, one test sample from subject #1 mistakenly

classified as subject #6, and one test sample from subject #1 mistakenly classified as

subject #19. Since eight tests from subject #2 are mistakenly classified as subject #2,

which means that handgrip pattern of subject #1 is very similar to subject #2, subject #1

and subject #2 can be put into group #1.

In the third and fourth row of Table 6.3, it shows that there are ten test samples

from subject #3 mistakenly classified as subject #4, and nine test samples from subject #4

mistakenly classified as subject #3. Compared to the fact that three test samples from

subject #4 mistakenly classified as subject #12, and two test samples from subject #4
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mistakenly classified as subject #19, subject #3 and subject #4 are much more similar to

each other. Therefore, subject #3 and subject #4 can be put into group #2.

By studying Table 6.3, these 24 subjects can be partition into 16 groups, where

one group contains five subjects, one group contains three subjects, two groups contain

two subjects, and twelve groups contain only one subject. The criteria is that if more than

four tests from one subject are mistakenly recognized as another specific subject, these

two subjects should be grouped together.
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After partitioning 24 subjects into 16 groups, the handgrip pattern recognition

algorithm was evaluated based on groups again. Three samples from each subject were

randomly picked to create the data templates, and the others were used as the tests. This

process was repeated 30 times. In the end, there were 97 misclassifications. The average

success rate was increased to 1793/1890=94.9%.

6.5 Summary

The dynamic analysis of handgrip signals from 24 subjects was discussed in this chapter.

A handgrip pattern recognition algorithm was also proposed and evaluated. The average

success recognition rate is 89.3%. Dividing the 24 subjects into 16 groups increases the

success rate to 94.9%.

A plastic replica handgun was used this chapter. However, a fake handgun does

not have same weight with the real handgun. The fake gun can not give the user the feel

of a real firing either. This affects the handgrip recognition algorithm working properly.

In addition, all pattern recognition in this chapter was done in a workstation. The decision

was not made in real-time. To overcome these disadvantages, a real handgun will be used

and a DSP based handgrip recognition system, which can recognize the user in real-time,

will be presented in the next chapter.



CHPATER 7

DSP IMPLEMENTATION

Signal processing can be divided into two areas: non-realtime signal processing and

realtime signal processing. Realtime signal processing means that the processing must

keep pace with external event; non-realtime signal processing has no such timing

constraint. It is obvious that this project needs signal processed in realtime. While

conventional microprocessors can be used for both non-realtime signal processing and

realtime signal processing, their architectures and instruction sets limit their usefulness

for realtime signal processing as the specially designed signal processors (Bateman,

1989). DSP microprocessors are characterized by fast multiply instructions, reduced

instruction sets, and specialized instructions to make DSP algorithms execute fast and

efficiently (Chassaing and Horning, 1989).

This chapter presents a realtime handgrip pattern recognition system implemented

by the TMS320C31 DSP Starter Kit (DSK). The C31 DSK is a relatively powerful,

inexpensive stand-alone application development board. The DSK includes the

TMS320C31 processor, the TLC32O4O analog interface circuit (AIC), and comes with an

assembler and debugger.

7.1 Overview of TMS32OC31 DSK

The TMS32OC31 is the low cost member of the third generation family of digital signal

processor from Texas Instruments Incorporation. Compared to its price, $5 each, it is the

best choice for the smart gun project.
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The TMS320C31 integrates both system control and math-intensive functions on

a single high-performance CMOS 32-bit floating-point device. This system integration

allows fast, easy data movement and high-speed numeric processing performance. With

the 40ns instruction cycle time, it provides capabilities for 5O million floating-point

operations per second (MFLOPS) or 25 million instructions second (MIPS). The 24-bit

address bus provides large address space (16 million 32bits words) for program, data and

input/output.

Figure 7.1 shows the TMS320C31 block diagram. The CPU consists of the

following components: Floating-point/integer multiplier, Arithmetic logic unit (ALU),

Internal buses, Auxiliary register arithmetic units, and CPU register files.
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The multiplier performs single-cycle multiplication on 24-bit integer and 32-bit

floating-point values. The ALU performs single-cycle operations on integer, logical, and

floating-point data, including single-cycle integer and floating-point conversions. Four

internal buses, CPU 1, CPU2, REG2, and REG2 carry two operands from memory and

two operands from the register file, allowing parallel multiplies and adds/subtracts on

four integer or floating-point operands in a single cycle. Two auxiliary register arithmetic

units (ARAUO and ARAUO) can generate two addresses in a single cycle. The ARAUs

operate in parallel with the multiplier and ALU. There are 28 registers in a multi-port

register file that is tightly coupled to the CPU. All of the primary registers can be

operated upon by the multiplier and ALU and can be used as general-purpose registers.

Since signal processing algorithms tend to involve repeated cycles of multiplication and

accumulation of data elements with coefficients stored in different parts of memory, these

features (ALU, multiplier, internal buses, and auxiliary register arithmetic units)

extremely increase the processing speed.

The on-chip DMA controller can read from or write to any location in the

memory map without interfering with the CPU operation. The DMA controller contains

its own address generators, source and destination registers, and transfer counter.

Dedicated DMA address and data buses minimize conflicts between the CPU and the

DMA controller. Since the DMA and CPU have distinct buses, they can operate

independently of each other. However, when the CPU and DMA access the same on-chip

or external resources, there is a conflict and C31 assign highest priority to the CPU.

The total memory space of the C31 is 16 million 32-bit words to contain program

code, data, and IIO mapped registers. The C31's separate program, data, and DMA buses
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allow for parallel program fetches, data reads and writes, and DMA operations. A 64 x

32-bit instruction cache stores often-repeated sections of code, greatly reducing the

number of off-chip accesses and allowing code to be stored off-chip in slower, lower-cost

memories.
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All of the memory-mapped peripheral bus registers are in locations 80800Oh-8097FFh.

and RAM block 1 is located at addresses 809COOh-809FFFh. While

the C31 has 2K words of on-chip memory, the last 256 words of internal memory

(809FOOh-809FFFh) on the DSK are used for the communications kernel and vectors.

The actual external RAM installed on the DSK that can be used by the program is 256K

words, from location 88000Oh to location 8BFFFFh.

The DSK board communicates with the PC host through a standard parallel

printer port interface connector cable. A program in C (or assembly) can be compiled and

linked to create an executable common object file format (COFF) file and the resulting

COFF file can be downloaded into the C31 on the DSK. An executable file can be loaded

into the DSK using either the debugger or a boot loader.

7.2 DSP Implementation on a Real Gun

In the previous chapters, a plastic replica handgun was used to do the static analysis and

dynamic analysis experiments. However, a plastic replica handgun does not give the

subject feelings of a real firing. In addition, all pattern recognition works needed to be

done after samples collected and processed by a PC. In reality, the smart gun is based on

a real gun and the pattern recognition needs to be done in real time. In this chapter, a real

handgun, Beretta 92FS, specially designed and manufactured for the military by Beretta

Corporation is used as the prototype of a smart gun. There are 16 sensors being put on the

gun handle. There is another sensor connected to the trigger to provide a pulse signal

when trigger pulled.
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The TLC32040 analog interface circuit (AIC) provides C31 the interface to these

16 sensors. The AIC converts analog input signals into digital signals for C31 analysis.

After the signal being processed, the output data is returned to the AIC for conversion

into an analog signal. The analog-to-digital converter (ADC) and digital-to-analog

converter (DAC) with 14-bit dynamic range can work at variable rate. The TLC32040

ACID and DIAL use offset binary for the digital representation of a number, where both

positive and negative analog inputs are represented as a binary number ranging from

00...O for the most negative input to 11...1 for the most positive input.

The AIC is controlled by C31 through the serial port. The AIC uses two types of

communication: the primary communication is used to pass the 14 bits through the DIAL

and AID converters, the secondary communication mode is used to initialize and control

the AIC. There are four control registers, TA, RA, TB, and RB.

Sample rate = system frequency / (2 x TAIRA x TBIRB)

The A registers control the switched capacitor bandpass filters frequency (SCFF).

TAIRA = system frequency / (SCFF x 2). The B registers control the sample rate of the

ACID and DIA converters. TBIRB = SCFF / sample frequency.

The values of register A and B are determined by:

In this case, the serial timer port clock has been set to 6.25 MHz, and the sample

rate is set to 1 KHz for each channel with total 16 channels. Therefore, the ACID sample
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rate should be 1 KHz/charmel x 16 channels = 16 KHz. The A registers should ensure the

SCFF to be 288 KHz so that TAIRA = 11, and TBIRB = 18.

The C31 timer and serial port is initialized by following code:

long *TO_ctrl = (long *) 0x808020;	 /* Timer 0 global control
long *T0_count = (long *) 0x808024;	 /* Timer 0 counter
long *TOprd = (long *) 0x808028; 	 /* Timer 0 period
long *SO_xctrl = (long *) 0x808040; 	 /* Serial 0 global control
long *S0_xctrl = (long *) 0x808042; /* Serial 0 FSXIDXICLKX port control
long *S0rctrl = (long *) 0x808043; /* Serial 0 FSRIDRICLKR port control
long *S0xdata = (long *) 0x808048; /* Serial 0 Data transmit 	 *1

long *SOrdata = (long *) 0x80804C; /* Serial 0 Data receive

void ST_STUB(void)
{

*T0_ctrl = O;
*TO count= 0;

*TO_prd = 2;

*TO ctrl = 0x2C1;
*S0_xctrl = 0xOOOOO111;
*S0rctrl = 0xOOOOO111;
*S0xdata = O;

*SO_xctrl = 0x0E973300;
AICINITO;

}

/* Startup stub

/* Halt Timer 0
/* Set counts to 0
/* Set Timer 0 period (2 is 6.25 MHz) */
/* (1 is 12.5 MHz)	 */
/* Restart timer	 */

/* Configure serial port transmit control */
/* Configure serial port receive control */
/* DXR data value */
/* Enable PRINT & 16 bit transfers */

The function AIC INIT() initializes the AIC.

void AIC INIT(void)
{

asm(" andn 034h,IF ");
asm(" idi 004h,IE ");
*S0_xdata = O;
asm(" rpts 004Oh ");
asm(" idi 34,IOF ");
asm(" idi 38,IOF ");
asm(" rpts 04Oh ");
asm(" nop	 ");
asm(" andn 034h,IF ");
asm(" idi 014h,IE ");

prog_AIC(3);

/* Enable only INT2

/* Repeat 64 times
/* XFO=0 resets AIC
/* XFO=1 runs AIC
/* Repeat 64 times
/* No operation
/* Set INT2,XINTO, and RINTO */
/* Enable EINT2 and EXINTO interrupts
/* EINT2 is Parallel Port	 */
/* EXINTO is Serial Port 0 xmit */
/* program control register 	 *1
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channels were connected to a red/green LCD light and two buzzes. If the test subject is an

authorized user, green light and one buzz give the "go" signal. Otherwise, red light and

another buzz give the "no-go" signal.

7.3 Wavelet Analysis of Handgrip Signal

The handgrip pattern recognition algorithms have been discussed before. However, the

algorithm discussed in Chapter 6 is not totally appropriate for a real-time recognition

work. The frequency analysis requires a lot of computation to do the Fourier transform.

Even though DSP is specially designed for multiplication and addition, and FFT is

developed for fast Fourier transform, it still costs about 10Oms to do the computation for

each channel. On the other hand, the recognition must be done in less than 10Oms.

Obviously, such frequency analysis is not acceptable here.

As discussed in Chapter 3, wavelet analysis is an alternative transform analysis

tool. There are a wide variety of popular wavelet algorithms, including Daubechies

wavelets, Mexican Hat wavelets and Morlet wavelets. These wavelet algorithms have the

advantage of better resolution. But they have the disadvantage of being expensive to

calculate. Due to the approximation quality and the simplicity, the Haar wavelet, which

requires the least computation, becomes a good choice for the real-time work.

The Haar wavelet transform applies a rectangular window and a step function,

to the input signal. After the

transform, the signal is divided into two bands, low frequency band (smoothed values)

and high frequency band (details). The smoothed values and the details are calculated as:
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The first pass of the above algorithm over the input signal uses a window width of

two. The window width is doubled at each step until the window encompasses the entire

time series.

In most cases, the important data is in low frequency area. Therefore, noise can be

eliminated by discarding high frequency coefficients. In addition, the information that is

most prominent in the original signal will appear as high amplitudes in that region of the
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DWT. By setting a threshold, and discarding all values in the DWT that are less than this

threshold, can extremely reduce the data size and delete the noise.
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Figure 7.4a shows a handgrip signal collected from a subject. Figure 7.4b shows

the inverse discrete Haar transform of this handgrip signal after all the discrete Haar

coefficients except the first 16 coefficients are set to zero. By discarding the last 96

coefficients, both the feature size and the computation for distance comparisons are

reduced. A filter must be used to improve this inverse transform in this case.

Figure 7.4c shows the final result of the improved inverse transform. This result

represents the pressure signal much better than the original noise corrupted data. From

this example, it shows that discrete wavelet transform not only helps to reduce the data

size (only 32 coefficients representing 128 points data), but also helps to eliminate the

noise.

7.4 Sensor Arrangements

In order to find the best sensor positions, six subjects, who are professional firearm users,

were asked to participate in an experiment. Initially, these six subjects were asked to

grasp a Beretta 92FS handgun in order to get their fingertip position distribution. Then,

the positions of the 16 pressure sensors on the gun handle were carefully designed based

on their fingertip distribution to mostly distinguish these six subjects. The positions of the

16 pressure sensors are shown in Figures 7.5 and 7.6.
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Tables 7.1 and 7.2 show the configuration of the sensors for each subject. In these

two tables, 1 represents that the subject touches the sensor, 0 represents that the subject

does not touch the sensor. By studying these tables, it shows that subject #6 can be

discriminated from the other subjects by examining whether the pressure sensor S9 being

touched. Subject #3 can be distinguished from the other subjects by examining the

pressure sensor S4. In addition, subject #5 can be distinguished from the others by

examining sensor S12. After excluding subject #5, subjects #1 and #2 can be classified by

examining the sensors S13 and S3, respectively.

After the sensor positions were decided, pockets were machined on the gun grip.

Sensors were put into the pockets and were wired to connect to the DSP box.
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7.5 Realtime Handgrip Recognition System and Its Evaluation

The disadvantage of the handgrip recognition algorithm discussed in Chapter 6 is that it

requires too much computation to complete. First, the computation of FFT is slow. The

discrete Haar wavelet transform can be used to solve this problem. Second, it compares

the input test with all stored data to find a most similar one. If there are N subject with n

stored samples for each subject, there will be n x N comparisons. This is not necessary.

To make the comparison faster, a pattern is calculated for each subject and the following

recognition procedure will use this pattern to do the identification.

The handgrip pattern recognition focuses on the pressure variation over the time

not the absolute amplitude of the handgrip signal, because the absolute amplitude of the

handgrip signal may have big variations in different cases. The hand pressure will be

much weaker when a person is sick or injured. However, the relative pressure waveform

will not change much in such cases. Normalization needs to be done before to create

patterns for each subject.

To normalize the data, all DC values of all samples in the template need to be

removed. Then, the maximum pressure value on all sensors from each sample during the

10Oms before trigger pulled is calculated and is set to +/- 1. The other values are

normalized in the same ratio so that the pressure waveform keeps same.

The average waveforms (patterns) and the average intra-class distances are

calculated in the same way as defined in Chapter 6. At the same time, apply the discrete

Haar wavelet transform to the pattern YQ(t) and store it as HQ(t). In the preprocessing

stage, the weights for each channel are also calculated in the same way as defined in

Chapter 6. By picking the first 50 samples and using the other 25 samples from each
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subject (totally 125 samples) as the tests, Table 7.3 shows the correct patterns recognized

as measuring similarity on only one channel. This result can be used for assigning

weights to each channel.

Given the test data x, the real time handgrip pattern recognition algorithm can be

defined as following:



Among these six subjects, five subjects (subject 1-2 and 4-6) participated in the

realtime dynamic analysis experiment. In order to give the subject as much same feeling

as a true firing, a simulator was used to produce the firing force back. Each subject was

tested for five rounds. In each round, the subject used a handgun simulator to aim at

different targets and fired the handgun simulator for 15 times. Two subjects wore the

gloves to test whether wearing gloves affects the analysis result. It shows that gloves

would not affect the handgrip recognition.

To evaluate the realtime handgrip recognition algorithm, 50 samples were

randomly picked from each subject as the templates, and the other samples were used as

tests. This process was repeated 20 times, with totally 2500 tests. The recognition speed

is 19ms per recognition, based on the TMS320C31 DSP system. The success rates are

100%, 80.2%, 88.8%, 92.8%, and 85.4% respectively for these five subjects. The average

success rate is 89.44%. The patterns of five subjects are shown in Appendix B, and the

recognition results are shown in Table 7.4.

From Table 7.4, it shows that the handgrip of subject #1 is the most consistent

one. No test from subject #1 was mistakenly recognized as others. The second most

consistent handgrip signal is from subject #4, whose success recognition rate is 92.8%.

There are 2.4% tests being mistakenly recognized as subject #1, 1.8% tests being
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mistakenly recognized as subject #2, O.6% tests being mistakenly recognized as subject

#3, and 2.4% tests being mistakenly recognized as subject #5.

The recognition success rate is not as good as expected. One of the reasons could

be the grip shear deformation during the test. The grip machining procedure involved the

flattening and consequent pocketing of the grip, which eventually could undermine its

structural integrity. The grip deflection caused an unwanted response from the sensors.

An extremely sensitive sensor behavior to the shear and high frequency vibration was

detected. Therefore, the grip has to be reinforced with copper or aluminum plate of small

thickness in order to prevent the shear deflection of the grip during actual firing

procedure. Sensor assembly would be mounted on the top of the plate. The plate would

provide simultaneous shielding of the sensors and electronic boards from the 60 Hz

industrial noises. Simultaneously, a layer of damping material (such as silicone) could be

deposited on the plate surface for the sensor vibration protection.

The handgrip recognition algorithm can be used for verification too. In the

preprocessing stage, the verification algorithm works similar to the recognition algorithm.

The average waveforms in time domain and wavelet (Haar) domain would be calculated

as the templates for each subject. The intra-class distances in time domain and wavelet
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domain also would be calculated. Then, the mean intra-class distances and the standard

deviations can be found. The thresholds would be decided in the preprocessing stage.

Usually, they could be defined as fractions of the standard deviations of the intra-class

distances.

During the verification stage, after the user claims his individuality, the input data

would be compared to the template, and the distances in time domain and wavelet

domain between the input data with the templates would be calculated. If either the

distance in time domain, or the distance in wavelet domain, being greater than the

threshold, this person would be rejected. Otherwise, the gun becomes operable.

To evaluate this verification algorithm, 50 samples were randomly picked from

each subject as the template, and the other samples were used as tests. This process was

repeated 20 times, with totally 12500 tests. Table 7.5 and Figure 7.7 give the false

rejection rate (FRR) and false acceptance rate (FAR) versus different thresholds. The

word "std" in Table 7.5 means the standard deviation of the distances.
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7.6 Summary

A DSP box with 16 input channels and 4 output channels was built in this chapter so that

the handgrip pattern recognition can be done in real time. A real handgun was used to do

the handgrip pattern recognition. The handgrip pattern recognition algorithm was

modified to be more suitable to the real time work.

To evaluate the performance of the realtime handgrip recognition system, five

subjects participated into one experiment. The pressure sensors were put into the pockets,

whose positions were specially designed to maximize the differences among these five

subjects. A handgun simulator was used in this experiment to provide the force back.

Each subject grasped the gun, aimed at different targets, and pulled the trigger 75 times.

Among the 75 samples, 50 samples were randomly picked to build the pattern. The other

25 samples were used as the tests. This process was repeated 20 times. The average
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success rate is about 90%. This result proves that the handgrip pattern recognition

algorithm is a successful algorithm.

A modified handgrip verification algorithm was also presented in this chapter.

Different false rejection rates and false acceptance rates were given versus different

thresholds. Users can choose appropriate thresholds based on their application

requirements.



CHAPTER 8

CONCLUSIONS AND FUTURE WORK

In this research, a new biometric identification technology is proposed to recognize the

authorized users of handguns. This approach is based on the fingertip distributions and

handgrip pressure dynamic variations during the firing process. Based on the study of

numerous biometric identification technologies, handgrip pattern recognition is the most

appropriate one for the smart gun.

Handgrip pattern recognition is a behavioral biometric technology. The behavioral

biometric technology is based on the fact that human actions are predictable in the

performance of repetitive, routine tasks. For an experienced firearm user, firing a gun is

such a repetitive action. Like handwritten signature, a number of parameters inherent

within the dynamic process make the handgrip unique for every person.

A prototype system was developed for this research. A digital camera was used to

get the fingertip positions of 160 subjects. Then, these fingertip distributions were

analyzed and divided into four natural groups. The static analysis shows that the fingertip

placements of the firearm-experienced subjects such as police officers are more

repeatable and have less variation than the fingertip placements of non-firearm-

experienced subjects. The static analysis also shows that the most important parameter to

classify different users into four natural groups is the horizontal position of ring finger,

followed by the vertical position of the pinkie, and the vertical position of the thumb. A

classification tree was built based on the static analysis to find the possible sensor

positions.

1O9
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The dynamic analysis of handgrip signals from 24 subjects was discussed. A

handgrip pattern recognition algorithm was also proposed and evaluated. The average

success recognition rate is 88.1%. Dividing the 24 subjects into 16 groups increases the

success rate to 94.4%.

A plastic replica handgun was used for the preliminary analysis. However, a fake

handgun does not have same weight with the real handgun. The fake gun can not give the

user the feeling of a real firing either. To overcome these disadvantages, a real handgun

was used. In addition, a DSP based handgrip recognition system was built to recognize

the user in realtime. The handgrip pattern recognition algorithm was modified to be more

suitable to the real time work. A figure of FRR and FAR versus threshold was given.

User can choose the appropriate threshold based on their prefer FRR and FAR.

Some future works are expected. The realtime handgrip recognition system is

based on a gun simulator. The next step would be collecting data from live firings. The

time between the trigger being pulled and the hammer falling should be calculated. At the

same time, the program running time of the handgrip recognition algorithm should be

examined to make sure that there is enough time to make the decision. The mechanical

lock should be carefully studied so that it can block the hammer in time if the user is

recognized as an unauthorized user.



APPENDIX A

CLASSIFICATION TREES

The figures in Appendix A give the classification trees for each finger. Figure A.1 shows

the classification tree for the thumb. Figure A.2 shows the classification tree for the

middle finger. Figure A.3 shows the classification tree for the ring finger. Figure A.4

shows the classification tree for the pinkie finger.

Instead of showing the actual tree, classification trees can be explained by

showing the actual partitions on the gun handle for each of the clusters. The figure with

partition in Cartesian space for the thumb is shown in Figure A.5. The figure with

partition in Cartesian space for the middle finger is shown in Figure A.6. The figure with

partition in Cartesian space for the ring finger is shown in Figure A.7. The figure with

partition in Cartesian space for the pinkie finger is shown in Figure A.8.

111



Figure A.2 Classification tree for the middle finger.
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Figure A.4 Classification tree for the pinkie finger.
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APPENDIX B

HANDGRIP PATTERNS

The figures in Appendix B give the pressure patterns on all 15 channels for each subject

who participated in the real-time handgrip pattern recognition experiment. Figure B.1 and

Figure B.2 show patterns on all channels for subject 1. Figure B.3 and Figure B.4 show

patterns on all channels for subject 2. Figure B.5 and Figure B.6 show patterns on all

channels for subject 3. Figure B.7 and Figure B.8 show patterns on all channels for

subject 4. Figure B.9 and Figure B.10 show patterns on all channels for subject 5.
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